
Reexecution-Based Analysis of Logic Programs
with Delay Declarations

Agostino Cortesi1, Baudouin Le Charlier2, and Sabina Rossi1

1 Dipartimento di Informatica, Università Ca’ Foscari di Venezia,
via Torino 155, 30172 Venezia, Italy
{cortesi,srossi}@dsi.unive.it

2 Universite Catholique de Louvain, Departement d’ingegnierie Informatique
2, Place Sainte-Barbe, B-1348 Louvain-la-Neuve (Belgique)

blc@info.ucl.ac.be

Abstract. A general semantics-based framework for the analysis of logic
programs with delay declarations is presented. The framework incor-
porates well known refinement techniques based on reexecution. The
concrete and abstract semantics express both deadlock information and
qualified answers.

1 Introduction

In order to get more efficiency, users of current logic programming environments,
like Sictus-Prolog [13], Prolog-III, CHIP, SEPIA, etc., are not forced to use
the classical Prolog left-to-right scheduling rule. Dynamic scheduling can be
applied instead where atom calls are delayed until their arguments are sufficiently
instantiated, and procedures are augmented with delay declarations.

The analysis of logic programs with dynamic scheduling was first investigated
by Marriott et al. in [18,11]. A more general (denotational) semantics of this class
of programs, extended to the general case of CLP, has been presented by Falaschi
et al. in [12], while verification and termination issues have been investigated by
Apt and Luitjes in [2] and by Marchiori and Teusink in [17], respectively.

In this paper we discuss an alternative, strictly operational, approach to
the definition of concrete and abstract semantics for logic programs with delay
declarations.

The main intuitions behind our proposal can be summarized as follows:

- to define in a uniform way concrete, collecting, and abstract semantics, in
the spirit of [14]: this allows us to easily derive correctness proofs of the
whole analyses;

- to define the analysis as an extension of the framework depicted in [14]:
this allows us to reuse existing code for program analysis, with minimal
additional effort;

- to explicitly derive deadlock information (possible deadlock and deadlock
freeness) producing, as a result of the analysis, an approximation of concrete
qualified answers;

D. Bjørner, M. Broy, and A. Zamulin (Eds.): PSI 2001, LNCS 2244, pp. 395–405, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

396 A. Cortesi, B. Le Charlier, and S. Rossi

- to apply the reexecution technique developed in [15]: if during the execution
of an atom a a deadlock occurs, then a is allowed to be reexecuted at a
subsequent step.

The main difference between our approach and the ones already presented
in the literature is that we are mainly focussed on analysis issues, in particular
on deadlock and no-deadlock analysis. This motivates the choice of a strictly
operational approach, where deadlock information is explicitly maintained.

In this paper we present an extension of the specification of the GAIA ab-
stract interpreter [14] to deal with dynamic scheduling. We design both a con-
crete and an abstract semantics, as well as a a generic algorithm that computes
a fixpoint of the abstract semantics. This is done following the classical abstract
interpretation methodology.

The main idea is partitioning literals of a goal g into three sets: literals
which are delayed, literals which are not delayed and have not been executed
yet, and literals which are allowed to be reexecuted as they are not delayed but
have already been executed before and fallen into deadlock. This partitioning
dramatically simplifies both concrete and abstract semantics with respect to the
approach depicted in [8], where a preliminary version of this work was presented.

Our approach uses the reexecution technique which exploits the well known
property of logic programming that a goal may be reexecuted arbitrarily often
without affecting the semantics of the program. This property has been pointed
out since 1987 by Bruynooghe [3,4] and subsequently used in abstract interpreta-
tion to improve the precision of the analysis [15]. In this framework, reexecution
allows to improve the accuracy of deadlock analysis, and its application may be
tuned according to computational constraints.

The rest of the paper is organized as follows. In the next section we recall some
basic notions about logic programs with delay declarations. Section 3 depicts
the concrete operational semantics which serves as a basis for the new abstract
semantics introduced in Section 4. Correctness of our generic fixpoint algorithm
is discussed. Section 5 concludes the paper.

2 Logic Programs with Delay Declarations

Logic programs with delay declarations consist of two parts: a logic program and
a set of delay declarations, one for each of its predicate symbols.

A delay declaration associated for an n-ary predicate symbol p has the form

DELAY p(x1, . . . , xn) UNTIL Cond(x1, . . . , xn)

where Cond(x1, . . . , xn) is a formula in some assertion language. We are not con-
cerned here with the syntax of this language since it is irrelevant for our purposes.
The meaning of such a delay declaration is that an atom p(t1, . . . , tn) can be se-
lected in a query only if the condition Cond(t1, . . . , tn) is satisfied. In this case
we say that the atom p(t1, . . . , tn) satisfies its delay declaration.

A derivation of a program augmented with delay declarations succeeds if it
ends with the empty goal; while it deadlocks if it ends with a non-empty goal

Reexecution-Based Analysis of Logic Programs with Delay Declarations 397

no atom of which satisfies its delay declaration. Both successful and deadlocked
derivations compute qualified answers, i.e., pairs of the form 〈θ, d〉 where d is
the last goal (that is a possibly empty sequence of delayed atoms) and θ is
the substitution obtained by concatenating the computed mgu’s from the initial
goal. Notice that, if 〈θ, d〉 is a qualified answer for a successful derivation then
d is the empty goal and θ restricted to the variables of the initial goal is the
corresponding computed answer substitution. We denote by qansP (g) the set of
qualified answers for a goal g and a program P .

We restrict our attention to delay declarations which are closed under instan-
tiation, i.e., if an atom satisfies its delay declaration then also all its instances do.
Notice that this is the choice of most of the logic programming systems dealing
with delay declarations such as IC-Prolog, NU-Prolog, Prolog-II, Sicstus-Prolog,
Prolog-III, CHIP, Prolog M, SEPIA, etc.

The following example illustrates the use of delay declarations in logic pro-
gramming.

Example 1. Consider the program PERMUTE discussed by Naish in [19].

% perm(Xs,Ys) ← Ys is a permutation of the list Xs
perm(Xs,Ys) ← Xs = [], Ys = [].
perm(Xs,Ys) ← Xs = [X|X1s], delete(X,Ys,Zs), perm(X1s,Zs).

% delete(X,Ys,Zs) ← Zs is the list obtained by removing X from the list Ys
delete(X,Ys,Zs) ← Ys = [X|Zs].
delete(X,Ys,Zs) ← Ys = [X1|Y1s], Zs = [X1|Z1s], delete(X,Y1s,Z1s).

Clearly, the relation declaratively given by perm is symmetric. Unfortunately,
the behavior of the program with Prolog (using the leftmost selection rule) is
not. In fact, given the query

Q1 :=← perm(Xs, [a, b]).

Prolog will correctly backtrack through the answers Xs = [a, b] and Xs = [b, a].
However, for the query

Q2 :=← perm([a, b], Xs).

Prolog will first return the answer Xs = [a, b] and on subsequent backtracking
will fall into an infinite derivation without returning answers anymore.

For languages with delay declarations the program PERMUTE behaves sym-
metrically. In particular, if we consider the delay declarations:

DELAY perm(Xs,) UNTIL nonvar(Xs).
DELAY delete(, ,Zs) UNTIL nonvar(Zs).

the query Q2 above does not fall into a deadlock.

Under the assumption that delay declarations are closed under instantiation,
the following result, which is a variant of Theorem 4 in Yelick and Zachary [21],
holds.

398 A. Cortesi, B. Le Charlier, and S. Rossi

P ∈ Programs P ::= pr1, . . . , prn (n > 0)
pr ∈ Procedures pr ::= c1, . . . , cn (n > 0)
c ∈ Clauses c ::= h : −g.
h ∈ ClauseHeads h ::= p(x1, . . . , xn) (n ≥ 0)
g ∈ LiteralSequences g ::= l1, . . . , ln (n ≥ 0)
l ∈ Literals l ::= a | b
a ∈ Atoms a ::= p(xi1 , . . . , xin) (n ≥ 0)
b ∈ Built-ins b ::= xi = xj | xi1 = f(xi2 , . . . , xin)
p ∈ ProcedureNames
f ∈ Functors
xi ∈ ProgramVariables

Fig. 1. Abstract syntax of normalized programs

Theorem 1. Let P be a program augmented with delay declarations, g be a goal
and g′ be a permutation of g. Then qansP (g) and qansP (g′) are equals modulo
the ordering of delayed atoms.

It follows that both successful and deadlocked derivations are “independent”
from the choice of the selection rule. Moreover, Theorem 1 allows us to treat
goals as multisets instead of sequences of atoms.

3 The Concrete Operational Semantics

In this section we describe a concrete operational semantics for pure Prolog
augmented with delay declarations. The concrete semantics is the link between
the standard semantics of the language and the abstract one. We assume a
preliminary knowledge of logic programming (see, [1,16]).

3.1 Programs and Substitutions

Programs are assumed to be normalized according to the syntax given in Fig. 1.
The variables occurring in a literal are distinct; distinct procedures have distinct
names; all clauses of a procedure have exactly the same head; if a clause uses m
different program variables, these variables are x1, . . . , xm. If g := a1, . . . , an we
denote by g \ ai the goal g′ := a1, . . . , ai−1, ai+1, . . . , an.

We assume the existence of two disjoint and infinite sets of variables: program
variables, which are ordered and denoted by x1, x2, . . . , xi, . . . , and standard
variables which are denoted by letters y and z (possibly subscripted). Programs
are built using program variables only.

A program substitution is a set {xi1/t1, . . . , xin/tn}, where xi1 , . . . , xin are
distinct program variables and t1, . . . , tn are terms (built with standard variables
only). Program substitutions are not substitutions in the usual sense; they are
best understood as a form of program store which expresses the state of the com-
putation at a given program point. It is meaningless to compose them as usual
substitutions. The domain of a program substitution θ = {xi1/t1, . . . , xin/tn},

Reexecution-Based Analysis of Logic Programs with Delay Declarations 399

denoted by dom(θ), is the set of program variables {xi1 , . . . , xin}. The applica-
tion xiθ of a program substitution θ to a program variable xi is defined only
if xi ∈ dom(θ): it denotes the term bound to xi in θ. Let D be a finite set of
program variables. We denote by PSD the set of program substitutions whose
domain is D.

3.2 Concrete Behaviors

The notion of concrete behavior provides a mathematical model for the in-
put/output behavior of programs. To simplify the presentation, we do not pa-
rameterize the semantics with respect to programs. Instead, we assume given a
fixed underlying program P augmented with delay declarations.

We define a concrete behavior as a relation from input states to output states
as defined below. The input states have the form

- 〈θ, p〉, where p is the name of a procedure and θ is a program substitution also
called activation substitution. Moreover, θ ∈ PS{x1,...,xn}, where x1, . . . , xn

are the variables occurring in the head of every clause of p.

The output states have the form

- 〈θ′, κ〉, where θ′ ∈ PS{x1,...,xn} and κ is a deadlock state, i.e., it is an element
from the set {δ, ν}, where δ stands for definite deadlock, while ν stands for no
deadlock. In case of no deadlock, θ′ restricted to the variables {x1, . . . , xn}
is a computed answer substitution (the one corresponding to a successful
derivation), while in case of deadlock, θ′ is the substitution part of a qualified
answer to p and coincides with a partial answer substitution for it.

We use the relation symbol �−→ to represent concrete behaviors, i.e., we write
〈θ, p〉 �−→ 〈θ′, κ〉: this notation emphasizes the similarities between this concrete
semantics and the structural operational semantics for logic programs defined
in [15]. Concrete behaviors are intended to model successful and deadlocked
derivations of atomic queries.

3.3 Concrete Semantic Rules

The concrete semantics of an underlying program P with delay declarations is
the least fixpoint of a continuous transformation on the set of concrete behav-
iors. This transformation is defined in terms of semantic rules that naturally
extend concrete behaviors in order to deal with clauses and goals. In particular,
a concrete behavior is extended through intermediate states of the form 〈θ, c〉
and 〈θ, g d, g e, g r〉, where c is a clause and g d, g e, g r is a partition of a goal
g such that: g d contains all literals in g which are delayed, g e contains all lit-
erals in g which are not delayed and have not been executed yet, g r contains
all literals in g which are allowed to be reexecuted, i.e., all literals that are not
delayed and have already been executed but fallen into a deadlock.

– Each pair 〈θ, c〉, where c is a clause, θ ∈ PS{x1,...,xn} and x1, . . . , xn are the
variables occurring in the head of c, is related to an output state 〈θ′, κ〉,
where θ′ ∈ PS{x1,...,xn} and κ ∈ {δ, ν} is a deadlock state;

400 A. Cortesi, B. Le Charlier, and S. Rossi

– Each tuple 〈θ, g d, g e, g r〉, where θ ∈ PS{x1,...,xm} and x1, . . . , xm are the
variables occurring in (g d, g e, g r), is related to an output state 〈θ′, κ〉,
where θ′ ∈ PS{x1,...,xm} and κ ∈ {δ, ν} is a deadlock state.
We briefly recall here the concrete operations which are used in the definition

of the concrete semantic rules depicted in Fig. 2. The reader may refer to [14]
for a complete description of all operations but the last one, SPLIT, that is brand
new.

- EXTC is used at clause entry: it extends a substitution on the set of variables
occurring in the body of the clause.

- RESTRC is used at clause exit: it restricts a substitution on the set of variables
occurring in the head of the clause.

- RETRG is used when a literal l occurring in the body of a clause is ana-
lyzed. Let {xi1 , . . . , xin

} be the set of variables occurring in l. This opera-
tion expresses a substitution on variables xi1 , . . . , xin in terms of the formal
parameters x1, . . . , xn.

- EXTG is used to combine the analysis of a built-in or a procedure call (ex-
pressed in terms of the formal parameters x1, . . . , xn) with the activating
substitution.

- UNIF-FUNC and UNIF-VAR are the operations that actually perform the unifi-
cation of equations of the form xi = xj or xi1 = f(xi2 , . . . , xin), respectively.

- SPLIT is a new operation: given a substitution θ and a goal g, it partitions
g into the set of atoms g d which do not satisfy the corresponding delay
declarations, and then are not executable, and the set of atoms g e which
satisfy the corresponding delay declarations, and then are executable.

The definition of the concrete semantic rules proceeds by induction on the
syntactic structure of program P . Rule R1 defines the result of executing a pro-
cedure call: this is obtained by executing any clause defining it. Rule R2 defines
the result of executing a clause: this is obtained by executing its body under
the same input substitution after splitting the body into two parts: executable
literals and delayed literals. Rule R3 defines the result of executing the empty
goal, generating a successful output substitution. Rule R4 defines a deadlock sit-
uation that yields a definite deadlock information δ. Rules R5 to R8 specify the
execution of a literal. First, the literal is executed producing an output substitu-
tion θ3; then reexecutable atoms are (re)executed through the auxiliary relation
〈θ3, g r〉 �−→r 〈θ4, ḡ r〉: its effect is to refine θ3 into θ4 and to remove from g r
the atoms that are completely solved in θ4 returning the new list of reexecutable
atoms ḡ r; finally, the sequence of delayed atoms with the new substitution θ4
is partitioned in two sets: the atoms that are still delayed and those that have
been awakened. Rules R5 and R6 specify the execution of built-ins and use the
unification operations. Rules R7 and R8 define the execution of an atom a

The reexecutable rules defining the auxiliary relation �−→r can be easily
obtained according to the methodology in [15].

The concrete semantics of a program P with delay declarations is defined as a
fixpoint of this transition system. We can prove that this operational semantics is
safe with respect to the standard resolution of programs with delay declarations.

Reexecution-Based Analysis of Logic Programs with Delay Declarations 401

c is a clause defining p
〈θ, c〉
−→ 〈θ′, κ〉

R1
〈θ, p〉
−→ 〈θ′, κ〉

c := h : −g
θ1 = EXTC(c, θ)

〈g d, g e〉 = SPLIT(θ1, g)
〈θ1, g d, g e, < >〉
−→ 〈θ2, κ〉

θ′ = RESTRC(c, θ2)
R2

〈θ, c〉
−→ 〈θ′, κ〉

R3
〈θ, < >, < >< >, 〉
−→ 〈θ, ν〉

either g d �=< > or g r �=< >
R4

〈θ, g d, < >, g r〉
−→ 〈θ, δ〉

ḡ e := g e \ b
b := xi = xj

θ1 = RESTRG(b, θ)
θ2 = UNIF VAR(θ1)
θ3 = EXTG(b, θ, θ2)
〈θ3, g r〉
−→r 〈θ4, ḡ r〉
〈ḡ d, ḡ′e〉 = SPLIT(θ4, g d)

〈θ4, ḡ d, ḡ e ∪ ḡ′e, ḡr〉
−→ 〈θ′, κ〉
R5

〈θ, g d, g e, g r〉
−→ 〈θ′, κ〉

ḡ e := g e \ b
b := xi = f(xi1 , . . . , xin)

θ1 = RESTRG(b, θ)
θ2 = UNIF FUNC(b, θ1)

θ3 = EXTG(b, θ, θ2)
〈θ3, g r〉
−→r 〈θ4, ḡ r〉
〈ḡ d, ḡ′e〉 = SPLIT(θ4, g d)

〈θ4, ḡ d, ḡ e ∪ ḡ′e, ḡr〉
−→ 〈θ′, κ〉
R6

〈θ, g d, g e, g r〉
−→ 〈θ′, κ〉

ḡ e := g e \ a
a := p(xi1 , . . . , xin)
θ1 = RESTRG(a, θ)
〈θ1, p〉
−→ 〈θ2, ν〉
θ3 = EXTG(a, θ, θ2)
〈θ3, g r〉
−→r 〈θ4, ḡ r〉
〈ḡ d, ḡ′e〉 = SPLIT(θ4, g d)

〈θ4, ḡ d, ḡ e ∪ ḡ′e, ḡr〉
−→ 〈θ′, κ〉
R7

〈θ, g d, g e, g r〉
−→ 〈θ′, κ〉

ḡ e := g e \ a
a := p(xi1 , . . . , xin)
θ1 = RESTRG(a, θ)
〈θ1, p〉
−→ 〈θ2, δ〉
θ3 = EXTG(a, θ, θ2)

〈θ3, g r.a〉
−→r 〈θ4, ḡ r〉
〈ḡ d, ḡ′e〉 = SPLIT(θ4, g d)

〈θ4, ḡ d, ḡ e ∪ ḡ′e, ḡr〉
−→ 〈θ′, κ〉
R8

〈θ, g d, g e, g r〉
−→ 〈θ′, κ〉

Fig. 2. Concrete semantic rules

402 A. Cortesi, B. Le Charlier, and S. Rossi

4 Collecting and Abstract Semantics

As usual in the Abstract Interpretation approach [9,10], in order to define an
abstract semantics we proceed in three steps. First, we depict a collecting se-
mantics, by lifting the concrete semantics to deal with sets of substitutions.
Then, any abstract semantics will be defined as an abstraction of the collecting
semantics: it is sufficient to provide an abstract domain that enjoys a Galois
connection with the concrete domain ℘(Subst), and a suite of abstract opera-
tions that safely approximate the concrete ones. Finally, we draw an algorithm
to compute a (post-)fixpoint of an abstract semantics defined this way.

The collecting semantics can be trivially obtained from the concrete one by

- replacing substitutions with sets of substitutions;
- using µ, standing for possible deadlock, instead of δ;
- redefining all operations in order to deal with sets of substitutions (as done
in [14]).

In particular, the collecting version of operation SPLIT, given a set of substitu-
tions Θ, will partition a goal g into the set of atoms g d which do not satisfy the
corresponding delay declarations for some θ ∈ Θ, and the set of atoms g e which
do satisfy the corresponding delay declarations for some θ ∈ Θ. Notice that this
approach is sound, i.e., if an atom is executed at the concrete level then it will
be also at the abstract level. However, since some atoms can be put both in g d
and in g e some level of imprecision could arise.

Once the collecting semantics is fixed, deriving abstract semantics is almost
an easy job. Any domain abstracting substitutions can be used to describe ab-
stract activation states. Similarly to the concrete case, we distinguish among
input states, e.g., 〈β, p〉 where β is an approximation of a set of activation sub-
stitutions, and output states, e.g., 〈β′, κ〉 where β′ is an approximation of a set
of output substitutions and κ ∈ {µ, ν} is an abstract deadlock state. Clearly,
the accuracy of deadlock analysis will depend on the matching between delay
declarations and the information represented by the abstract domains. It is easy
to understand, by looking at the concrete semantics presented above, that very
few additional operations should be implemented on an abstract substitution
domain like the ones in [6,7,14], while a great amount of existing specification
and coding can be reused for free.

Fig. 3 reports the final step in the Abstract Interpretation picture described
above: an abstract transformation that abstracts the concrete semantics rules.
The abstract semantics is defined as a post-fixpoint of transformation TAB on
sets of abstract tuples, sat, as defined in the picture. An algorithm computing
the abstract semantics can be defined by simple modification of the reexecution
fixpoint algorithm presented in [15]. The reexecution function Tr is in the spirit
of [15]. It uses the abstract operations REFINE and RENAME, where

- REFINE is used to refine the result β of executing an atom by combining it
with the results obtained by reexecution of atoms in the reexecutable atom
lists starting from β itself;

- RENAME is used after reexecution of an atom a: it expresses the result of
reexecution in terms of the variables xi1 , . . . , xin

occurring in a.

Reexecution-Based Analysis of Logic Programs with Delay Declarations 403

TAB(sat) = {(β, p, 〈β′, κ〉) : (β, p) is an input state and 〈β′, κ〉 = Tp(β, p, sat)}.

Tp(β, p, sat) = UNION(〈β1, κ1〉 . . . , 〈βn, κn〉)
where 〈βi, κi〉 = Tc(β, ci, sat),

c1, . . . , cn are the clauses defining p.

Tc(β, c, sat) = 〈RESTRC(c, β′), κ〉
where 〈β′, κ〉 = Tb(EXTC(c, β), g d, g e, < >, sat),

〈g d, g e〉 = SPLIT(β, b) where b is the body of c.

Tb(β, < >, < >, < >, sat) = 〈β, ν〉.

Tb(β, g d, < >, g r, sat) = 〈β, µ〉
where either g d or g r is not empty.

Tb(β, g d, l.g e, g r, sat) = Tb(β4, ḡ d, g e.ḡ e, ḡ r, sat)
where 〈ḡ d, ḡ e〉 = SPLIT(β4, g d)

〈β4, ḡ r〉 = Tr(β3, g r, sat) if κ = ν,
Tr(β3, g r.l, sat) if κ = µ,

β3 = EXTG(l, β, β2),
〈β2, κ〉 = sat(β1, p) if l is p(· · ·)

〈UNIF VAR(β1), ν〉 if l is xi = xj ,
〈UNIF FUNC(l, β1), ν〉 if l is xi = f(· · ·),

β1 = RESTRG(l, β).

Tr(β, (a1, . . . , an), sat) = �∞
i=1〈βi, gi〉

where 〈β0, g0〉 = 〈β, (a1, . . . , an)〉
βi+1 = REFINE(βi, Tr(βi, a1, sat), . . . , Tr(βi, an, sat)) (i ≥ 1)
gi+1 = {ai | i ∈ {1, . . . , n} and 〈•, µ〉 = Tr(βi, ai, sat)}

Tr(β, a, sat) = 〈RENAME(a, β2), κ〉
where 〈β2, k〉 = sat(β1, p) if a is p(· · ·)

β1 = RESTRG(a, β).

Fig. 3. The abstract transformation

As already observed before, most of the operations that are used in the algo-
rithm are simply inherited from the GAIA framework [14]. The only exception
is SPLIT, which depends on a given set of delay declarations.

The correctness of the algorithm can be proven the same way as in [14] and
[15]. What about termination ? The execution of Tb terminates since the number
of literals in g d and g e decreases of exactly one at each recursive call. The fact
that the execution of Tr terminates depends on some hypothesis on the abstract
domain such as to be a complete lattice (when this is not the case, and it is just
a cpo, an additional widening operation is usually provided by the domain).

404 A. Cortesi, B. Le Charlier, and S. Rossi

Example 2. Consider again the program PERMUTE illustrated above. Using one
of our domains for abstract substitutions, like Pattern (see [5,20]), and starting
from an activation state of the form perm(ground,var) our analysis returns the
abstract qualified answer 〈perm(ground, ground), ν〉, which provides the infor-
mation that any concrete execution, starting in a query of perm with the first
argument being ground and the second one being variable, is deadlock free.

5 Conclusions

The framework presented in this paper is part of a project aimed at integrating
most of the work, both theoretical and practical, on abstract interpretation of
logic programs developed by the authors in the last years. The final goal is to get
a practical tool that tackles a variety of problems raised by the recent research
and development directions in declarative programming. Dynamic scheduling is
an interesting example in that respect, as most of current logic programming
environments integrate this feature.

In the next future, we plan to adapt the existing implementations of GAIA
systems in order to practically evaluate the accuracy and efficiency of the this
framework.

Acknowledgments. This work has been partially supported by the Italian
MURST Projects “Interpretazione Astratta, Type Systems e Analisi Control-
Flow”, and “Certificazione automatica di programmi mediante interpretazione
astratta”.

References

1. K. R. Apt. From Logic Programming to Prolog. Prentice Hall, 1997.
2. K. R. Apt and I. Luitjes. Verification of logic programs with delay declarations.

Lecture Notes in Computer Science, 936:66–80, 1995.
3. M. Bruynooghe. A practical framework for the abstract interpretation of logic

programs. Journal of Logic Programming, 10(2):91–124, February 1991.
4. M. Bruynooghe, G. Janssens, A. Callebaut, and B. Demoen. Abstract interpreta-

tion: Towards the global optimization of Prolog programs. In Proceedings of the
1987 Symposium on Logic Programming, pages 192–204, San Francisco, California,
August 1987. Computer Society Press of the IEEE.

5. A. Cortesi, G. Filé, and W. Winsborough. Optimal groundness analysis using
propositional logic. Journal of Logic Programming, 27(2):137–167, May 1996.

6. A. Cortesi, B. Le Charlier, and P. Van Hentenryck. Combination of abstract do-
mains for logic programming. In Proceedings of the 21th ACM SIGPLAN–SIGACT
Symposium on Principles of Programming Languages (POPL’94), Portland, Ore-
gon, January 1994.

7. A. Cortesi, B. Le Charlier, and P. Van Hentenryck. Combination of abstract
domains for logic programming: open product and generic pattern construction.
Science of Computer Programming, 28(1–3):27–71, 2000.

8. A. Cortesi, S. Rossi, and B. Le Charlier. Operational semantics for reexecution-
based analysis of logic programs with delay declarations. Electronic Notes in The-
oretical Computer Science, 48(1), 2001. http://www.elsevier.nl/locate/entcs.

Reexecution-Based Analysis of Logic Programs with Delay Declarations 405

9. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conference
Record of Fourth ACM Symposium on Programming Languages (POPL’77), pages
238–252, Los Angeles, California, January 1977.

10. P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
In Conference Record of Sixth ACM Symposium on Programming Languages
(POPL’79), pages 269–282, Los Angeles, California, January 1979.

11. M. Garcia de la Banda, K. Marriott, and P. Stuckey. Efficient analysis of logic
programs with dynamic scheduling. In J. Lloyd, editor, Proc. Twelfth International
Logic Programming Symposium, pages 417–431. MIT Press, 1995.

12. M. Falaschi, M. Gabbrielli, K. Marriott, and C. Palamidessi. Constraint logic
programming with dynamic scheduling: A semantics based on closure operators.
Information and Computation, 137(1):41–67, 1997.

13. Intelligent Systems Laboratory, Swedish Institute of Computer Science, PO Box
1263, S-164 29 Kista, Sweden. SICStus Prolog User’s Manual, 1998.
http://www.sics.se/isl/sicstus/sicstus toc.html.

14. B. Le Charlier and P. Van Hentenryck. Experimental Evaluation of a Generic
Abstract Interpretation Algorithm for Prolog. ACM Transactions on Programming
Languages and Systems (TOPLAS), 16(1):35–101, January 1994.

15. B. Le Charlier and P. Van Hentenryck. Reexecution in abstract interpretation of
Prolog. Acta Informatica, 32:209–253, 1995.

16. J.W. Lloyd. Foundations of Logic Programming. Springer Series: Symbolic
Computation–Artificial Intelligence. Springer-Verlag, second, extended edition,
1987.

17. E. Marchiori and F. Teusink. Proving termination of logic programs with delay
declarations. In John Lloyd, editor, Proceedings of the International Symposium on
Logic Programming, pages 447–464, Cambridge, December 4–7 1995. MIT Press.

18. K. Marriott, M. Garcia de la Banda, and M. Hermenegildo. Analyzing logic pro-
grams with dynamic scheduling. In Proc. 21st Annual ACM Symp. on Principles
of Programming Languages, pages 240–253. ACM Press, 1994.

19. L. Naish. Negation and control in Prolog. Number 238 in Lecture Notes in Com-
puter Science. Springer-Verlag, New York, 1986.

20. P. Van Hentenryck, A. Cortesi, and B. Le Charlier. Evaluation of the domain Prop.
Journal of Logic Programming, 23(3):237–278, June 1995.

21. K. Yelick and J. Zachary. Moded type systems for logic programming. In Pro-
ceedings of the Sixteenth Annual ACM Symposium on Principles of Programming
Languages (POPL’89), pages 116–124, 1989.

	Introduction
	Logic Programs with Delay Declarations
	The Concrete Operational Semantics
	Programs and Substitutions
	Concrete Behaviors
	Concrete Semantic Rules

	Collecting and Abstract Semantics
	Conclusions

