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Abstract. The Stable Marriage problem (SM) is an extensively-studied
combinatorial problem with many practical applications. In this paper
we present two encodings of an instance I of SM as an instance J of
a Constraint Satisfaction Problem. We prove that, in a precise sense,
establishing arc consistency in J is equivalent to the action of the estab-
lished Extended Gale/Shapley algorithm for SM on I. As a consequence
of this, the man-optimal and woman-optimal stable matchings can be
derived immediately. Furthermore we show that, in both encodings, all
solutions of I may be enumerated in a failure-free manner. Our results
indicate the applicability of Constraint Programming to the domain of
stable matching problems in general, many of which are NP-hard.

1 Introduction

An instance of the classical Stable Marriage problem (SM) [6] comprises n men
and n women, and each person has a preference list in which they rank all
members of the opposite sex in strict order. A matching M is a bijection between
the men and women. A man mi and woman wj form a blocking pair for M if
mi prefers wj to his partner in M and wj prefers mi to her partner in M .
A matching that admits no blocking pair is said to be stable, otherwise the
matching is unstable. SM arises in important practical applications, such as the
annual match of graduating medical students to their first hospital appointments
in a number of countries (see e.g. [11]).

Every instance of SM admits at least one stable matching, which can be
found in time linear in the size of the problem instance, i.e. O(n2), using the
Gale/Shapley (GS) algorithm [4]. An extended version of the GS algorithm –
the Extended Gale/Shapley (EGS) algorithm [6, Section 1.2.4] – avoids some un-
necessary steps by deleting from the preference lists certain (man,woman) pairs
that cannot belong to a stable matching. The man-oriented version of the EGS

? This work was supported by EPSRC research grant GR/M90641.
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Men’s lists Women’s lists

1: 1 3 6 2 4 5 1: 1 5 6 3 2 4
2: 4 6 1 2 5 3 2: 2 4 6 1 3 5
3: 1 4 5 3 6 2 3: 4 3 6 2 5 1
4: 6 5 3 4 2 1 4: 1 3 5 4 2 6
5: 2 3 1 4 5 6 5: 3 2 6 1 4 5
6: 3 1 2 6 5 4 6: 5 1 3 6 4 2

(a)

Men’s lists Women’s lists

1: 1 1: 1
2: 2 2: 2
3: 4 3: 4 6
4: 6 5 3 4: 3
5: 5 6 5: 6 4 5
6: 3 6 5 6: 5 6 4

(b)

Fig. 1. (a) An SM instance with 6 men and 6 women; (b) the corresponding GS-lists.

algorithm involves a sequence of proposals from the men to women, provisional
engagements between men and women, and deletions from the preference lists.
At termination, the reduced preference lists are referred to as the MGS-lists.
A similar proposal sequence from the women to the men (the woman-oriented
version) produces the WGS-lists, and the intersection of the MGS-lists with the
WGS-lists yields the GS-lists [6, p.16]. An important property of the GS-lists
[6, Theorem 1.2.5] is that, if each man is given his first-choice partner (or equiv-
alently, each woman is given her last-choice partner) in the GS-lists then we
obtain a stable matching called the man-optimal stable matching. In the man-
optimal (or equivalently, woman-pessimal) stable matching, each man has the
best partner (according to his ranking) that he could obtain, whilst each woman
has the worst partner that she need accept, in any stable matching. An analogous
procedure, switching the roles of the men and women, gives the woman-optimal
(or equivalently, man-pessimal) stable matching.

An example SM instance I is given in Figure 1, together with the GS-lists
for I. (Throughout this paper, a person’s preference list is ordered with his/her
most-preferred partner leftmost.) There are three stable matchings for this in-
stance: {(1,1), (2,2), (3,4), (4,6), (5,5), (6,3)} (the man-optimal stable matching);
{(1,1), (2,2), (3,4), (4,3), (5,6), (6,5)} (the woman-optimal stable matching); and
{(1,1), (2,2), (3,4), (4,5), (5,6), (6,3)}.

SMI is a generalisation of SM in which the preference lists of those involved
can be incomplete. In this case, person p is acceptable to person q if p appears on
the preference list of q, and unacceptable otherwise. A matching M in an instance
I of SMI is a one-one correspondence between a subset of the men and a subset
of the women, such that (m,w) ∈ M implies that each of m and w is acceptable
to the other. In this setting, a man m and woman w form a blocking pair for M if
each is either unmatched in M and finds the other acceptable, or prefers the other
to his/her partner in M . As in SM, a matching is stable if it admits no blocking
pair. (It follows from this definition that, from the point of view of finding stable
matchings, we may assume without loss of generality that p is acceptable to q if
and only if q is acceptable to p.) A stable matching in I need not be a complete
matching. However, all stable matchings in I involve exactly the same men and
women [5]. It is straightforward to modify the Extended Gale/Shapley algorithm
to cope with an SMI instance [6, Section 1.4.2] (a pseudocode description of the
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assign each person to be free;
while some man m is free and m has a nonempty list loop

w := first woman on m’s list; {m ‘proposes’ to w}
if some man p is engaged to w then

assign p to be free;
end if;
assign m and w to be engaged to each other;
for each successor p of m on w’s list loop

delete the pair {p, w};
end loop;

end loop;

Fig. 2. The man-oriented Extended Gale/Shapley algorithm for SMI.

man-oriented EGS algorithm for SMI is given in Figure 2 (the term delete the
pair {p,w} means that p should be deleted from w’s list and vice versa); the
woman-oriented algorithm is analogous). Furthermore, the concept of GS-lists
can be extended to SMI, with analogous properties.

The Stable Marriage problem has its roots as a combinatorial problem, but
has also been the subject of much interest from the Game Theory and Economics
community [12] and the Operations Research community [13]. In this paper we
present two encodings of an instance I of SMI (and so of SM) as an instance J of
a Constraint Satisfaction Problem (CSP). We show that Arc Consistency (AC)
propagation [1] achieves the same results as the EGS algorithm in a certain sense.
For the first encoding, we show that the GS-lists for I correspond to the domains
remaining after establishing AC in J . The second encoding is more compact;
although the arc consistent domains in J are supersets of the GS-lists, we can
again obtain from them the man-optimal and woman-optimal stable matchings
in I. We also show that, for both encodings, we are guaranteed a failure-free
enumeration of all stable matchings in I using AC propagation (combined with
a value-ordering heuristic in the case of the first encoding) in J .

Our results show that constraint propagation within a CSP formulation of SM
captures the structure produced by the EGS algorithm. We have also demon-
strated the applicability of constraint programming to the general domain of
stable matching problems. Many variants of SM are NP-hard [10, 9, 8], and the
encodings presented here could potentially be extended to these variants, giving
a way of dealing with their complexity through existing CSP search algorithms.

The remainder of this paper is organised as follows. In Section 2 we present
the first encoding, then prove the consequent relationship between AC propa-
gation and the GS-lists in Section 3; the failure-free enumeration result for this
encoding is presented in Section 4. A second encoding, using Boolean variables,
is given in Section 5, and in Section 6 we show the relationship between AC
propagation in this encoding and the man-optimal and woman-optimal stable
matchings, together with the failure-free enumeration result. Section 7 contains
some concluding remarks.
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2 A first encoding for SM and SMI

In this section we present an encoding of the Stable Marriage problem, and
indeed more generally SMI, as a binary constraint satisfaction problem.

Suppose that we are given an SMI instance I involving men m1,m2, . . . ,mn

and women w1, w2, . . . , wn (it is not difficult to extend our encoding to the
case that the numbers of men and women are not equal, but for simplicity we
assume that these numbers are equal). For any person q in I, PL(q) (respectively
GS(q)) denotes the set of persons contained in the original preference list (GS-
list) of q in I. For the purposes of exposition, we introduce a dummy man mn+1

and a dummy woman wn+1 into the SMI instance, such that, for each i, mi

(respectively wi) prefers all women (men) on his (her) preference list (if any) to
wn+1 (mn+1).

To define an encoding of I as a CSP instance J , we introduce variables
x1, x2, . . . , xn corresponding to the men, and y1, y2, . . . , yn corresponding to the
women. For each i (1 ≤ i ≤ n), we let dom(xi) denote the values in variable xi’s
domain. Initially, dom(xi) is defined as follows:

dom(xi) = {j : wj ∈ PL(mi)} ∪ {n + 1}.

For each j (1 ≤ j ≤ n), dom(yj) is defined similarly. For each i (1 ≤ i ≤ n),
let dm

i = |dom(xi)| and let dw
i = |dom(yi)|. Intuitively, for 1 ≤ i, j ≤ n, the

assignment xi = j corresponds to the case that man mi marries woman wj , and
our encoding ensures that, after AC propagation, xi = j if and only if yj = i.
Similarly, for 1 ≤ i ≤ n, the assignment xi = n + 1 (respectively yi = n + 1)
corresponds to the case that mi (wi) is unmatched. It should be pointed out
that, if the given SMI instance is an SM instance (i.e. all men and women’s
preference lists are complete), then no variable will be assigned the value n + 1
in its domain in any stable matching.

We now define constraints involving the variables in the encoding. Given any
i and j (1 ≤ i, j ≤ n), the stable marriage constraint xi/yj involving xi and yj is
a set of nogoods which we represent by a dm

i ×dw
j conflict matrix C. For any k, l

(k ∈ dom(xi), l ∈ dom(yj)), the element Ck,l of C can have one of four values,
as follows:

A: Ck,l = A when k = j and l = i, which Allows xi = j (and yj = i). At most
one element in C can ever contain the value A.

I: Ck,l = I when either k = j and l 6= i or l = i and k 6= j, i.e. the two pairings
are Illegal, since either xi = j and yj = l 6= i or yj = i and xi = k 6= j.

B: Ck,l = B when mi prefers wj to wk and wj prefers mi to ml. Any matching
corresponding to the assignment xi = k and yj = l would admit a Blocking
pair involving mi and wj .

S: Ck,l = S for all other entries that are not A, I or B. The simultaneous
assignments of xi = k and yj = l are Supported.

The size of each conflict matrix is O(n2) and clearly there are O(n2) conflict
matrices; consequently the overall size of the encoding is O(n4).
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2 4 6 1 3 5 7

1 I
3 I
6 I
2 I I I A I I I
4 I B B B
5 I B B B
7 I B B B

(a) x1/y2

4 3 6 2 5 1 7

3 I I A I I I I
1 I B B B B
2 I B B B B
5 I B B B B
6 I B B B B
4 I B B B B
7 I B B B B

(b) x6/y3

3 2 6 1 4 5 7

1 I
4 I
5 A I I I I I I
3 I B B B B B B
6 I B B B B B B
2 I B B B B B B
7 I B B B B B B

(c) x3/y5

Fig. 3. Conflict matrices for stable marriage constraints from the problem in Figure 1

Examples of different types of conflict matrices for stable marriage constraints
xi/yj are shown in Figure 3 for the SM instance of Figure 1. In all cases, and
henceforth in this paper, the values in xi’s (respectively yj ’s) domain are listed
in order down the rows (along the columns) according to mi’s (wj ’s) preference
list, and a blank entry represents an S. Note that another type of conflict matrix
can occur in an SMI instance: the value A does not occur in a conflict matrix
xi/yj if mi and wj are unacceptable to each other, and the matrix is then filled
with S’s.

Figure 3(a) shows the conflict matrix for the stable marriage constraint x1/y2.
The row and column of I’s, representing illegal marriages, intersect at the A entry,
and the area to the right of and below A is filled with B’s, representing nogood
assignments to x1 and y2 which would lead to m1 and w2 being a blocking pair.

Figure 3(b) shows the conflict matrix for the stable marriage constraint x6/y3.
Again the area with A at its top left corner is bounded by I’s and filled with B’s.
However, the A is in the top row, since w3 is at the top of m6’s preference list.
Consequently all values in the domain of y3 to the right of A are unsupported.
Similarly, Figure 3(c) shows the conflict matrix for the stable marriage constraint
x3/y5, where m3 is at the top of w5’s preference list. The A entry is in the first
column and all values in the domain of x3 below the A are unsupported.

Enforcing AC on the instance of Figure 1 will delete the rows and columns
from Figure 3(b) and (c) corresponding to unsupported values. As will be shown
in the next section, these deletions are equivalent to those done by the EGS
algorithm.

3 Arc consistency and the GS-lists

In this section we prove that, if I is an SMI instance and J is a CSP instance
obtained from I using the encoding of Section 2, AC propagation in J essentially
calculates the GS-lists of I 1. The proof of this is in two parts. The first part
proves that the domains remaining after AC propagation, apart from the dummy

1 Strictly speaking, we prove that, after AC propagation, for any i, j (1 ≤ i, j ≤ n),
wj ∈ GS(mi) iff j ∈ dom(xi), and similarly mi ∈ GS(wj) iff i ∈ dom(yj).
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values, are subsets of the GS-lists. We prove this by showing that, when the EGS
algorithm removes a value, so does the AC algorithm. The second part proves
that the GS-lists are subsets of the domains remaining after AC propagation.
We do this by showing that the GS-lists correspond to arc consistent domains
for the variables in J .

Lemma 1. For a given variable xi in J (1 ≤ i ≤ n), after AC propagation,

{wj : j ∈ dom(xi)\{n + 1}} ⊆ GS(mi).

A similar result holds for each variable yj (1 ≤ j ≤ n).

Proof. The GS-lists for I are obtained from the original preference lists in I
by deletions carried out by either the man-oriented or woman-oriented EGS
algorithms. We show that the corresponding deletions would occur from the
relevant variables’ domains during AC propagation in J . The proof for deletions
resulting from the man-oriented version is presented; the argument for deletions
resulting from the woman-oriented version is similar.

We prove the following fact by induction on the number of proposals z during
an execution E of the man-oriented EGS algorithm (see Figure 2) on I: for any
deletion carried out in the same iteration of the while loop as the zth proposal,
the corresponding deletion would be carried out during AC propagation. Clearly
the result is true for z = 0. Now assume that z = r > 0 and the result is true for
all z < r. Suppose that the rth proposal during E consists of man mi proposing
to woman wj . At this point of E, we may use the induction hypothesis to deduce
that, at some point during AC propagation, the conflict matrix for the stable
marriage constraint xi/yj has a structure analogous to that of Figure 4(a), since
wj is at the top of mi’s list. Now suppose that in E, during the same iteration
of the while loop as the rth proposal, the pair {mk, wj} is deleted. Then in J ,
all values in yj ’s domain to the right of the entry A (including k and n + 1)
are unsupported, and will be deleted when the constraint is revised during AC
propagation. Subsequent revision of the constraint xk/yj will remove j from
xk’s domain, since k is no longer in yj ’s domain and therefore the jth row of
the conflict matrix for xk/yj contains only I entries. Hence the inductive step is
established.

Consequently, any deletion of a value from a preference list by the man-
oriented EGS algorithm will be matched by a deletion of a value from the domain
of the corresponding CSP variable when AC is enforced. The same is true for the
woman-oriented EGS algorithm. The end result is that the domains remaining
after AC propagation, omitting the dummy value, are subsets of the GS-lists. ut

We now consider a converse of sorts to Lemma 1.

Lemma 2. For each i (1 ≤ i ≤ n), define a domain of values dom(xi) for the
variable xi as follows: if GS(mi) 6= ∅, then dom(xi) = {j : wj ∈ GS(mi)};
otherwise dom(xi) = {n + 1}. The domain for each yj (1 ≤ j ≤ n) is defined
analogously. Then the domains so defined are arc consistent in J .
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i

j I I A I I I
S S I B B B
S S I B B B
S S I B B B
S S I B B B

(a)

i

j I I I I A
S S S S I
S S S S I
S S S S I
S S S S I
S S S S I

(b)

i

S S I S S S
j I I A I I I

S S I B B B
S S I B B B
S S I B B B
S S I B B B

(c)

S S S S S
S S S S S
S S S S S
S S S S S
S S S S S

(d)

Fig. 4. Four possible types of stable marriage constraints xi/yj

Proof. Suppose that the variables xi (1 ≤ i ≤ n) and yj (1 ≤ j ≤ n) are assigned
the domains in the statement of the lemma. To show that these domains are arc
consistent, we consider an arbitrary constraint xi/yj . There are six cases to
consider:

– wj is at the top of mi’s GS-list. Then mi is at the bottom of wj ’s GS-
list. Hence the constraint xi/yj has a structure similar to that of Figure
4(b). Every row or column has at least one A or S and the constraint is arc
consistent.

– wj is at the bottom of mi’s GS-list. Then mi is at the top of wj ’s GS-list.
Hence the constraint xi/yj has a structure similar to that of the transpose
of Figure 4(b) and is arc consistent.

– wj is in mi’s GS-list, but is not at the top or bottom of that list. Then the
constraint xi/yj has a structure similar to that of Figure 4(c) (i.e. every row
or column has at least one A or S), and is again arc consistent.

– wj /∈ GS(mi), but wj ∈ PL(mi) and GS(mi) 6= ∅. Then mi /∈ GS(wj). The
pair {mi, wj} were deleted from each other’s original lists by either the man-
oriented EGS algorithm (in which case all successors of mi on wj ’s original
list were also deleted) or the woman-oriented EGS algorithm (in which case
all successors of wj on mi’s original list were also deleted). In either case, the
constraint xi/yj has a structure similar to that of Figure 4(d) and is again
arc consistent, since all A,B and I entries have been removed, leaving only
S entries.

– wj /∈ PL(mi), so wj /∈ GS(mi), but GS(mi) 6= ∅. Then it is straightforward
to verify that the constraint xi/yj has a structure similar to that of Figure
4(d) and is arc consistent.

– GS(mi) = ∅. Then the constraint xi/yj is a 1 × 1 conflict matrix with a
single entry S and is arc consistent.

Hence no constraint yields an unsupported value for any variable, and the set of
domains defined in the lemma is arc consistent. ut

The following theorem follows immediately from the above lemmas, and the
fact that AC algorithms find the unique maximal set of domains that are arc
consistent.



8

Theorem 3 Let I be an instance of SMI, and let J be a CSP instance obtained
from I by the encoding of Section 2. Then the domains remaining after AC
propagation in J are identical (in the sense of Footnote 1) to the GS-lists for I.

Theorem 3 and the discussion of GS-lists in Section 1 show that we can find a
solution to the CSP giving the man-optimal stable matching without search: we
assign each xi variable the most-preferred value2 in its domain. Assigning the yj

variables in a similar fashion gives the woman-optimal stable matching. In the
next section, we go further and show that the CSP yields all stable matchings
without having to backtrack due to failure.

4 Failure-free enumeration

In this section we show that, if I is an SM (or more generally SMI) instance and
J is a CSP instance obtained from I using the encoding of Section 2, then we
may enumerate the solutions of I in a failure-free manner using AC propagation
combined with a suitable value-ordering heuristic in J .

Theorem 4 Let I be an instance of SMI and let J be a CSP instance obtained
from I using the encoding of Section 2. Then the following search process enu-
merates all solutions in I without repetition and without ever failing due to an
inconsistency:

– AC is established as a preprocessing step, and after each branching decision
including the decision to remove a value from a domain;

– if all domains are arc consistent and some variable xi has two or more values
in its domain then search proceeds by setting xi to the most-preferred value
j in its domain and setting yj to i, and on backtracking, removing the value
j from xi’s domain and the value i from yj’s domain;

– when a solution is found (i.e. when all xi variables’ domains contain one
value), it is reported and backtracking is forced.

Proof. Let T be the search tree as defined above. We prove by induction on
T that each node of T corresponds to a CSP instance J ′ with arc consistent
domains; furthermore J ′ is equivalent to the GS-lists I ′ for an SMI instance
derived from I, such that any stable matching in I ′ is also stable in I. Firstly
we show that this is true for the root node of T , and then we assume that this
is true at any branching node u of T and show that it is true for each of the two
children of u.

The root node of T corresponds to the CSP instance J ′ with arc consistent
domains, where J ′ is obtained from J by AC propagation. By Theorem 3, J ′

corresponds to the GS-lists in I, which we denote by I ′. By standard properties
of the GS-lists [6, Theorem 1.2.5], any stable matching in I ′ is stable in I.

2 Implicitly we assume that variable xi inherits the corresponding preferences over the
values in its domain from the preference list of man mi.
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Now suppose that we have reached a branching node u of T . By the induction
hypothesis, u corresponds to a CSP instance J ′ with arc consistent domains, and
also J ′ is equivalent to the GS-lists I ′ for an SMI instance derived from I such
that any stable matching in I ′ is also stable in I. As u is a branching node of T ,
there is some i (1 ≤ i ≤ n) such that variable xi’s domain has size > 1. Hence in
T , when branching from node u to its two children v1 and v2, two CSP instances
J ′

1 and J ′
2 are derived from J ′ as follows. In J ′

1, xi is set to the most-preferred
value j in its domain and yj is set to i, and in J ′

2, value j is removed from xi’s
domain and value i is removed from yj ’s domain.

We firstly consider instance J ′
1. During arc consistency propagation in J ′

1,
revision of the constraint xk/yj , for any k such that wj prefers mk to mi, forces
l to be removed from the domain of xk, for any l such that mk prefers wj to wl

(and similarly k is removed from the domain of yl). Hence after such revisions,
J ′

1 corresponds to the SMI instance I ′1 obtained from I ′ by deleting pairs of the
form {mi, wl} (where l 6= j), {mk, wj} (where k 6= i) and {mk, wl} (where wj

prefers mk to mi and mk prefers wj to wl). It is straightforward to verify that
any stable matching in I ′1 is also stable in I ′, which is in turn stable in I by
the induction hypothesis. At node v1, AC is established in J ′

1, giving the CSP
instance J ′′

1 which we associate with this node. By Theorem 3, J ′′
1 corresponds

to the GS-lists I ′′1 of the SMI instance I ′1. By standard properties of the GS-lists
[6, Section 1.2.5], any stable matching in I ′′1 is also stable in I ′1, which is in turn
stable in I by the preceding argument.

We now consider instance J ′
2, which corresponds to the SMI instance I ′2

obtained from I ′ by deleting the pair {mi, wj}. It is straightforward to verify
that any stable matching in I ′2 is also stable in I ′, which is in turn stable in I by
the induction hypothesis. At node v2, AC is established in J ′

2, giving the CSP
instance J ′′

2 which we associate with this node. The remainder of the argument
for this case is identical to the corresponding part in the previous paragraph.

Hence the induction step holds, so that the result is true for all nodes of T .
Therefore the branching process never fails due to an inconsistency, and it is
straightforward to verify that no part of the search space is omitted, so that the
search process lists all stable matchings in the SMI instance I. Finally we note
that different complete solutions correspond to different stable matchings, so no
stable matching is repeated. ut

5 A Boolean encoding of SM and SMI

In this section we give a less obvious but more compact encoding of an SMI
instance as a CSP instance. As in Section 2, suppose that I is an SMI instance
involving men m1,m2, . . . ,mn and women w1, w2, . . . , wn. For each i (1 ≤ i ≤ n)
let lmi denote the length of man mi’s preference list, and define lwi similarly.

To define an encoding of I as a CSP instance J , we introduce O(n2) Boolean
variables and O(n2) constraints. For each i, j (1 ≤ i, j ≤ n), the variables are
labelled xi,p for 1 ≤ p ≤ lmi + 1 and yj,q for 1 ≤ q ≤ lwj + 1, and take only two
values, namely T and F . The interpretation of these variables is:
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1. xi,1 = T (1 ≤ i ≤ n)
2. yj,1 = T (1 ≤ j ≤ n)
3. xi,p = F → xi,p+1 = F (1 ≤ i ≤ n, 2 ≤ p ≤ lmi )
4. yj,q = F → yj,q+1 = F (1 ≤ j ≤ n, 2 ≤ q ≤ lwj )
5. xi,p = T & yj,q = F → xi,p+1 = T (1 ≤ i, j ≤ n) (*)
6. yj,q = T & xi,p = F → yj,q+1 = T (1 ≤ i, j ≤ n) (*)
7. xi,p = T → yj,q+1 = F (1 ≤ i, j ≤ n) (*)
8. yj,q = T → xi,p+1 = F (1 ≤ i, j ≤ n) (*)

Table 1. The constraints in a Boolean encoding of an SMI instance.

– xi,p = T iff man mi is matched to his pth or worse choice woman or is
unmatched, for 1 ≤ p ≤ lmi ;

– xi,p = T iff man mi is unmatched, for p = lmi + 1;
– yj,q = T iff woman wj is matched to her qth or worse choice man or is

unmatched, for 1 ≤ q ≤ lwj ;
– yj,q = T iff woman wj is unmatched, for q = lwj + 1.

The constraints are listed in Table 1. For each i and j (1 ≤ i, j ≤ n), the
constraints marked (*) are present if and only if mi finds wj acceptable; in this
case p is the rank of wj in mi’s list and q is the rank of mi in wj ’s list.

Constraints 1 and 2 are trivial, since each man and woman is either matched
with some partner or is unmatched. Constraints 3 and 4 enforce monotonicity:
if a man gets his p − 1th or better choice, he certainly gets his pth or better
choice. For Constraints 5-8, let i and j be arbitrary (1 ≤ i, j ≤ n), and suppose
that mi finds wj acceptable, where p is the rank of wj in mi’s list and q is the
rank of mi in wj ’s list. Constraints 5 and 6 are monogamy constraints; consider
Constraint 5 (the explanation of Constraint 6 is similar). If mi has a partner no
better than wj or is unmatched, and wj has a partner she prefers to mi, then
mi cannot be matched to wj , so mi has his (p + 1)th-choice or worse partner or
is unmatched. Constraints 7 and 8 are stability constraints; consider Constraint
7 (the explanation of Constraint 8 is similar). If mi has a partner no better
than wj or is unmatched, then wj must have a partner no worse than mi, for
otherwise mi and wj would form a blocking pair.

The next section focuses on AC propagation in J .

6 Arc consistency in the Boolean encoding

In this section we consider the effect of AC propagation on a CSP instance J
obtained from an SMI instance I by the encoding of Section 5. We show that,
using AC propagation in J , we may recover the man-optimal and woman-optimal
stable matchings in I, and moreover, we may enumerate all stable matchings in
I in a failure-free manner.

Imposing AC in J corresponds (in a looser sense than with the first encoding)
to the application of the EGS algorithm in I from both the men’s and women’s
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Men’s lists Women’s lists

1: 1 1: 1
2: 2 2: 2
3: 4 3: 4 6
4: 6 5 3 4: 3
5: 5 6 5: 6 4 5
6: 3 5 6: 5 4

(a)

Men’s lists Women’s lists

1: 1 1: 1
2: 2 2: 2
3: 4 3: 4 3 6
4: 6 5 3 4: 3
5: 5 6 5: 6 1 4 5
6: 3 1 2 5 6: 5 1 3 4

(b)

Fig. 5. (a) The GS-lists for the SM instance of Figure 1, and (b) the possible partners
remaining after AC is applied in the Boolean encoding.

sides. Indeed, we can understand the variables in terms of proposals in the EGS
algorithm. That is, xi,p being true corresponds to mi’s p − 1th choice woman
rejecting him after a proposal from a man she likes more. Consequently, the
maximum value of p for which xi,p is true gives the best choice that will accept
mi, and the lowest value of p such that xi,p+1 is false gives the worst choice that
he need accept (and the same holds for the w variables). In general, we will prove
that, for a given person p in I, AC propagation in J yields a reduced preference
list for p which we call the Extended GS-list or XGS-list – this contains all
elements in p’s preference list between the first and last entries of his/her GS-
list (inclusive). For example, Figure 5(a) repeats the GS-lists from Figure 1, and
(b) shows the XGS-lists after AC is enforced. Note that in general, the XGS-lists
may include some values not in the GS-lists: for example, the value 1 in m6’s
XGS-list means that he can marry someone as good as w1 or better.

We now describe how we can use AC propagation in order to derive the
XGS-lists for I. After we apply AC in J , the monotonicity constraints force the
domains for the xi,p variables to follow a simple sequence. In order from p = 1 to
lmi +1, there is a consecutive sequence of domains {T}, followed by a sequence of
domains which remain at {T , F}, followed by a final sequence of domains {F}.
The first sequence must be non-empty because xi,1 = T . If the middle sequence
is empty then all variables associated with mi are determined, while if the last
sequence is empty it might still happen that mi fails to find any partner at all.
More formally, let p (1 ≤ p ≤ lmi +1) be the largest integer such that xi,p has the
domain {T}, and let p′ be the largest integer such that T belongs to the domain
of xi,p′ . We will prove that, if p = lmi + 1 then the XGS-list of mi is empty;
otherwise the XGS-list of mi contains all people on mi’s original preference list
between positions p and p′ (inclusive). A similar formulation exists for the yj,q

variables.
As in Section 3, the proof of this result is in two parts. The first part proves

that the domains remaining after AC propagation correspond to subsets of the
XGS-lists, whilst the second part proves that the XGS-lists correspond to arc
consistent domains.

Lemma 5. For a given i (1 ≤ i ≤ n), after AC propagation in J , let p be the
largest integer such that the domain of xi,p is {T} and let p′ be the largest integer
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such that T belongs to the domain of xi,p′ . If p < lmi + 1 then all entries of mi’s
preference list between positions p and p′ belong to the XGS-list of mi. A similar
correspondence holds for the women’s lists.

Proof. The first entry on a man m’s XGS-list corresponds to the last woman
(if any) to whom m proposed during an execution of the man-oriented EGS-
algorithm. Similarly the last entry on a woman w’s XGS-list corresponds to the
last man (if any) who proposed to w during an execution of the man-oriented
EGS-algorithm. A similar correspondence in terms of the woman-oriented EGS-
algorithm yields the first entry on a woman’s XGS-list and the last entry on a
man’s XGS-list. We prove that, if a person q is missing from a person p’s XGS-list,
then after AC propagation, the domains of the variables relating to person p hold
the corresponding information. (We consider only the correspondences involving
the man-oriented EGS-algorithm; the gender-reversed argument involving the
woman-oriented EGS-algorithm yields the remaining cases.)

It suffices to prove the following result by induction on the number of pro-
posals z during an execution E of the man-oriented EGS algorithm (see Figure
2) on I: if proposal z consists of man mi proposing to woman wj , then xi,t = T
for 1 ≤ t ≤ p and yj,t = F for q < t ≤ lwj + 1, where p denotes the rank of wj in
mi’s list and q denotes the rank of mi in wj ’s list.

Clearly the result is true for z = 0. Now assume that z = a > 0 and the result
is true for all z < a. Suppose that the ath proposal during E consists of man mi

proposing to woman wj . Suppose that p is the rank of wj in mi’s list and q is the
rank of mi in wj ’s list. Suppose firstly that p = 1. Then xi,1 = T by Constraint
1, and yj,t = F for q < t ≤ lwj + 1 by Constraints 7 and 4, since xi,p’s value
has been determined. Now suppose that p > 1. Then previously mi proposed
to wk, his p− 1th-choice woman (since mi proposes in his preference list order,
starting with his most-preferred woman). By the induction hypothesis, xi,t = T
for 1 ≤ t ≤ p− 1. Woman wk rejected mi because she received a proposal from
some man ml whom she prefers to mi. Let r, s be the ranks of ml,mi in wk’s list
respectively, so that r < s. By the induction hypothesis, yk,t = F for t ≥ r + 1.
Thus in particular, yk,s = F , so that by Constraint 5, xi,p = T , since the values
of xi,p−1 and yk,s have been determined. Thus by Constraints 7 and 4, yj,t = F
for q < t ≤ lwj + 1, since xi,p’s value has been determined. This completes the
induction step.

Thus the proof of the lemma is established, so that the domains remaining
after AC is enforced correspond to subsets of the XGS-lists. ut

We now consider a converse of sorts to Lemma 5.

Lemma 6. For each (1 ≤ i ≤ n), define a domain of values dom(xi,t) for the
variables xi,t (1 ≤ t ≤ lmi +1) as follows (initially let dom(xi,t) = {T, F}): if the
XGS-list of mi is empty, set xi,t = T for 1 ≤ t ≤ lmi +1; otherwise let p and p′ be
the ranks (in mi’s preference list) of the first and last women on mi’s XGS-list
respectively, and set xi,t = T for 1 ≤ t ≤ p, and xi,t = F for p′ +1 ≤ t ≤ lmi +1.
The domains for each variable yj,t (1 ≤ j ≤ n, 1 ≤ t ≤ lwj + 1) are defined
analogously. Then the domains so defined are arc consistent in J .
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Proof. The proof of this lemma is along similar lines to that of Lemma 2 and
involves showing that Constraints 1-8 in Table 1 are arc consistent under the
assignments defined above; we omit the details for space reasons. ut

The following theorem follows immediately from the above lemmas, and the
fact that AC algorithms find the unique maximal set of domains that are arc
consistent.

Theorem 7 Let I be an instance of SMI, and let J be a CSP instance obtained
from I by the encoding of Section 5. Then the domains remaining after AC
propagation in J are identical (in the sense described before Lemma 5) to the
XGS-lists for I.

Hence Theorem 7 shows that we may find solutions to the CSP giving the man-
optimal and woman-optimal stable matchings in I without search.

We remark in passing that the SAT-based technique of unit propagation is
strong enough for the same results to hold. This makes no theoretical differ-
ence to the cost of establishing AC, although in practice we would expect unit
propagation to be cheaper. This observation implies that a SAT solver applying
unit propagation exhaustively, e.g. a Davis-Putnam program [2], will perform
essentially the same work as an AC-based algorithm.

As before, we can show that solutions can be enumerated without failure. Our
results are better than before in two ways. First, maintenance of AC is much
less expensive. Second, there is no need for specific variable or value ordering
heuristics.

Theorem 8 Let I be an instance of SMI and let J be a CSP instance obtained
from I using the encoding of Section 5. Then the following search process enu-
merates all solutions in I without repetition and without ever failing due to an
inconsistency:

– AC is established as a preprocessing step, and after each branching decision
including the decision to remove a value from a domain;

– if all domains are arc consistent and some variable v has two values in its
domain, then search proceeds by setting v to T , and on backtracking, to F .

– when a solution is found (i.e. when all variables’ domains contain one value),
it is reported and backtracking is forced.

Proof. The proof of this result may be established by following an approach
similar to that of the inductive argument used in the proof of Theorem 4. The
full details are omitted here for space reasons, however we indicate below the
important points that are specific to this particular context.

An SMI instance is guaranteed to have a stable matching, though not nec-
essarily a complete one [6, Section 1.4.2] so the initial establishing of AC in J
cannot result in failure.

Branching decisions are only made when AC has been established, so The-
orem 7 applies at branching points. If all domains are of size 1, we report the
solution and backtrack. Otherwise, choose any variable with domain of size 2.
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The search tree splits into two, one with the variable set to T , and one to F . If
the variable represents a man, setting it to T excludes the man-optimal matching
as a possible solution, but the man-pessimal matching remains possible so this
branch still contains a solution. Conversely, setting the variable to F excludes
the man-pessimal matching but leaves the man-optimal matching, so this branch
also contains a solution.

The process of establishing AC never removes values which participate in
any solution. As the branching process omits no part of the search space, the
search process lists all solutions to the SMI instance. Finally we note that dif-
ferent complete solutions correspond to different stable matchings, so no stable
matching is repeated. ut

We conclude this section with a remark about the time complexities of AC
propagation in both encodings. In general, AC can be established in O(edr) time
[1], where there are e constraints, each of arity r, and domain size is d. In the
encoding of Section 5, e = O(n2), d = 2 and r ≤ 3. Thus AC can be established
in O(n2) time, which is linear in the size of the input. Hence this encoding of SM
achieves the optimal possible solution time of O(n2). We find it remarkable that
such a strong result can be obtained without any special-purpose consistency
algorithms. Furthermore, this result contrasts with the time complexity of AC
propagation in the encoding of Section 2: in this case, e = O(n2), d = O(n) and
r = 2, so that AC can be established in O(n4) time.

7 Conclusion

We have presented two ways of encoding the Stable Marriage problem and its
variant SMI as a CSP. The first is a straightforward representation of the problem
as a binary CSP. We show that enforcing AC in the CSP gives reduced domains
which are equivalent to the GS-lists produced by the Extended Gale-Shapley
algorithm, and from which the man-optimal and woman-optimal matchings can
be immediately derived. Indeed, we show that all solutions can be found without
failure, provided that values are assigned in preference-list order.

Enforcing AC using an algorithm such as AC-3 would be much more time-
consuming than the EGS algorithm because of the number and size of the con-
straints. A constraint propagation algorithm tailored to the stable marriage con-
straint would do much better, but to get equivalent performance to EGS we
should effectively have to embed EGS into our constraint solver.

Nevertheless, the fact that we can solve the CSP without search after AC
has been achieved shows that this class of CSP is tractable. Previous tractability
results have identified classes of constraint graph (e.g. [3]) or classes of constraint
(e.g. [7]) which guarantee tractability. In the binary CSP encoding of SM, it is the
combination of the structure of the constraints (a bipartite graph) and their type
(the stable-marriage constraint) that ensures that we find solutions efficiently.

The second encoding we present is somewhat more contrived, but allows AC
to be established, using a general algorithm, with time complexity equivalent to
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that of the EGS algorithm. Although the arc consistent domains do not exactly
correspond to the GS-lists, we can again find man-optimal and woman-optimal
matchings immediately, and all stable matchings without encountering failure
during the search. Hence, this encoding yields a CSP-based method for solving
SM and SMI which is equivalent in efficiency to EGS.

The practical application of this work is to those variants of SM and SMI
which are NP-hard [10, 9, 8], or indeed to any situation in which additional con-
straints on the problem make the EGS algorithm inapplicable. If we can extend
one of the encodings presented here to these variants, we then have tools to solve
them, since we have ready-made search algorithms available for CSPs.

The work we have presented provides a partial answer to a more general
question: if we have a problem which can be expressed as a CSP, but for which a
special-purpose algorithm is available, is it ever sensible to formulate the problem
as a CSP? SM shows that it can be: provided that the encoding is carefully
done, existing algorithms for simplifying and solving CSPs may give equivalent
performance to the special-purpose algorithm, with the benefit of easy extension
to variants of the original problem where the special-purpose algorithm might
be inapplicable.
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