
The Integration of COTS/GOTS within NASA's HST Command and Control System

The Integration of COTS/GOTS within NASA's HST

Command and Control System

Thomas Plarr l, and James E. Reis 2

mComputer Sciences Corporation,

Space Telescope Science Institute,

Baltimore, Maryland, 21218, USA

pfarr@stsci, edu

2 National Aeronautics and Space Administration,

Goddard Space Flight Center,

Greenbelt, Maryland, 20771, USA

jreis@hst, nasa. 9ov

Abstract. NASA's mission crilical Hubble Space Telescope (HST) command

and control system has been re-engineered x,_th commercial-off-the-
shelffgovernment-off-the-shelf (COTS/GOTS)and minimal custom code.

This paper focuses on the design of this new HST Control Center System

(CCS) and the lessc41s learned throughout its development. CCS currently

utilizes more than 30 COTS/GOTS products with an additional % million

lines of custom glueware code: tile new CCS exceeds the capabilities of the

original system while significantly reducing the lines of custom code by more
than 50%. The lifecycle of COTS/GOTS products will be examined including

tile package selection process, evaluation process, and integration process.

The advantages, disadvantages, issues, concerns, and lessons learned for

integrating COTS/GOTS into tile NASA's mission critical HST CCS will be

examined in detail. This paper will reveal the many hidden costs of

COTS/GOTS solutions when compared to traditional custom code

development efforts; this paper v, ill show the high cost of COTS/GOTS

solutions including training expenses, consulting fees, and long-term

maintenance expenses.

1 Introduction

The Hubble Space Telescope (HST) is NASA's flagship astronomical observatory.

HST was originally designed in the 1970s and was launched on April 24, 1990 from

Space Shuttle Discovery (STS-31). HST continues to be a state-of-the-art telescope

due to on-orbit service calls by Space Shuttle astronauts. The telescope is designed

to be modular which allows the astronauts to take it apart, replace worn out

equipment, and upgrade instruments. These periodic service calls make sure that

HST pr¢xluces first-class science using cutting-edge tec|mology.

TheIntegrationof COTS/GOTS within NASA's HST Command and Control System 2

The HST is a low Earth orbiting (LEO) satellite. It is located 320 nautical miles

above the surface of the Earth. Each day, HST archives between 3 to 5 gigabytes of

data and delivers between 10 and 15 gigabytes to astronomers around the world.

HST has a resolving pm_er calculated to be 10 times better than any Earth-based

telescope. The telescope has taken more than 330,000 separate observations and has

observed more than 25,000 astronomical targets. The telescope has created a data

archive more than 73 terabytes. HST circles the Earth once every 95 minutes and

has traveled more than 1.5 billion miles. Approximately 11,000 telemetry

parameters are received from the telescope for 82 minutes of each Earth orbit. HST

has received more than 93 hours of on-orbit improvements within three successful

servicing missions.

2 Vision 2000 Project

HST has been producing extraordinary scientific results since its launch in 1990. In

the mid-1990s, the life of HST mission was extended to 2010. HST Project staff

recognized that significant improvements to spacecraft operations and ground system

maintenance were needed to maintain the quality of science return and to ensure

health and safety of the spacecraft In 1995, HST Project staff instituted the Vision

2000 Project to reengincer the ground-based control system for HST. The main

purpose of the Vision 2000 Project was to significantly reduce the costs of operating

the telescope tbr the life of the mission without impacting ongoing scientific

observations. The Vision 2000 Project is organized into four Product Development

Teams (PDTs) including Planning and Scheduling (P&S), Science Data Processing

System (SDP), Flight Sollware (FSW), and Control Center System (CCS). This

paper focuses on the design of this new HST Control Center System and the lessons

learned throughout its development.

The CCS Product Development Team was chartered to create the new Control

Center System by reengineer the existing business processes and computer. The

CCS Product Development Team successfully utilized new government practices by

using government and contractor personnel within a badgeless and co-located

thcility. The success of the PDT approach was due, in part, to the integration of

domain and teclmology experts _athin a cohesive team dedicated to a common goal.

These domain and technology experts included end users, developers, testers,

network administrators, security engineers, and system engineers. Major challenges

facing the CCS Product Development Team were to incorporate new technology into

the control center, to integrate commercial-off-the-shelf (COTS) products w4th

legacy software, and to provide worldwide access from any remote location. In

addition, the new Control Center System had to be modular and scalable such as to

support single-server configurations for standard test facilities as well as to support

multi-ser_'er configurations (-20 machines) for mission-control operational

configurations.

TheIntegrationofCOTS/GOTSwithinNASA'sHSTCommandandControlSystem3

3 CCS Overview

The Control Center System is the new command and control system for the HST.

The CCS provides a unified architecture for commanding, engineering data

processing, data archiving, data analysis, spacecraft and ground system monitoring,

and simulation. The CCS is currently installed on 4 operational control center

multi-server strings, 25 operational test facility single-server strings, and 4

development multi-server strings. The new Control Center System for HST's Space

Telescope Operations Control Center (STOCC) is operated at the Space Telescope

Science Institute (STScI) in Baltimore, Maryland.

The Control Center System is a data-driven scalable architecture. The Control

Center System is partitioned into six major subsystems including the Graphical User

Interface (GUI), Command Processing, Front End Processing (FEP), System

Monitoring, Data Management, and CCS Management. See Figure 1, CCS

Functional Architecture. A critical Middlcware layer is also utilized for inter-

process communication The CCS Middle_are layer provides a suite of services for

message and data transport between application and COTS/GOTS products while

executing on a variety of hardware platforms.

The Control Center System is segmented into secure network levels that

accommodate remote engineering data access while protecting the command and

control system Scc Figure 2, CCS System Architecture. Network and security

functions have been integrated into the CCS to provide worldwide access from any

remote location. The Control Center System receives spacecraft events from P&S at

STScI based on the upcoming science observations. The CCS receives and processes

engineering teleanetry data. This telemetry is provided real-time to client

workstations as well as stored in a lili>of-mission long-term archive. The

engineering telemetry is also provided to the SDP tbr use in calibration and analysis

of science obser_'ations. CCS interacts with the FSW facility to validate and uplink

the content of the spacecraft's onboard computer programs.

.......i}i...... "'

.........

Fi R. 1. CCS Functional Architecture

TheIntegrationofCOTS/GOTSwithinNASA'sHSTCommandandControlSystem

..:::iii:

Fig.2.CCSSystemArchitecture

3.1 Graphical User Interface

The CCS GUI is implemented in the Java programming language. Java is a viable,

highly productive, platform-mdcpendent software technology. The CCS vision to

use Java applications running in web browsers u_s established as our GUI in 1995.

All CCS tools and functions are available fi-om a user's PC. To the user, the CCS is

yet another tool that coexists _ath c-mail, web browsers, office applications, etc. The

Control Center System software can be executed from any location that has an

Internet connection (office, home. road, elc.). The original concept to run the Java

applcts under a web browser proved to be mlrealistic considering the complexity of

the applications. Separate virtual machines (VM) are now executed for each

application to provide reliability and performance. Browsers do not support this

capability and therefore the decision was made to run the applets as applications with

a custom built class loader and packager. Netscape was abandoned as the primary

browser due to numerous software problems and lack of support. Internet Explorer

and the Microsoft VM have proved to be the best product for this COTS product

selection.

The hltegration of COTS/GOTS within NASA's HST Command and Control System 5

3.2 Command Processing

The CCS spacecraft commanding is the most critical function of the ground system.

The security requirements were very strict and the software is written specifically for

HST. Typically a custom scripting langtmge forms the core of these types of systems.

For CCS, the Tool Command Language (TCL) was chosen as the core scripting

language with custom extensions used to integrate with legacy applications. TCL

has proved its worth in providing a modern interface while maintaining a backward

compatible interface for existing scripts. A one time translation of the legacy scripts

to TCL scripts was performed and validated in an automated test facility. The CCS

Product Development Team also identified and integrated a database oriented GOTS

product to manage the spacecraft event data and mission timeline; the Mission

Operations Planning and Scheduling System (MOPSS) is developed and supported

by many missions at the Goddard Space Fhght Center (GSFC).

3.3 Front End Processing

The Front End Processor (FEP) is the communications interface for telemetry,

command, and external commmfications management. A COTS hardware/sollware

product, VEDA Omega series, processes the incoming telemetry data including

removing communications protocol artifacts, time-tagging, de-commutation, and

conversion of the raw data into engineering units. The FEP distributes the telemetry

to the archive and publishes the telemetry for real-time GUI displays. A GOTS

product is used lbr real-time telemetry data distribution; the Information Sharing

Protocol (ISP) is developed by the Johnson Space Center. ISP servers exchange

telemetry on a demand basis [br changes-only data at one-half second intervals.

3.4 System Monitoring

The System Monitoring subsystem provides engineering data analysis tools for

general plotting, trending, reporting, and analysis. The automated real-time

monitoring component performs fault detection and isolation. COTS products have

been used for spacecraft monitoring via an expert system, Rtworks, and for data

analysis and plotting, PVWave. System Monitoring subsystem also provides the

infrastructure to report and distribute CCS system level event messages. These event

messages are used for analysis of spacecraft and ground system anomalies. The

System Monitoring subsystem also provides spacecraft sensor analysis tools that

perform attitude determination, sensor bias and calibration comparisons, and sensor

data analysis algorithms. These functions are provided by legacy Fortran software

that has been integrated into the CCS architecture. The CCS data _arehouse will

contain over 15TB of intbrmation that ts fully indexed and saearchable.

Theh_tegrationofCOTS/GOTS_thinNASA'sHSTCommandandControlSystem6

3.5 Data Management

The Data Management subsystem provides data storage, cataloging, retrieval, and

database services. The engineering data archive was designed with three major

components: a short-tern1 all-points online archive, a long-term offiine all-points

archive, and a changes-only online data warehouse. COTS products were selected

/br system database requirements, Oracle, and for data warehousing capability,

Redbrick. Redbrick supports rapid complex query support of telemetry and

spacecraft event data.

3.6 CCS Management

The CCS Management subsystem manages the overall ground system by providing

system configuration, startup/shutdown control, monitoring, and failover

capabilities. Several COTS products were integrated with a custom central server.

The Control Center System monitors itself at the network, hardware, and software

application levels to determine its state and to aid in the detection/resolution of

problems. Custom software and COTS products such as Patrol are used to monitor

hardware and sollware. A knowledge-based COTS product, Tivoli T/EC, is used to

collect this hardware and software munitoring information. Tivoli has been

configured to interpret the events and determine the appropriate action (e.g., restart a

process, lhilover to another turtle, notify a system administrator, etc.).

4 COTS/GOTS Products

The CCS Product Development Team has integrated over 30 commercial-off-the-

shelffgovernment-off-the-shelf (COTS/GOTS) products, developed over ½ million

lines of custom code, maintained interfaces with legacy subsystems, and established

a common Middleware protocol for subsystem commtmications. The new CCS

exceeds the capabilities of the original system while significantly reducing the lines

of custom code by more than 50%. CCS staff has delivered 10 major releases in 48

months with a total of 1 ½ million lines of code; each release has been deployed to

approximately 4 operational inulti-server strings, 25 operational test facility single-

server strings, and 4 development multi-server strings. Onsite consultants were used

in critical areas to assists teams in initial development efforts. Object-oriented

design experts participated in all initial design reviews.

The CCS Product Development Team established and used an 80-20 rule as the

basis for COTS/GOTS product selection. This rule states that if a COTS/GOTS

product meets 80 percent of the total requirements for a function this product would

be acceptable pending final approval from HST Project staff to defer implementation

of the remaining requirements. This 80-20 rule approach reduced the amount of

time and eflbrt needed to perti_rm COTS/GOTS trade studies. CCS development

staff was trained with the selected COTS/GOTS products and technologies using

The h_tegration ofCOTS/G()TS v_4thin NASA's HST Command and Control System 7

rapid jttst-in-time training sessions. The quick COTS/GOTS product selection

process and rapid just-in-tilne COTS/GOTS training allowed the CCS Product

Development Team to meet aggressive schedules.

The primary reason for the rejection ofa COTS/GOTS product from consideration

was mostly security related issues, particularly the ability to work through

commercial firewall products. In some cases this was not possible, in other cases

custom interfaces were developed to circumvent port issues at the firewall. Even

today, few commercial products are designed with firewalls in mind.

The CCS operational COTS/GOTS software refers to the software that runs

x_athin the Control Center System (multi-server or single-server) on a daily basis.

CCS administrative COTS sollware refers to the software that is used by system,

security, network, or database administrators to keep CCS working but is not part of

the day-to-day operational system. CCS development COTS software refers to the

software used by developers to enhance the operational system software. See table 1

for a list of major operational COTS products in use by CCS. See table 2 for a list of

major operational GOTS products m use by CCS. See table 3 for a list of major

development and system administration products in use by CCS staff. In addition to

the COTS/GOTS products listed below, CCS uses a large number of freeware,

shareuare, or low-cost COTS products including gnu-compilers, gnu-make, gnu-tip,

gnu-zip, tel, tk, ntp, snmp, Netscape browser, Internet Explorer browser, Apache

Server, Adobe Acrobat, and GhostScript.

Table 1. Operati_ml COTS Software

Vendor Product Subsystem Copies Yr cost

SGI lrix operating system many $415k

Hewlett-Packard I tP-UX operating system site $22k

Compaq Open VMS operating system site $13k

Sun Solaris operating system 25 $500

Roguewave Rogue Wave Middleware 4 $13k

Microsoft Java VM GUI many free

Microsoft Java RTE GUI many free

Veridian ITAS FFP many $112k

Visual Numerics PVWave System Monitoring 47 $100k

Talarian RTWorks System Monitoring 15 $40k

Acceler8 TranslS System Monitoring site $14k

Technology

Oracle Oracle, SQLplus Data Management site $94k

Infonnix Redbrick Data Management 4 $60k

Warehouse

ADIC AMASS Data Management 36 $24k

Checkpoint Checkpoint/1 CCS Management many $75k

Software

IBM

BMC

DataFellows

Tivoli/TEC CCS Management 3 $75k

Patrol Agent CCS Management 84 $14k

SSH CCS Management 275 $1 lk

TheIntegrationofCOTS/GOTSwithinNASA'sHSTCommandandControlSystem8

Telemon Telalert CCSManagement4 $2k

Table2.()pcratic_lal GOTS Software

Vendor Product Subsystem Copies Yr cost

GSFC MOPSS Command 6 1 FTE

JSC ISP FEP many free

"Fable 3. Development/Administrative COTS Software

Vendor Product Subsystem Copies Yr cost

Legato Networker Client System Admin 24 $14k

Bud Tools Bud Tools System Admin 1 free

McCabe TruChange Development 1 $33k

McCabe Purl _' Development site $13k

Mercury WinRtmner Development 13 $9k

Interactive

The majority of the operational COTS/GOTS products listed in table 1 and table 2

are critical to the success of Control Center System. Some COTS/GOTS products

have been integrated ruth minimal effort while others have required substantial

resources. Some COTS/GOTS products selected have met all of our requirements

while others have met only a portion. A smaller number of COTS/GOTS products

selected have required substantial resources to integrate or have required a

reselection. Examples of products that meet our requirements and have worked well

include Java, ISP, Rogue Wave, and Patrol. Examples of products that only meet a

portion of our requirements and have required substantial resources to successfully

integrate include TCL, Oracle, Redbriek, PVWave, and RTWorks Other examples

of products that have met the requirements but had not integrated well and

eventually required a rcselection include the Netscape browser and a suite of Tivoli

tools that were never delivered by the vendor.

A recent review of the COTS/GOTS sotlware products in use by CCS reported

that many of the products in use arc still quite adequate for operation of the system

but that some products should be reevaluated. The review concluded that in many

cases Maere better products are available today, the cost to procure and effort to

modify the existing system architecture generally exceeds the benefits of these new

products. There are some COTS products currently in use by CCS that are prime

candidates for replacement based on an increasing lack of support and

responsiveness from the vendor. Current COTS products that have been identified to

be re-assessed include Tivoli/'rEC, TruChange, Checkpoint/l, and Networker.

Alternatives selections for these COTS products still need additional research and

formal recommendations need to be made with respect to their replacement.

Java: The Java COTS product was selected in 1995. This product is successfully

integrated within the Control Center System. The CCS GUI is written completely

TheIntegrationofCOTS/GOTS within NASA's HST Command and Control System 9

using Java. The Java product would be very difficult to replace but the Java code

itself is very easy to maintain.

ISP: The Information Sharing Protocol (ISP) GOTS product was select early in the

CCS development phase and is also successfully integrated within the Control Center

System. The ISP product is tightly coupled in the CCS architecture and replacing it

with another product would be infeasible. JSC owns the ISP product but if needed

we could maintain our o_ baseline; the source code for ISP is available and ISP

code itself is easy to maintain. The ISP product meets all of the CCS requirements.

Rogue Wave: The Rogue Wave COTS product was selected early in the CCS

development phase and is successfully integrated w"ithin the Control Center System.

This product is used throughoul the CCS architecture and replacing this product

would be very difficult. Other COTS products are now available that would most-

like be better selections if our decision were made today. The source code for Rogue

Wave is available and is easy' to maintain.

Oracle: The Oracle product was selected early in the CCS development phase and is

successfully integrated _vithin the Control Center System. The Oracle product

required substantial resources to properly integrate this product with CCS

applications. A large nuanber of resources were used to wTite and maintain an

Oracle Application Programmer Interlace (API). In addition, the Oracle product has

shm_n itself to be problematic over the last few years when running on the SGI

platform. Technical support lk_r this product has not been highly responsive to

problems because of the SGIflrix hosting. However, our recent COTS review

concluded that it would not be cost-effective to replace the Oracle product with

another product unless it's cost "_vre to increase significantly in the near future,

Redbrick: The Redbrick product was selected to store spacecral_ telemetry and

orbital events data online for immediate retrieval. The Redbrick product required

substantial resources to properly integrate this product within the CCS architecture.

Training of development and system administration staff was expensive and keeping

in-house experts is difficult. New hardware and software technologies will continue

challenge the Redbrick product selection. Although the Redbrick product meets the

requirements, the long-term sustaining costs may drive a re-assessment of this COTS

selection.

PVWave: The PVWave product is a programmable data-visualization tool used to

present spacecraft engineering data using plots and graphs. Other products of this

type exist; however, PVWave has been sufficiently integrated into the CCS

architecture as to make it very' costly to replace. PVWave is a fine product that

meets all of the CCS requirements.

RTWork,_: The RTWorks product provides a rule-based environment for the

specification and execution of spacecraft monitoring functions within CCS. There

The Integration ofC()TS/GOTS _4thin NASA's HST Command and Control System l 0

are other products that can provide this functionality, but few are as tailored to

support real-time processing RTWorks is also a fine product that meets all of the

CCS requirements. CCS only uses a smM1 portion of the RTWorks product

capabilities and thc RTWorks capabilities could be rewritten using custom code.

Although the RTWorks product meets the requirements, the long-term sustaining

costs may drive a re-assessment of this COTS selection.

Netscape: The Netscape browser product was selected early in the CCS development

phase to drive the CCS GUI. The Netscape browser product was problematic

running on the SGI and Windows NT platforms and vendor was not highly

responsive to problems. The Nctscape browser is used in conjunction _Sth CCS for

standard web browsing lhnction but was dropped for it's original purpose to run

CCS.]'he stand-alone Java application replaced the Netscape browser product for

executing the CCS applicahon. Internct Explorer and the Microsoft VM have

proved to be very reliable and efficient.

TruChange: The TruChange product provides configuration management functions

for the CCS source code and related products. Over the last year, the vendor has

become considerably less responsive to problems and issues regarding the product.

Other comparable configuration management products exist that could be used by

CCS staff: It has been recommended that a more detailed assessment be performed

to determine the long-term cost effectiveness of migrating from TruChange to

another product.

Checkpoint/l: The Checkpoint/l product is used to provide security firewall

functionality across all development, opcrational, and various test facility CCS

configttrations. Since the original selection of the Checkpoint/l product, numerous

other rcspeclablc fire_alls have become available. In addition, over the last year, the

vendor has hecome increasingly less responsive to requests for information. It has

been recommendcd that alternate systems be reviewed to replace the existing

fircwalls.

Networker: CCS system administrators use the Networker product to backup the

operational system data across the CCS strings. The product meets our current needs

but occasionally has problems that require system administration staff support to

recover. It has been recommended that a periodic review of similar products be

assessed to determine if a more stable product can be found to replace the Networker

product. Procedures for activating, transferring, and maintaining licenses are

difficult and also support justification tbr product replacement.

5 Conclusion

NASA's Vision 2000 Project has successfully reengineered the Hubble Space

Telescope ground-based command and control system. The new Control Center

TheIntegrationofCOTS/GOTSwithinNASA'sHSTCommandandControlSystemI1

Systemutilizesmorethan30COTS/GOTSproductswithanadditional1Amillion
linesofcustomgluewarecode,TheCCSProductDevelopmentTeamsuccessfully
incorporatednewtechnologyintothecontrolcenterbyintegratedcommercial-off-
the-shelfproducts_SttilegacysoftwareThe success of the new Control Center

Systeln is due in part to the careftd selection of COTS/GOTS products. The CCS

Product Development Team was able to meet their aggressive schedules by

developing successful processes to quickly select and provide training for

COTS/GOTS products. Once selected, each COTS/GOTS product has an individual

life cycle; some products have been successful from their initial selection, some

products have been lhilures, and a larger number of products fall somewhere in

between these two extremes. As a part of the CCS maintenance activities, the long-

term success of the Control Ccmter System _511 depend on periodic re-assessments

and re-evaluations the COTS/GOTS pnxluct selections.

References

1. Barrett, L., Lehtoncn. K.: Cullure Management on the NASA Hubble Space Telescope

Control Center Rcengineering Pn_ject (1999)

2. Barrett. L., Speigcl, D.: Vision 2000; Radical Reengineering of the Hubble Space

Telescope Control Center System

3. Dougherly, A., Garvis, M., Whittier, W.: Re-engineering of/he Hubble Space Telescope to

Reduce Operational Costs

4. Friedman, B.: Deploying the Control Center System into Hubble Space Telescope Test
Facilities

5. _h_.n__-!/__h_thbJ._e_._._s!'c:n.a_:s__a_:go_

