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Abstract

Automatically recognizing which Web documents are “of interest” for some specified appli-
cation is non-trivial. As a step toward solving this problem, we propose a technique for
recognizing which multiple-record Web documents apply to an ontologically specified appli-
cation. Given the values and kinds of values recognized by an ontological specification in
an unstructured Web document, we apply three heuristics: (1) a density heuristic that mea-
sures the percent of the document that appears to apply to an application ontology, (2) an
expected-value heuristic that compares the number and kind of values found in a document to
the number and kind expected by the application ontology, and (3) a grouping heuristic that
considers whether the values of the document appear to be grouped as application-ontology
records. Then, based on machine-learned rules over these heuristic measurements, we deter-
mine whether a Web document is applicable for a given ontology. Our experimental results
show that we have been able to achieve over 90% for both recall and precision, with an F-
measure of about 95%.

1 Introduction

The World Wide Web contains abundant repositories of information in Web documents—indeed,

it contains so much, that locating information “of interest” for an application becomes a huge

challenge. Even sorting through a tiny subset of Web documents is overwhelming. How can we

automatically select just those documents that have the needed information for an application?

When we construct automated processes to recognize which documents apply to a user’s infor-

mation needs, we must be careful not to discard relevant documents and not to accept irrelevant

documents. A process that discards too many relevant documents has poor recall—ratio of the

number of relevant documents accepted to the total number of relevant documents. A process

that accepts too many irrelevant documents has poor precision—ratio of the number of relevant

documents accepted to the total number of documents accepted. The harmonic mean1 of the pre-

cision and recall, which is called the F-measure [BYRN99], is a standard way to combine precision
1F = 2

1
recall

+ 1
precision
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and recall. We wish to have an automated recognition process that has a good F-measure so that

it has both high recall and high precision.

In this paper we propose an approach for recognizing whether a Web document is relevant for

a chosen application of interest. We base our approach on application ontologies [ECJ+99], which

are conceptual-model snippets [Wan89, SDUS98] of standard ontologies [Bun77, Bun79], and we

apply techniques from information retrieval [SM83, BYRN99] and machine learning [Qui93].

Our work reported here is also partly motivated by our success in using application ontolo-

gies to extract information from unstructured multiple-record Web documents and structure the

information so that it can be queried using a standard query language [ECJ+99]. For several

applications we have tried—automobile want-ads, obituaries, jobs, real estate, stocks, musical

instruments, precious gems, games, personals, and computer monitors—we have achieved fact-

extraction recall rates mostly around 90% and fact-extraction precision rates mostly better than

90%, and we have achieved robustness over a wide range of pages and pages that change in format,

content, and style [ECJ+99]. In these experiments, however, we have assumed (and have made

sure by human inspection) that the Web pages were multiple-record documents appropriate for

the application we were using. Thus, in the context of our larger project, the purpose of this

work is to automate applicability checking. If we can locate documents applicable to an ontology,

we can apply techniques we have already developed, to extract, structure, query, and archive in

databases, information found in data-rich, application-specific Web documents. Hence, the contri-

butions of this work have the potential to be more far-reaching than just the salient contribution

of increasing recall and precision in recognizing application-specific Web documents.

Our approach to document recognition is related to text classification [BB63]—each applica-

tion ontology can be a class—but our work fundamentally differs from other text-classification

work. Text classification systems usually attempt to place articles such as newspaper articles in

predefined classes according to the subject matter of the article, whereas our approach seeks to do

“high-precision” text classification (with similarities to [RL94]) in which we not only determine

whether a listing of ads such as the classified ads in a newspaper contain ads of interest for a

predefined application ontology, but we also determine whether particular elements of interest are

also present in each ad. We further assume that a subsequent process can extract the information

and create a database record for each ad.

Despite this basic differences, we nevertheless compare our work with the work in text classi-

fication (e.g. [MLW92, TPL95, WPW95, HPS96, Joa96, LSC96, KS97, BM98, MG98, MRM98,

BGG+99]) in order to highlight some advantages and disadvantages of the approaches that have

been taken. Most text classification systems are based on machine learning. In typical machine-

learning approaches, each document is transformed into a feature vector. Usually, each element

of a feature vector represents a word from a corpus. The feature values may be binary, indicating
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presence or absence of the word in the document, or they may be integers or real numbers indi-

cating some measure of frequency of the word’s appearance in the text. This text representation

is referred to as a “bag of words,” which is used in most text-classifiers. A major difficulty for

this bag-of-words approach is the high dimensionality of the feature space. Thus, it is highly de-

sirable to reduce dimensionality of the space without sacrificing classification accuracy. Since our

approach uses a predefined application ontology whose object sets constitute the features of inter-

est, we immediately identify a space with comparatively small dimensionality and thus avoid this

high-dimensionality problem. Further, our predefined application ontology also overcomes many

of the limitations imposed by word-based techniques. There is no need to find object relevancy

with respect to a corpus because the application ontology already defines the relationships among

the conceptual objects. Moreover, our approach is sensitive to context and domain knowledge

and can thus more effectively retrieve the relevant information from a document and use it to

classify a document with respect to an application. For example, the basic idea of McCallum’s

Naive Bayes classifier [BM98], which is one of the most successful systems used in text classifica-

tion applications and which is implemented in Rainbow [McC96], is to use the joint probabilities

of words and categories, which are computed based on labeled training documents, to estimate

the probability of categories given a document. However, the naive part of the approach is the

assumption of word independence, which makes the classifier less appropriate for “high-precision”

classifiers like ours. In compensation for these disadvantages, typical machine-learning approaches

may take less user effort to produce—the effort being mainly the work to provide and label a set

of training documents. Our experience in teaching others to use our system suggests that an ap-

plication ontology of the kind we use can be created in a few dozen person-hours, which is roughly

comparable to the time and effort it may take to label a set of training documents. Furthermore,

the application ontology produced can also serve as an information extractor (see [ECJ+99]); and

hence, little, if any, additional work is required to also create a classifier.

Although our work differs fundamentally from most text classifiers, as just discussed, the work

reported in [RL94] takes an approach similar to ours in that it also attempts to do “high-precision”

classification for information extraction. Like most text classifiers, [RL94] uses machine learning,

but to obtain the desired high precision, considerably more effort must be expended to establish

the basis for machine learning. Not only must documents be marked as relevant and non-relevant,

but each individual relevant element plus the context for each individual relevant element must

also be marked. In addition, an application-domain-specific dictionary must be created. The basic

trade-off in human effort between our approach and the approach in [RL94] is the effort to tag

the elements in the document and create the domain-specific dictionary versus the effort to create

the application ontology.

Some recent work has been reported that uses machine learning with less human effort for doing
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“high-precision” classification for domain-specific search engines [MN99, MNRS99, MNRS00] and

focused crawling [CvdBD99, Cha99]. By mostly using unsupervised learning, human effort can

be greatly reduced. The challenge, however, is to reach high accuracy, and it may not be possible

to achieve the accuracy that can be obtained with an ontology-based approach. Ultimately, some

combination of the approaches may be best. In the meantime, we pursue our goal of high-precision

binary classification based on ontological specifications.

We outline the rest of our paper as follows. Section 2 briefly describes the model we use

for specifying application ontologies and provides an example to which we refer throughout the

paper to illustrate our ideas. Given an application ontology and a set of Web documents, we

automatically obtain statistics for three heuristics for each document: (1) a density heuristic, (2)

an expected-values heuristic, and (3) a grouping heuristic. Section 3 describes these heuristics

and the statistical measures we obtain for each, as well as the machine-learned decision-tree rules

we obtain for judging document applicability. In Section 4 we discuss our experimental results—

which, for the two applications we tried (car advertisements and obituaries), are in the 90% range

for both recall and precision. In Section 5, we give concluding remarks.

2 Application Ontology

For our work in data extraction, we define an application ontology to be a conceptual-model in-

stance that describes a real-world application in a narrow, data-rich domain of interest (e.g. car

advertisements, obituaries, job advertisements) [ECJ+99]. Each of our application ontologies con-

sists of two components: (1) an object/relationship-model instance that describes sets of objects,

sets of relationships among objects, and constraints over object and relationship sets, and (2) for

each object set, a data frame that defines the potential contents of the object set. A data frame

for an object set defines the lexical appearance of constant objects for the object set and estab-

lishes appropriate keywords that are likely to appear in a document when objects in the object

set are mentioned. Figure 1 shows part of our car-ads application ontology, including object and

relationship sets and cardinality constraints (Lines 1-8) and a few lines of the data frames (Lines

9-18).2

An object set in an application ontology represents a set of objects which may either be lexical

or nonlexical. Data frames with declarations for constants that can potentially populate the

object set represent lexical object sets, and data frames without constant declarations represent

nonlexical object sets. Year (Line 9) and Mileage (Line 14) are lexical object sets whose character

representations have a maximum length of 4 characters and 8 characters respectively. Make,Model,
2The full ontology for car ads is about 600 lines in length. Our obituary ontology, which is the other application

ontology we discuss in this paper is about 500 lines in length, but it references both a first-name lexicon and a
last-name lexicon, which each contain several thousand names.
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1. Car [-> object];
2. Car [0:0.975:1] has Year [1:*];
3. Car [0:0.925:1] has Make [1:*];
4. Car [0:0.908:1] has Model [1:*];
5. Car [0:0.45:1] has Mileage [1:*];
6. Car [0:2.1:*] has Feature [1:*];
7. Car [0:0.8:1] has Price [1:*];
8. PhoneNr [1:*] is for Car [0:1.15:*];
9. Year matches [4]
10. constant {extract ”\d{2}”;
11. context ”\b’[4-9]\d\b”;
12. substitute ”̂ ” -> ”19”
13. ...
14. Mileage matches [8]
15. ...
16. keyword ”\bmiles\b”, ”\bmi\.”, ”\bmi\b”,
17. ”\bmileage\b”;
18. ...

Figure 1: Car-Ads Application Ontology (Partial)

Price, Feature, and PhoneNr are the remaining lexical object sets in our car-ads application; Car

is the only nonlexical object set.

We describe the constant lexical objects and the keywords for an object set by regular expres-

sions using Perl syntax. When applied to a textual document, the extract clause (e.g. Line 10)

in a data frame causes a string matching a regular expression to be extracted, but only if the con-

text clause (e.g. Line 11) also matches the string and its surrounding characters. A substitute

clause (e.g. Line 12) lets us alter the extracted string before we store it in an intermediate file,

in which we also store the string’s position in the document and its associated object set name.

One of the nonlexical object sets is designated as the object set of interest—Car for the car-ads

ontology. The notation “[-> object]” in Line 1 designates the object set of interest.

We denote a relationship set by a name that includes its object-set names (e.g. Car has Year

in Line 2 and PhoneNr is for Car in Line 8). The min:max pairs and min:ave:max triples in

the relationship-set name are participation constraints: min designates the minimum number of

times an object in the object set can participate in the relationship set; ave designates the average

number of times an object is expected to participate in the relationship set; andmax designates the

maximum number of times an object can participate, with * designating an unknown maximum

number of times. The participation constraint on Car for Car has Feature in Line 6, for example,

specifies that a car need not have any listed features, that a car has 2.1 features on the average,

and that there is no specified maximum for the number of features listed for a car.

For our car-ads and obituary application ontologies, which we use for illustration in this paper,

we obtained participation constraints as follows. To make our constraints broadly representative,

we selected ten different regions covering the United States and found one car-ads page and one
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obituary page from each of these regions. From each of these pages we selected twelve individual

car-ads/obituaries by taking every n/12-th car-ad/obituary, where n was the total number of car-

ads/obituaries on the page. We then simply counted by hand and obtained minimum, average,

and maximum values for each object set in each relationship set and normalized the values for a

single car ad or obituary.

3 Recognition Heuristics

We are interested in determining whether a given document D is suitable for an application

ontology O. In our document-recognition approach, we consider three different heuristics: (H1)

density, (H2) expected values, and (H3) grouping. H1 measures the density of constants and

keywords defined in O that appear in D. H2 uses the Vector Space Model (VSM) [SM83], a

common information-retrieval measure of document relevance, to compare the number of constants

expected for each object set, as declared in O, to the number of constants found in D for each

object set. H3 measures the occurrence of groups of lexical values found in D with respect to

expected groupings of lexical values implicitly specified in O.

The next three subsections define these three heuristics, explain the details about how we

provide a measure for each heuristic, and give examples to show how they work. The fourth sub-

section explains how we use machine learning to combine these heuristics into a single document-

recognition rule. When reading these subsections, bear in mind that in creating these heuristics,

we favored simplicity. More sophisticated measures can be obtained. For example, for H1 we

could account for uncertainty in constant and keyword matches [EFKR99]. For H2, we could

more accurately match object sets with recognized values by using our more sophisticated down-

stream heuristics [ECJ+99, EX00]. For H3, we could first compute record boundaries [EJN99] and

appropriately rearrange record values [EX00]. However, more sophisticated measures are more

costly. We have chosen to experiment with less costly heuristics, and, as will be shown, our results

bear out the seeming correctness of this choice.

3.1 H1: Density Heuristic

A Web document D that is relevant to a particular application ontology A should include many

constants and keywords defined in the ontology. Based on this observation, we define a density

heuristics. We compute the density of D with respect to O as follows:

Density(D, O) = total number of matched characters / total number of characters

where total number of matched characters is the number of characters of the constants and key-

words recognized by O in D, and total number of characters is the total number of characters in

D.
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We must be careful, of course, not to count characters more than once. For example, in the

phrase “asking only 18K” a car-ads application ontology might recognize “18K” as potentially

both a price and a mileage. Nevertheless, we should only count the number of characters as three,

not six. Document position information for recognized strings tells us which strings overlap.

Consider the Web document Da in Figure 2(a). Recall that the lexical object sets of the

car-ads application ontology are Y ear, Make, Model, Mileage, Price, Feature, and PhoneNr.

Some of the lexical values found in Da include 1989 (Year), $1900 (Price), 100K (Mileage), Auto

(Feature), Cruise (Feature), (336)835-8579 (PhoneNr), Subaru (Make), and SW (Model). Only

the keywords, “miles” and “mileage” appear in Da. The total number of characters in Da is 2048,

whereas the number of matched characters is 626. Hence, the density of Da is 0.3056 = 626/2048.

When we apply the density heuristic for the car-ads application ontology to the Web document

Db in Figure 2(b), the density is much lower. Although no makes, models, or car features appear,

there are years, prices, and phone numbers and the ontology (mistakenly) recognizes “10,000”

(in “10,000 SQ. FT.”) and “401K” (the retirement plan) as potential mileages. Altogether 196

characters of 2671 are recognized by the car-ads ontology. Thus, the density is 0.0734.

3.2 H2: Expected-Values Heuristic

We apply the VSM model to measure whether a multiple-record Web document D has the number

of values expected for each lexical object set of an application ontology O. Based on the lexical

object sets and the participation constraints in O, we construct an ontology vector OV . Based

on the same lexical object sets and the number of constants recognized for these object sets by O

in D, we construct a document vector DV . We measure the relevance of D to O with respect to

our expected-values heuristic by observing the cosine of the angle between DV and OV .

To construct the ontology vector OV , we (1) identify the lexical object-set names—these be-

come the names of the coefficients of OV , and (2) determine the average participation (i.e. the

expected frequency of occurrence) for each lexical object set with respect to the object set of

interest specified in O—these become the values of the coefficients of OV . Since we do not in

general know, indeed do not care, how many records we will find in documents given to us, we

normalize these values for a single record. For example, the ontology vector for the car-ads ap-

plication ontology is < Year:0.975, Make:0.925, Model:0.908, Mileage:0.45, Price:0.8, Feature:2.1,

PhoneNr:1.15 >, where these values are obtained as explained in Section 2. Thus, for a typical

single car ad we would expect to almost always find a year, make, and model, but we only expect

to find the mileage about 45% of the time, the price about 80% of the time. Further, we expect

to see a list of features that on the average has a couple of items in it, and we expect to see a

phone number and sometimes more than one phone number3.
3It is easy to see that the variance might be useful, as well, but we found that the expected numbers were

sufficient to get good results for the examples we tried.

7



(a) Car advertisements retrieved from http://
www.elkintribune.com/.

(b) Items for sale advertisements retrieved from
http://www.crookstontimes.com.

Figure 2: A car advertisement Web document and a non-car advertisement Web document.
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Name of Lexical Corresponding Lexical Values Number of
Object Set Found in the Document Lexical Values Found
Year 1989, 1998, 1994, 1999, ’53, 16

1973, 1977, 95, 1996, . . .
Make Subaru, HONDA, Chevy, Olds, 10

FORD, VW, Buick, Mercury, . . .
Model SW, Elantra, ACCORD, GRAND AM, 12

Cutlass, CONTOUR, JETTA, . . .
Mileage 100K, 27000, 26000, 45K, 34K, 109000 6
Price $1900, $14,000, $8500, $4500, $5300, 11

$11,000, $6995, $4995, $1880, . . .
Feature Auto, Black, 4 door, pb, ps, cruise, 29

am/fm, cassette, stereo, green, . . .
PhoneNr (336)835-8579, (336)526-5444, 15

(336)526-1081, (336)366-4996, . . .

Table 1: Lexical values found in the multiple-record car advertisements in Figure 2(a).

The names of the coefficients of DV are the same as the names of the coefficients of OV . We

obtain the value of each coefficient of DV by automatically counting the number of appearances

of constant values in D that belong to each lexical object set. Table 1 shows the values of the

coefficients of the document vector for the car-ads document in Figure 2(a), and Table 2 shows

the values of the coefficients of the document vector for the non-car-ads document in Figure 2(b).

Observe that for document vectors we use the actual number of constants found in a document.

To get the average (normalized for a single record), we would have to divide by the number of

records—a number we do not know with certainty4. Therefore, we do not normalize, but instead

merely compare the cosine of the angles between the vectors to get a measure for our expected-

values heuristic.

We have discussed the creation of a document vector as if correctly detecting and classifying

the lexical values in a document is easy—but it is not easy. We identify potential lexical values

for an object set as explained in Section 2; this can be error-prone, but we can adjust the regular

expressions to improve this initial identification and achieve good results [ECJ+99]. After initial

identification, we must decide which of these potential object-set/constant pairs to accept. In our

downstream processes, we use sophisticated heuristic based on keyword proximity, application-

ontology cardinalities, record boundaries, and missing-value defaults to best match object sets

with potential constants. For upstream ontology/document matching we use techniques that

are far less sophisticated and thus also far less costly. In our simple upstream procedures we

consider only, two cases: (1) a recognized string has no overlap either partially or completely
4We can estimate the number of records by dividing the length of the document vector by the length of the

ontology vector. Indeed, we use this information downstream, but here we are still trying to determine whether the
given document applies to the ontology. If it does, the length-division estimate for the number of records makes
sense; otherwise, the estimate may be nonsense.
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Name of Lexical Corresponding Lexical Values Number of
Object Set Found in the Document Lexical Values Found
Year 1999, 1998, 60, 401K, 50, 80 6
Make 0
Model 0
Mileage 10,000, 401K 2
Price $17,500, $10,971, $27,850, $19,990, 8

$79,850, $42,990, $129,650, $78,850
Feature 0
PhoneNr 281-2051, 281-4060, 218-281-1128, 281-3631, 11

281-3872, 218-281-5113, 218-281-5113,
800-532-7655, 281-1970, 800-406-5126, 281-1128

Table 2: Lexical values found in the multiple-record Items for Sale document in Figure 2(b).

with any other recognized string, and (2) a recognized string does overlap in some way with at

least one other recognized string. For Case 1, we accept the recognized string for an object set

even if the sophisticated downstream processes would reject it. For Case 2, we resolve the overlap

simplistically, as follows. There are three subcases: (1) exact match, (2) subsumption, and (3)

partial overlap. (1) If a lexical value v is recognized as potentially belonging to more than one

lexical object set, we use the closest keyword that appears before or after v to determine which

object set to choose; if no applicable keyword is found, we choose one of the object sets arbitrarily.

(2) If a lexical value v is a proper substring of lexical value w, we retain w and discard v. (3) If

lexical value v and lexical value w appear in a Web document, such that a suffix of v is a prefix

of w, we retain v and discard w.

As mentioned, we measure the similarity between an ontology vector OV and a document

vector DV by measuring the cosine of the angle between them. In particular, use use the Similarity

Cosine Function defined in [SM83], which calculates the acute angle SIM(D,O) = cos θ = P/N ,

where P is the inner product of the two vectors, and N is the product of the lengths of the

two vectors. When the distribution of values among the object sets in DV closely matches the

expected distribution specified in OV , the angle θ will be close to zero, and cos θ will be close to

one.

Consider the car-ads application ontology O as shown in Figure 1 and the Web document

Da as shown in Figure 2(a). The coefficients of OV for O are 0.975, 0.925, 0.908, 0.45, 0.8, 2.1,

and 1.15, which are the expected frequency values of lexical object sets Y ear, Make, Model,

Mileage, Price, Feature, and PhoneNr, respectively for a single ad in the car-ads application

ontology. The coefficients of DV for Da are 16, 10, 12, 6, 11, 29, and 15 (see the last column

of Table 1), which are the actual number of appearances of the lexical values in Da. We thus

compute SIM(Da, O) to be 0.9956. Now consider the car-ads application ontology O again and

the Web document Db as shown in Figure 2(b). The coefficients of OV are always the same, but
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the coefficients of DV for Db are 6, 0, 0, 2, 8, 0, and 11 (see the last column of Table 2). We thus

compute SIM(Db, O) to be 0.5669.

3.3 H3: Grouping Heuristic

A document D may have a high density measure for an ontology O, may also have a high expected-

values measure for O, and still not be considered as a multiple-record document for O. This

is because the values must also form groups that can be recognized as records for O. As a

simple heuristic to determine whether the recognized values are interleaved in a way that could be

considered consistent with potential records of O, we consider the sequence of values in a document

that should appear at most once in each record and measure how well they are grouped.

We refer to an object set whose values should appear at most once in a record as a 1-max

lexical object set. Maximum participation constraints in an ontology constrain the values of the

1-max object sets to appear at most once in a record. For example, in the car-ads application

ontology, the 1-maximum on Car in the relationship set Car [0:0.975:1] has Year [1:*] specifies

that Y ear is a 1-max object set. Other 1-max lexical objects in the car-ads ontology are Make,

Model, Mileage, and Price.

Instead of counting the number of 1-max lexical objects in an application ontology O, a more

adequate counting approach is to sum the average values expected for the 1-max objects in O.

Since the average values expected for Y ear, Make, Model, Mileage, and Price in the car-ads

ontology are 0.975, 0.925, 0.908, 0.45, and 0.8, respectively, the anticipated number of lexical

values from these object sets in a car advertisement is 4.058. We truncate the decimal value of

the anticipated number to obtain the expected group size.

The expected group size n is an estimate of the number of 1-max object-set values we should

encounter in a document within a single record. On the average, each record should have n 1-

max object sets. Thus, if we list all recognized 1-max object-set values in the order they occur

in a document D and divide this sequence into groups of n, each group should have n values

from n different object sets. The closer a document comes to this expectation, the better the

grouping measure should be. For the multiple-record car-ads Web document in Figure 2(a),

Figure 3(a) shows the first four groups of 1-max lexical object-set values extracted from the

document. Similarly, Figure 3(b) shows the first four groups of 1-max lexical object-set values

extracted from the document in Figure 2(b).

We measure how well the groups match the expectations with a grouping factor (denoted

Gfactor), which is calculated as follows:

Gfactor(D,O) =
Sum of Distinct Lexical Values in Each Group

Number of Groups× Expected Number of Values in a Group
For example, the number of extracted groups from the Web document Da in Figure 2(a) is 13

(1 group of 2, 5 groups of 3, and 7 groups of 4). Since the number of anticipated lexical values
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(a) First four groups of 1-max lexical values ex-
tracted from Figure 2(a).

(b) First four groups of 1-max lexical values ex-
tracted from Figure 2(b).

Figure 3: Groups of 1-max lexical values extracted from advertisement Web documents.

in each group is four, Gfactor of Da is 0.8653. By way of comparison, the number of extracted

groups from the Web document Db in Figure 2(b) is 4 (1 group of 1, 2 groups of 2, and 1 group

of 3). Since the number of anticipated lexical values in each group is four, Gfactor of Db is 0.5.

3.4 Combining Heuristics

The result we obtain when we run the heuristics on a Web document for an application ontology

is a triple of heuristic measures: (H1, H2, H3). For example, when O is the car-ads application

ontology and the Web document is the one in Figure 2(a), the heuristic-measure triple, which we

derived in the previous three subsections, is (0.3056, 0.9956, 0.8653). For the Web document in

Figure 2(b), the triple we derived is (0.0734, 0.5669, 0.5).

Since we did not know exactly how these three heuristics should be combined to best match

application ontologies with documents, we decided to use machine learning. We did not know,

for example, whether we should use all the heuristics or just one or two of them, and we did

not know what threshold values to apply. Since the popular machine-learning algorithm C4.5

[Qui93] answers these questions, we decided to use it to combine the three heuristics into a single

decision rule. C4.5 is a rule post-pruning decision tree algorithm. The learning task is to judge the

suitability of a Web document for a given application ontology (i.e. to do binary classification by
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Document Document Subject Document Document Subject
1 Any Advertisement List 11 Announcement
2 Employment Classified 12 Personal Classified
3 Real Estate Classified 13 Student List
4 Bike and Cycles Classified 14 People Features
5 Service Classified 15 Sport Reports
6 Pets Classified 16 School News
7 Computer Classified 17 Event and Festival
8 Vehicle Part Classified 18 Generational Personality Types
9 Rental Classified 19 Wedding List
10 Employment Agencies 20 Birth List

Table 3: Negative examples in training sets.

returning “YES” when a document is suitable, and returning “NO” otherwise). The performance

measure is the percent of documents correctly classified when using a generated rule (i.e. the

accuracy). The bias favors the shortest rule, so that if several rules are equally accurate, a

decision tree with the fewest branches is chosen. The training data is a set of Web documents

classified by a human expert in the application domain.

We represent every instance of a Web-document/application-ontology pair in both training and

test sets as a triple (H1, H2, H3) composed of the measures returned by the three heuristics. We

trained C4.5 with 20 positive examples and 30 negative examples for each of our two application

ontologies—car ads and obituaries. The positive examples included in the training sets came

from 20 different sites, two each selected arbitrarily from 10 different geographical regions in the

United States. To select 20 of the 30 negative examples, we first chose 20 document subjects

(see Table 3) and then found a Web page for each subject. Because we wanted to be able to

make fine distinctions when recognizing documents, we chose most of the subjects based on a

perceived similarity between the subject and either car-ads or obituaries. To make sure that

gross distinctions were also recognized properly, we also chose a few documents “arbitrarily.” In

addition to the negative examples in Table 3, we also used 10 car-ads documents (one from each

region) to play the role of 10 negative obituary examples and 10 obituary documents (one from

each region) to play the role of 10 negative car-ad examples.

Based on the 50 training examples for our car-ads application ontology, C4.5 generated the

following rule:

Thus, our document-recognition technique selects a document as a car ad if its expected-values

measure is greater than 0.8767 (i.e. if the cosine between the car-ads ontology vector and the
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document vector is greater than 0.8767).

Based on the 50 training examples for the obituary application ontology, C4.5 generated the

following rule:

Thus, our document-recognition technique selects a document as an obituaries document only

if its expected-values measure is greater then 0.6793 and its density measure is greater than 0.2171.

Searching for a potential universal rule over both ontologies, we combined the 50 training

triples for car ads and the 50 training triples for obituaries, and applied the C4.5 algorithm to

produce the following decision rule:

To use Rule 3 for an application ontology A for a Web document W , we would obtain the

heuristic triple (H1, H2, H3) for W with respect to A and apply Rule 3. Then, our document-

recognition technique would classify W as suitable for A if the grouping measure (H3) is greater

than 0.625 or if the grouping measure (H3) is less than 0.625, the density measure (H1) is greater

than 0.369, and the expected-values measure (H2) is greater than 0.6263.

4 Results and Discussion

To test the machine-learned rules, we chose 30 test documents—10 positive documents for car

ads, 10 positive documents for obituaries, and 10 negative examples. We chose the 10 positive

examples for car ads and the 10 positive examples for obituaries from sites located in the ten US

geographical regions we had previously designated for training sets. The test sites, of course, were

different from the training sites even though they were located in the same geographical regions.

For the negative test documents, we selected documents based on the subjects listed in Table 4.

We purposely chose some of these subjects to be fairly close to either car ads or obituaries. Indeed,

the page selected for antique cars turned out to be “too close” to car ads (even a human expert

could not tell the difference), and we later classified it as a positive example for car ads. We also
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Document Document type Document Document type
1 Person 6 Items for Sale or Rent
2 Search Engine 7 Personals
3 Purchase Form 8 Motorcycles
4 Missing people 9 Boats
5 Jobs 10 Antique Car

Table 4: Negative examples in test sets.

Document Density Expected-Values Grouping Generated
Heuristic Heuristic Heuristic Recognition Rule

1 0.3287 0.9345 0.8929 Yes
2 0.4614 0.7958 0.8029 No
3 0.2079 0.8855 0.8043 Yes
4 0.2153 0.9837 0.9167 Yes
5 0.3967 0.8881 0.8718 Yes
6 0.3032 0.9309 0.7824 Yes
7 0.1445 0.945 0.90625 Yes
8 0.3659 0.9658 0.85 Yes
9 0.2271 0.8867 0.7125 Yes
10 0.2382 0.9909 0.9231 Yes
11 0.1058 0.8782 0.7813 Yes

Table 5: Car ontology test results: car positive examples.

used the 10 car-ads positive documents in the test set as 10 negative obituary documents and vice

versa.

4.1 Experimental Results

Generated Rules 1 and 2 successfully recognized the test set for both the car-ads application

ontology and the obituary application ontology with the same F-measure, 95.3%. The precision

for the car-ads application ontology was 100%, and the recall was 91%. The precision for the

obituary ontology application was 91%, and the recall was 100%. We also applied Rule 3, the

generated universal rule, to the test set. The F-measure for the Rule 3 was 91.3%, the precision

was 84%, and the recall was 100%.

Tables 5 and 6 show the test results for the car-ads application ontology, and Tables 7 and 8

show the test results for the obituaries ontology. For the tables describing the positive examples,

the first column gives the document number, while the first column of the tables for the negative

examples gives the document subject. The second, third, and forth columns of all these tables

show the values of the three heuristic measures for a Web document. The last column of each

table shows the results computed by the C4.5 generated rules—Rule 1 for Tables 5 and 6 and

Rule 2 for Tables 7 and 8. Observe that there is one positive example for car ads that is judged

incorrectly (an incorrect negative response) and one negative example for obituaries that is judged

15



Document Density Expected-Values Grouping Generated
Subject Heuristic Heuristic Heuristic Recognition Rule
Person 0.0642 0.4682 0.5 No

Search Engine 0.0115 0.7582 0 No
Purchase Form 0.0053 0.3738 0.4167 No
Missing People 0.053 0.8319 0.4286 No

Jobs 0.0242 0.5055 0.447 No
Items for Sale or Rent 0.0733 0.5669 0.5 No

Personals 0.1566 0.7785 0.4167 No
Motorcycles 0.2061 0.6266 0.61 No
Boats 0.0917 0.6605 0.5484 No
Obituary 0.0237 0.5428 0.5 No
Obituary 0.0460 0.4281 0.4074 No
Obituary 0.0288 0.5513 0.4375 No
Obituary 0.0326 0.4534 0.5 No
Obituary 0.0263 0.4668 0.4388 No
Obituary 0.0220 0.4597 0.4479 No
Obituary 0.0465 0.5267 0.5 No
Obituary 0.0308 0.5307 0.5 No
Obituary 0.0343 0.3213 0.25 No
Obituary 0.0156 0.4613 0.5 No

Table 6: Car ontology test results: car negative examples.

incorrectly (an incorrect positive response).

4.2 Discussion

We discuss the two documents judged incorrectly in Sections 4.2.1 and 4.2.2 and provide reasons

for discrepancies and insight into how these exceptional cases could be handled. In Section 4.2.3

we discuss our assumption about multiple records being in the document. In Section 4.2.4 we

discuss our views on a universal rule versus application-ontology-dependent rules.

4.2.1 Incorrect Negative Response

Figure 4 displays the the car-ads document for which Rule 1 gives an incorrect negative response.

Observe that the “last” car ad is “quite different.” It is not a single car ad; instead it is a dealer

ad for several dozen cars. This, by itself, is not a problem, but there are three complications that

do cause problems. (1) The “Year” and the “Price” in this dealer ad in Figure 4 are concatenated.

Our Year data frame in Figure 1 did not anticipate this concatenation, and thus the years were

not recognized. (2) These ads contain neither mileage information nor feature information about

the cars. Missing mileage and feature information is generally not a problem, but since there are

more cars mentioned in the “last” ad than in all the rest of the car ads together, missing mileage

and feature information adds up. (3) The phone number is factored out of each individual ad
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Document Density Expected-Values Grouping Generated
Heuristic Heuristic Heuristic Recognition Rule

1 0.3622 0.7983 0.8571 Yes
2 0.4108 0.7542 0.56 Yes
3 0.2435 0.8106 0.7143 Yes
4 0.2458 0.7761 0.75 Yes
5 0.278 0.7926 0.7626 Yes
6 0.3864 0.8297 0.7589 Yes
7 0.3207 0.7084 0.8438 Yes
8 0.3112 0.7459 0.9531 Yes
9 0.5043 0.711 0.8125 Yes
10 0.3863 0.7466 0.8235 Yes

Table 7: Obituary rule test results: positive examples.

within the “last” ad—it is the same for all dealership cars. As a result of these three problems,

most of the cars in these three documents have only aMake,Model, and Price. Even so, the 0.7958

measure for the expected-values heuristic is almost high enough to be acceptable (see Rule 1).

Based on this discussion, we can see that the Web page in Figure 4 violates some assumptions

we have made in our document-recognition process. To recognize such Web documents as car

ads, we must make some adjustments. One adjustment would be to alter the regular expressions

for year to be more forgiving of unexpected concatenations. Another adjustment would be to

allow some documents to be classified as “maybe” when they are “close” to the threshold values

specified in the generated judging rules. Indeed, if we use Rule 3, which has more tolerance (but

therefore lower precision), the document in Figure 4 is judged as a car-ad document. Finally,

another adjustment would be to identify that the phone number is factored and distribute it to

each individual car ad within the dealer ad—not a simple task to do robustly and automatically.5

4.2.2 Incorrect Positive Response

Table 8 shows that one negative example, “Missing People,” is misjudged. The document consists

of a list of descriptions for missing persons. Each description typically contains several lexical

objects that are defined in our obituary ontology—name, birth date, and age. Although other

special lexical objects exist only in obituaries (e.g. interment, funeral, relative-name list), the

precision for these lexical objects is much lower than the precision of the lexical objects such as

date and age. Hence, “thinking” that it is working on an obituary, the obituaries application

ontology extracts places and times in the missing-people document that it “thinks” are lexical

objects for interment and funeral places and times, and it extracts names it “thinks” are relative
5We have addressed this problem with good success in [EX00], but we assumed we knew the document was

a multiple-record document applicable to the ontology. Based on some limited evidence, we could guess that a
document is applicable and then iterate between adjustments and applicability measurements until we converge to
“yes” or “no,” but we have not yet tried this iterative approach.
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Document Density Expected-Values Grouping Generated
Subject Heuristic Heuristic Heuristic Recognition Rule
Person 0.0713 0.6511 0 No

Search Engine 0.0636 0.6531 0 No
Purchase Form 0.0416 0.6651 0.5 No
Missing People 0.2283 0.7769 0.5893 Yes

Jobs 0.1551 0.6307 0.6711 No
Items for Sale or Rent 0.0839 0.6528 0.75 No

Personals 0.0784 0.6397 0.3929 No
Motorcycles 0.3556 0.343 0.8825 No
Boats 0.1218 0.5323 0.5541 No

Antique Car 0.3774 0.6437 0.5357 No
Car 0.1485 0.5197 0.4166 No
Car 0.5528 0.3520 0.5 No
Car 0.1669 0.2991 0.5 No
Car 0.3465 0.4192 0.5385 No
Car 0.4445 0.3433 0.4401 No
Car 0.39 0.1995 0.3728 No
Car 0.1681 0.5266 0.4375 No
Car 0.4419 0.4719 0.5046 No
Car 0.2294 0.3984 0.5333 No
Car 0.2170 0.4690 0.4167 No

Table 8: Obituary rule test results: negative examples.

names. Thus, all the heuristic measurements are artificially inflated and the document is judged

incorrectly. To adjust for this problem, we could consider using extraction confidence factors

based on precision and recall to ignore low-confidence attributes or to give more weight to high-

confidence attributes. These adjustments may be sufficient to properly judge the applicability

of missing persons with respect to obituaries, but we have not yet tested these adjustments. As

an alternative to these types of adjustments, if we also have an application ontology for missing

people, we would see that the document better fits the missing-person ontology—we would thus

reject it as a list of obituaries.

If someone considers antique car sales to be an incorrect positive response for car ads, we have

no good suggestions on how to modify our document-recognition process to solve this problem.

Our downstream operations would extract the information from antique car ads and make it

available to query by SQL. Any SQL query for late model cars would certainly exclude all antique

cars for someone not looking for old cars.

4.2.3 Singleton Document

When we define an application ontology for use in our system, we assume that the Web documents

are multiple-record Web documents. Nevertheless, we wondered what would happen if we were to
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Figure 4: Car-ads document with incorrect negative response.

apply our ontology-applicability test to Web documents containing information for only a single

record. Since singleton car ads are rare (if they exist at all), we only tested for obituaries. We

selected nine “arbitrary” singleton obituaries plus an obituary for Princess Diana. Besides Princess

Diana, three of the other nine can also be considered to be famous: John Atanasoff who invented

the first electronic computer, Jennifer Paterson who was a TV chef known to millions as one half

of the celebrated culinary duo the “Two Fat Ladies,” and Vincent O. (“Vinny”) Marino who was

a former heroin addict and founder of one of California’s most successful rehabilitation centers.

Table 9 shows the results of applying our obituary ontology to these singleton obituaries. Using

Rule 2, we see that 50% of the singleton obituaries are judged as obituaries while 50% are not.

The first column of the tables gives the name of the deceased person. The “(F)” means that the

obituary is for a famous person. From the table, we can see that all the obituaries about famous

people are incorrect negative responses. For the obituary of Princess Diana, the expected-values
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Person Name Density Expected-Values Grouping Generated
Heuristic Heuristic Heuristic Recognition Rule

Sam J. Humpheiwa 0.3058 0.7917 0.6250 Yes
Clara Griffin 0.1842 0.7693 1.00 No

John Atanasoff (F) 0.0923 0.7555 0.55 No
Jennifer Paterson (F) 0.1109 0.7040 0.75 No
Kavin A. Gobrech 0.3076 0.7294 0.75 Yes
John Ayles 0.2637 0.7698 0.6 Yes

Gaines Mr. O.D. 0.3422 0.7193 0.75 Yes
Robert M. Harle 0.3628 0.7528 0.875 Yes

Vincent O. Marino (F) 0.1326 0.7788 0.75 No
Diana, Princess of Wales (F) 0.1075 0.6757 0.75 No

Table 9: Single obituary test results, where F denotes a famous person

heuristic is below the threshold selected in Rule 2, but only by 0.0036. For the rest, all the density

heuristics for the single famous-person obituaries are lower than the threshold. We observe (as

might be expected) that obituaries for famous people are considerably longer than obituaries

for ordinary people, which directly affects the density as the verbiage increases and contains

correspondingly less of the kind of text expected in and recognized by the obituary application

ontology. We were curious about Clara Griffin, who is not famous. Upon closer investigation,

we discovered that this particular obituary is embedded in a page with about as much additional

text as is in the obituary itself. (In all other cases, the singleton obituaries were in a frame

by themselves.) Thus Clara Griffin’s obituary has the same characteristics as famous people—it

includes considerable extra verbiage not recognized as being text typically found in a “standard”

obituary.

4.2.4 Universal Rule

Test results for Rule 3 show that the F-measure and recall of this “universal rule” remain high,

above 90%, but that the precision drops to 84%. Since this rule spans application ontologies, it

may be useful to apply Rule 3 for a new application ontology. However, since both the extraction

precision and the three heuristic measures have some differences for different ontology applications,

we suggest using application-dependent rules, such as Rule 1 for car ads and Rule 2 for obituaries,

to recognize suitable documents.

5 Concluding Remarks

We presented an approach for recognizing which multiple-record Web documents apply to an on-

tology. Once an application ontology is created, we can train a machine-learning algorithm over

a triple of heuristics (density, expected-values, grouping) to produce a decision tree that accu-

rately recognizes multiple-record documents for the ontology. Results for the tests we conducted
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showed that the F-measures were above 95% with recall and precision above 90% for both of our

applications.
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