
� � � � � � � � � � �
	
 � � � � � � �
 � 	 � � � � � � �� � � � � � � � � � � � � � � � � � � � ! � � � � � � � � � � � � � � " � � � # � � � � � � � � � � � � $ � � � � �
 � � � � � � � � �% � & � ' (((&

A Knowledge-Based Approach for Designing Robust
Business Processes

Chrysanthos Dellarocas and Mark Klein

Center for Coordination Science
Sloan School of Management

Massachusetts Institute of Technology
Room E53-315, Cambridge, MA 02139, USA

{dell, m_klein}@mit.edu

Abstract. This chapter describes a novel knowledge-based methodology and
computer toolset for helping business process designers and participants better
manage exceptions (unexpected deviations from an ideal sequence of events
caused by design errors, resource failures, requirement changes etc.) that can
occur during the enactment of a process. This approach is based on an on-line
repository exploiting a generic and reusable body of knowledge, which
describes what kinds of exceptions can occur in collaborative work processes,
how these exceptions can be detected, and how they can be resolved. This work
builds upon previous efforts from the MIT Process Handbook project and from
research on conflict management in collaborative design.

1 Introduction

Business process models typically describe the “normal” flow of events in an ideal
world. For example, the model of a product development process typically includes a
“design product” activity, followed by a “build product” activity, which, in turn, is
followed by a “deliver product” activity. Reality, however, tends to be more
complicated. During the enactment of a business process a lot of exceptions, that is,
deviations from the ideal sequence of events, might occur. For example, product
design might prove to be inconsistent with the capabiliti es of the manufacturing plant.
Manufacturing stations might break down in the middle of jobs. Delivery trucks
might go on strike. To assure that a process is still able to fulfill it s organizational
goals, process participants must be able to detect, diagnose and successfully resolve
such exceptional conditions as they occur.

Traditionally, managers have relied on their experience and understanding of a
process in order to handle deviations from the expected flow of events. However, the
increasing complexity of modern business processes and the accelerating pace with
which these processes change has made the reliance on individual managers’
experience and intuition an increasingly less satisfactory way to deal with exceptions.
There is an increasing need for systematic business process operational risk

2

management methodologies. Such methodologies will assist business process
designers to anticipate potential exceptions and instrument their processes so that
exceptions can either be avoided or be detected in a timely way. Furthermore, when
exception manifestations occur during process enactment, these methodologies assist
in selecting the best way of resolving them.

Current process modeling methodologies and tools [6, 11, 12] do not make any
provision for describing exception handling procedures separately from “main-line”
processing. This approach, however, is problematic for a number of reasons. First, it
results in cluttered, overly complex, models, which hinder instead of enhancing
understanding and communication. Second, the anticipation of possible failure modes
once again relies on the experience and intuition of the model designers. Third, the
approach cannot help with exceptions that have not been explicitly hard-coded into
the model.

This chapter describes a knowledge-based approach for designing robust business
processes. Rather than requiring process designers to anticipate all possible
exceptions up front and incorporate them into their models, this approach is based on
a set of novel computerized process analysis tools, which assist designers in analyzing
“ ideal” process models, systematically anticipating possible exceptions and
suggesting ways in which the “ideal” process can be instrumented in order to detect
or even to avoid them. When exception manifestations occur, these tools can help
diagnose their underlying causes, and suggest specific interventions for resolving
them. The approach is based on an extensible knowledge base of generic strategies
for avoiding, detecting, diagnosing and resolving exceptions.

The remainder of this chapter is structured as follows: Section 2 provides an
overview of the proposed approach. Section 3 describes how the approach has been
successfully applied to analyze operational risks of the Barings Bank trading
processes. Section 4 discusses related work. Finally, Section 5 presents some
directions for future work.

2 A Knowledge-based approach to Exception handling

2.1 What is an exception?

We define an exception as any deviation from an “ ideal” collaborative process that
uses the available resources to achieve the task requirements on an optimal way. An
exception can thus include errors in enacting a task or distributing results between
tasks, inadequate responses to changes in tasks or resources, missed opportunities and
so on. To make this more concrete, consider the possible exceptions for the generic
coordination process known as “subcontracting” . Subcontracting can be used
whenever one wants to share agents who do a service among requestors of that
service. The requestor for a service sends out a request for bids (RFB) asking for
agents to perform a given task. Interested subcontractors respond with bids. The

3

requestor awards the task to the subcontractor with the best bid (based for example on
anticipated cost, quality or timeliness), at which point the subcontractor performs the
task and returns the results to the requestor. This mechanism makes many implicit
assumptions; violations of any one of them can lead to exceptions (Figure 1):

Contractor Role) * + , - . / 0 1 , / - 0 2 - 3 4

5 6 7 8 9 7 : ; <= > ? @ A ? B C D E F G H I B J

K F ? L C ? G H I

M N O N P Q R S T

U V W X Y W Z [Y W \

] ^ _ ^ ` a ^] ^ b c d e b

f g h i j k l

m n o p q r p

s t u v w x y z { v u | {

} ~ � � � ~ � � � � �

No lost/garbled/delayed
messages

Subcontractor remains capable/avai lable
Cost doesn't change
Bid is correct and timely

RFB is not cancelled or
changed
Contractor does not die

At least one acceptable bid
Picks a good bid fairly
No better options appear
Contract matches RFB
Contract is not cancelled or
changed

Correct and t imely results
Subcontractor does not die or cancel

Fig. 1. Implicit Assumptions for Subcontracting.

Plain text items on the left and right represent tasks done by the Contractor (on the
left) on the Subcontractor (on the right). Labeled arcs represent interactions between
the Contractor and Subcontractor. Items in italics represent implicit assumptions
made by this mechanism (for example that the task required by the Contractor does
not change after it has sent out the RFB, that the Subcontractor does not cancel the
task it was assigned, become incapable of doing it, make a mistake etc.). Any event
that results in the violation of any of these assumptions represents a possible
exception for the subcontracting process. In addition to that, some exceptions take the
form of dysfunctional systemic behavior that may result even when the mechanism is
followed perfectly. Deadlock (where several agents are each waiting for another one
to do something) and resource poaching (wherein high-priority tasks are unable to
access needed resources because these resources they have already been reserved by
lower priority tasks) are all examples of this.

We have developed, as a result of analyses like that shown above, a growing
taxonomy of exception types, a subset of which is show below (Figure 2):

4

Fig. 2. A Subset of the Exception Type Taxonomy.

As we shall see, the essence of our work is developing a knowledge base that
captures such exceptions and relates them to (1) the processes that they can occur in,
and (2) the processes that can be used to manage (anticipate, detect, avoid and
resolve) them.

2.2 Preparing for Exceptions

The first step in our approach helps process designers to anticipate, for a given
“ ideal” process model, the ways that the process may fail and then instrument the
process so that these failures can be detected or avoided. The principal idea here is to
compare the process model against a taxonomy of elementary process elements
annotated with possible failure modes.

A process element taxonomy can be defined as a hierarchy of process element
templates, with very generic elements at the top and increasingly specialized elements
below. For example, Figure 3 depicts a small activity taxonomy. Each activity can
have attributes, e.g. that define the challenges for which it is well -suited. Note that
activity specialization is different from decomposition, which involves breaking an
activity down into subactivities. While a subactivity represents a part of a process; a
specialization represents a “subtype” or “way of” doing the process [20, 21].
Resource, goal and assumption taxonomies can be defined in a similar manner.

5

O r d e r F u l fi l lm e n t
* o rder/ invoice mismatch

C o r e A c t ivi t ie s

M a n a g e F lo w
* misrouted
* d elayed

M a n a g e P r e r e q u is ite
* B w ithout A�

A w ithout B

P u l l -B a se d
* resource poaching

P u sh -B a se d
* manager bias

M a n a g e S h a r in g

C o o r d in a t io n M e c h a n ism s

R o o t
* p erf ormer unavai lable�

perf ormer error

Fig. 3. An Example of a Generic Activity Taxonomy Annotated with Failure Modes.

Process element templates are annotated with the ways in which they can fail , i.e.
with their characteristic exception types. Failure modes for a given process template
can be uncovered using failure mode analysis [24]. Each process element in a
taxonomy inherits all characteristic failure modes of its parent (generalization) and
may contain additional failure modes which are specific to it.

distribute shared
design resources
(by request)

allocate design
tasks (manager)

consolidate
sub-designs

build
product

deliver
product

use product

perform design
(team 1)

perform design
(team 3)

perform design
(team 2)

Fig. 4. An Example "Ideal" Process Model.

Given an “ ideal” process model, to identify failure modes we need only identify
the generic process element templates that match each component of the model. The
potentially applicable exception types will t hen consist of the union of all failure
modes inherited from the matching templates. We can see, for example, that the
“distribute shared design resources” activity in Figure 4 is a subtype of the generic
“pull -based sharing” process template in Figure 3, since the resources are “pulled” by
their consumers rather than “pushed” (i.e. allocated) by their producers. This template
includes among its characteristic failure modes the exception called “poaching” ,
wherein resources go disproportionately to lower priority tasks because agents with
lower priority tasks happen to reserve them first. The “deliver product” activity is a

6

specialization of the “manage flow” template, with characteristic exceptions such as
“ item delayed” , “ item misrouted” and so on. All activities also inherit the
characteristic failure modes from the generalizations of these matching templates,
such as “ responsible agent is unavailable”, and so on.

The process designer can select, from this list of possible exception types, the ones
that seem most important in his/her particular context. He/she might know, for
example, that the “deliver product” process is already highly robust and that there is
no need to augment it with additional exception handling capabiliti es.

For each exception type of interest, the process designer can then decide how to
instrument the process in order to detect these exceptions. While processes can fail i n
many different ways, such failures have a relatively limited number of different
manifestations, including missed deadlines, violations of artifact constraints,
exceeding resource limits, and so on. Every exception type includes pointers to
exception detection process templates in the process taxonomy that specify how to
detect the symptoms manifested by that exception type. These templates, once
interleaved into the “ideal” process model by the workflow designer, play the role of
“sentinels” that check for signs of actual or impending failure. The template for
detecting the “resource poaching” exception, for example, operates by comparing the
average priority of tasks that quickly receive shared resources against the average
priority of all tasks. The “item delayed” , “agent unavailable”, and “ item misrouted”
exceptions can all be detected using time-out mechanisms. Similar pointers exist to
exception avoidance processes, whose purpose is to try to prevent the exceptional
condition from occurring at all .

2.3 Diagnosing Exceptions

When exceptions actually occur during the enactment of a process, our tools can
assist process participants in figuring out how to react. Just as in medical domains,
selecting an appropriate intervention requires understanding the underlying cause of
the problem, i.e. its diagnosis. A key challenge here, however, is that the symptoms
revealed by the exception detection processes can suggest a wide variety of possible
underlying causes. Many different exceptions (e.g. “agent not available”, “ item
misrouted” etc.) typically manifest themselves, for example, as missed deadlines.

Our approach for diagnosing exception causes is based on heuristic classification
[5]. It works by traversing a diagnosis taxonomy. Exception types can be arranged
into a taxonomy ranging from highly general failure modes at the top to more specific
ones at the bottom (Figure 2). Every exception type includes a set of defining
characteristics that need to be true in order to make that diagnosis potentially
applicable to the current situation

When an exception is detected, the responsible process participant traverses the
exception type taxonomy top-down like a decision tree, starting from the diagnoses
implied by the manifest symptoms and iteratively refining the specificity of the
diagnoses by eliminating exception types whose defining characteristics are not
satisfied. Distinguishing among candidate diagnoses will often require that the user

7

get additional information about the current exception and its context, just as medical
diagnosis often involves performing additional tests.

Imagine, for example, that we have detected a time-out exception in the “deliver
product” step (see Figure 4). The diagnoses that can manifest this way include “agent
unavailable”, “ item misrouted” , and “ item delayed” . The defining characteristics of
these exceptions are:

• agent unavailable: agent responsible for task is unavailable (i.e. sick, on vacation,
retired, etc.)

• item misrouted: current location and/or destination of item not match original
target destination

• item delayed: item has correct target destination but is behind original schedule

The user then has a specific set of questions that he/she can ask in order to narrow
down the exception diagnosis. If the appropriate information is available on-line, then
answering such questions and thereby eliminating some diagnoses can potentially be
at least partially automated.

2.4 Resolving Exceptions

Once an exception has been detected and at least tentatively diagnosed, one is ready
to define a prescription that resolves the exception and returns the process to a viable
state. This can be achieved, in our approach, by selecting and instantiating one of the
generic exception resolution strategies that are associated with the hypothesized
diagnosis. These strategies are processes like any other, are captured in a portion of
the process taxonomy, and are annotated with attributes defining the preconditions
that must be satisfied for that strategy to be applicable. We have accumulated roughly
200 such strategies to date, including for example:

• IF a process fails, THEN try a different process for achieving the same goal
• IF a highly serial process is operating too slowly to meet an impending deadline,

THEN pipeline (i.e. release partial results to allow later tasks to start earlier) or
parallelize to increase concurrency

• IF an agent may be late in producing a time-critical output, THEN see whether the
consumer agent will accept a less accurate output in exchange for a quicker
response

• IF multiple agents are causing wasteful overhead by frequently trading the use of a
scarce shared resource, THEN change the resource sharing policy such that each
agent gets to use the resource for a longer time

• IF a new high-performance resource applicable to a time-critical task becomes
available, THEN reallocate the task from its current agent to the new agent

Since an exception can have several possible resolutions, each suitable for different
situations, we use a procedure identical to that used in diagnosis to find the right one.

8

Imagine, for example, that we want a resolution for the diagnosis “agent unavailable”.
We start at the root of the process resolution taxonomy branch associated with that
diagnosis. Three specific strategies are available, with the following preconditions
and actions:

• wait till agent available: IF the original agent will be available in time to
complete the task on the current schedule THEN wait for original agent to start
task

• find new agent with same skills: IF another agent with the same skill s is
available, THEN assign task to that agent

• change task to meet available skills: IF the task can be performed a different way
using agents we have currently available THEN modify and re-assign.

The system user can prune suggested strategies based on which preconditions are
satisfied, and enact or customize a strategy selected from the remainder. Note that the
substantial input may be needed from the user in some cases in order to refine a
generic strategy into specific actions.

2.5 Summary

Figure 5 summarizes the knowledge structure which serves as the basis of the
approach described in the previous sections. It consists of two cross-referenced
taxonomies: a specialization taxonomy of process templates and a taxonomy of
exception types.

During process design time, process models are compared against the process
taxonomy in order to identify possible failure modes. Once failure modes are
identified, the exception type taxonomy provides links to appropriate detection and
avoidance processes. During process enactment time, exception manifestations are
compared against the exception type taxonomy in order to identify possible
diagnoses. Once plausible diagnoses have been identified, the exception taxonomy
provides links to resolution processes.

9

Process Taxonomy Except ion Taxonomy

Except ion Type

Diagnost ic ru les

Links to detect ion
processes

Links to avoidance
processes

Links to resolut ion
processes

Act iv i ty Type

Decomposi t ion

Precondi t ions

Links to possible
except ion types

Postcondi t ions

Fig. 5. Overview of Exception Handling Knowledge Structures.

3 Case Study: Barings Bank

The approach described in the previous section can be applied in order to help design
robust new processes. It can also be a helpful tool when testing the robustness of
existing business processes. This section ill ustrates how the method has been used in
order to systematically expose potential dangers (and suggest possible fixes) in a
well -known case of a failed business process.

In February 1995, 233-year old Barings Bank, one of the oldest and most respected
investment houses in the United Kingdom, went bankrupt. The entire bank collapsed
because of losses of $1.4 billi on incurred in a matter of days by a single young trader,
Nicholas Leeson. Nicholas Leeson was a futures trader in the Singapore branch of the
bank. For a number of reasons, which are still not entirely clear, Leeson began to
engage in unauthorized futures trading in the Singapore exchange. Due to inadequate
internal controls and other process failures, Leeson was able to maintain his
unauthorized and highly risky activity undetected by the bank headquarters in London
until the very end.

The collapse of the Barings Bank is one of the most dramatic and talked about
recent disasters in financial markets. There exist several detailed accounts and
analyses of why and how it happened (for example, [10, 27]). From our perspective,
the Barings disaster is interesting because it was the result of a series of undetected
exceptions in one of the bank’s secondary business processes: the futures trading
process in Singapore.

In this section, we will demonstrate how the approach described in this paper can
be used to systematically point out the gaps in the Barings trading process controls, as
well as to suggest ways for closing those gaps.

10

Place
Request

Customer

Trader

Bank Treasury

Buy
Futures

Contract

Receive
Certificate

Send
Payment

Transfer
Funds Prerequisite

Flow

Fig. 6. The Barings Futures Trading Process

As described in the previous section, the approach begins with an “ ideal” model of
the process. Figure 6 depicts a simpli fied but accurate model of the futures trading
process, based on the descriptions contained in [10] and [27]. The model consists of
boxes, which describe process activities, and lines, which describe various
dependency relationships, that is, constraints that must hold true in order for the
process to succeed. The following is a brief description of the process: When a
customer requests a futures trade, the trader asks the bank headquarters for advances
of funds in order to cover the customer’s margin account1. Once the funds have
arrived, the trader performs the trade, waits to receive the corresponding security
certificate and finally pays the exchange. In an “ ideal” world, a trader only performs
trades when authorized to do so by customers, correct certificates are always received,
and payment for trades exactly match the funds forwarded to the trader by the bank
headquarters. These conditions are implied by the “prerequisite” and “ flow”
relationships, which are part of the “ideal” process model.

The first step in our exception handling methodology consists of identifying the
possible exceptions that are associated with each element of the “ideal” process
model. For simplicity we will only consider here exceptions associated with
dependency relationships in the model.

According to the failure mode taxonomy shown in Figure 3, one possible
exception of any prerequisite relationship is a prerequisite violation (“B without A”),
that is, the possibilit y of activity B happening without a prior occurrence of activity
A. In the context of the Barings trade process such violations would translate into
unauthorized trading, unwanted security receipts and unnecessary payment (Figure
7).

1 To find out more about derivatives trading and the meaning of margin accounts, the interested

reader is referred to Zvi Bodie, Alex Kane, Alan J. Marcus, Investments (4th Edition), Irwin,
1998 (Part IV).

11

Place
Request

Customer

Trader

Bank Treasury

Buy
Futures
Contract

Receive
Certificate

Send
Payment

Transfer
Funds Prerequisite

Flow
Funds

misused

Wrong
certificate

Unauthorized
trade

Fig. 7. The Barings Futures Trading Process with Associated Exceptions

Likewise, one possible exception of a “flow” process is mismatch between the
amount produced and the amount consumed. In the context of the Barings process
this would translate into a misuse of headquarter funds.

After possible exceptions have been identified, the next step is to use the
information stored in the exception type taxonomy (Figure 2) in order to find ways
for avoiding or detecting the exceptions. It turns out that, because the trading process
at Barings involves several independent entities (customer, bank, exchange) and
requires some initiative from the part of the trader, there are were no practical
mechanisms for avoiding the exceptions. There were, however, several mechanisms
for detecting them.

Prerequisite

Exclusive access

A B

� � � � � �� � � �

Periodic Consistency Check

� � � � � �� � � �� � � � � ¡ ¢ £¤ ¥ ¦ § ¨ © ª « ¬­ ® ¯ ° ± ² ²

³ ´ µ ¶· ¸ ¹ º » ¼ ¼

Fig. 8. Logging is a Generic Process for Detecting Prerequisite Violations

12

Place
Request

Customer

Trader

Bank Treasury

Buy
Futures
Contract

Receive
Certificate

Send
Margin
Payment

Transfer
Margin
Funds

½ ¾ ¿ À Á ÂÃ Ä Å Æ

Ç È É Ê Ë ÌÍ Î Ï Ï Ð Ñ Ò

Ó Ô Õ Ö × ØÙ Ú Û Ü Ý

Daily Consistency Check

Þ ß à á â ãä å æ ç è é ê ë ì íî ï ð ñ

Prerequisite
Exclusive access

Flow

Fig. 9. Barings Process Properly Instrumented with Logging Processes.

For example, logging is one (out of several) generic mechanism for detecting
prerequisite relationship violations (Figure 8). Logging involves recording all
occurrences of activities A and B in some reliable storage medium and periodically
conducting checks for prerequisite violations. In order for logging to be successful it
is, in turn, required that (a) all occurrences of A and B are reliably logged and (b) the
log can only be modified by the processes that do the logging.

If we insert a logging process for all dependencies listed in Figure 8 we get a
model of a properly instrumented trading process (Figure 9).

At this point, we can compare the process derived using our approach with the
actual Barings described in [10, 27]. It can immediately be seen that, although
Barings did log some information about trades, it had two crucial gaps relative to the
properly instrumented process of Figure 9 (see Figure 10):

First, it failed to log and compare the amount of funds forwarded by headquarters
to the trader to the amounts actually paid by the trader for customer trades (in other
words, the log labeled “Funds” in Figures 9-10 was missing from the Barings
process). Second, Nick Leeson, in addition to being a trader, was also in charge of the
back room operations in the Singapore branch. This gave him the authorization to
modify the trades logs (and thus violated requirement (b) above of the logging
process).

Nick Leeson was able to use these two gaps to his advantage as follows: Whenever
he received a trade request from a customer, he requested an amount of funds far
greater than what was required for the customer trade. He then performed the
customer trade, as well as some additional unauthorized trades on his behalf. All of
these trades were automatically logged into logs “Commits” , “Received” and “Paid”
(see Figures 9-10). Leeson then erased the records of his unauthorized trades from
logs “Commits” , “Received” and “Paid” . Therefore, at the end of each day, the log of

13

“Requests” matched perfectly the other three logs. By not checking for discrepancies
between the funds forwarded to Leeson and the total funds recorded at the “Paid” log,
headquarters remained unaware of Leeson’s activities until it was too late.

Place
Request

Customer

Trader

Bank Treasury

Buy
Futures
Contract

Receive
Certificate

Send
Margin
Payment

Transfer
Margin
Funds

ò ó ô õ ö ÷ø ù ú û

ü ý þ ÿ � �
� � � � � � �

� 	
 � �

� � � � �

Daily Consistency Check

� � � � � �
� � � �

� � � ! "
$ % &

Barings failed to
compare funds

transferred against
funds used for

client transactions

Barings failed to safeguard
against exclusive access

violations because trader
was given log modification

privileges

Fig. 10. Comparison between Ideal and Actual Barings Process

It is probably too simplistic to claim that the Barings disaster would have been
avoided if the management of Barings had at their disposal knowledge-based
exception handling methodologies, such as the ones described in this paper.
Nevertheless, this exercise demonstrates that these methodologies and tools can be
used in real-li fe cases to alert management of potential weaknesses and suggest ways
for making vital business processes more robust.

4 Related Work

The approach described here integrates and extends two long-standing lines of
research: one addressing coordination science principles about how to represent and
utili ze process knowledge, another addressing how artificial intelli gence techniques
can be applied to detecting and resolving conflicts in collaborative design settings:

One component is a body of work pursued over the past six years by the Process
Handbook project at the MIT Center for Coordination Science [8, 20, 21]. The goal of
this project is to produce a repository of process knowledge and associated tools that
help people to better redesign organizational processes, learn about organizations, and
automatically generate software. The Handbook database continues to grow and
currently includes over 4500 models covering a broad range of business processes. A
mature Windows-based tool for editing the Handbook database contents, as well as a
Web-based tool for read-only access have been developed. A key insight from this

14

work is that a repository of business process templates, structured as a specialization
taxonomy, can assist people to design innovative business processes more quickly by
allowing them to retrieve, contrast and customize interesting examples, make “distant
analogies” , and utili ze “recombinant” (mix-and-match) design techniques.

The other key component of this work is nearly a decade of development and
evaluation of systems for handling multi -agent conflicts in collaborative design [15,
16] and collaborative requirements capture [17]. This work resulted in principles and
technology for automatically detecting, diagnosing and resolving design conflicts
between both human and computational agents, building upon a knowledge base of
roughly 300 conflict types and resolution strategies. This technology has been applied
successfully in several domains including architectural, local area network and fluid
sensor design. A key insight from this work is that design conflicts can be detected
and resolved using a knowledge base of generic and highly reusable conflict
management strategies, structured using diagnostic principles originally applied to
medical expert systems. Our experience to date suggests that this knowledge is
relatively easy to acquire and can be applied unchanged to multiple domains.

The work described in this paper integrates and extends these two lines of research
in an innovative and, we believe, powerful way. The central insights underlying this
integration are that (1) business process exceptions can be handled by generalizing
the diagnostic algorithms and knowledge base underlying design conflict and (2) the
exception handling knowledge base can be captured as a set of process templates that
can be retrieved, compared and customized using the principles embodied in the
Process Handbook.

This work also constitutes, we believe, a substantive and novel contribution to
previous efforts on exception handling, which have been pursued in the context of
workflow [1, 9, 13, 18, 22, 25] manufacturing control [14, 23, 26], model-based fault
diagnosis [3, 7, 19], planning [3, 4], and failure mode analysis research [24]. Most
workflow research has focused on languages for expressing correctness-preserving
transforms on workflow models, providing no guidance however concerning which
transforms to use for a given situation. There has been some manufacturing and
workflow research on providing guidance for how to handle exceptions, but this has
been applied to few domains (mainly software engineering and flexible
manufacturing cell control) and/or has addressed a small handful of exception types.
The planning work, by contrast, has developed a range of computational models but
they are only applicable if the planning technology was used to develop the original
work process. This is typically not the case for workflow settings where processes are
defined by people rather than planning tools. Model-based fault diagnosis approaches
use a single generic algorithm to uncover the causes of faults in a system without the
need for a knowledge base of failure modes and resolution heuristics. This approach
is predicated, however, on the availabilit y of a complete and correct model of the
system’s behavior. This is possible for some domains (e.g. the analysis of electrical
circuits) but not for many others including, we would argue, most collaborative work
settings that include human beings and/or complex computer systems as participants.
Model-based fault diagnosis also typically assumes that resolution, once a fault has
been diagnosed, is trivial (e.g. just replace the faulty component) and thus does not

15

provide context-specific suggestions for how to resolve the problem. Current work on
failure mode analysis describes a systematic process. However, the actual work must
be done by people based on their experience and intuitions. This is potentially quite
expensive, to the extent that this analysis is rarely done, and can miss important
failure modes due to limitations in the experience of the analyst [24].

5 Future Work

This chapter has emphasized the use of our exception handling knowledge base as a
decision support tool for humans. Our ongoing work is also focused on connecting
our technology with automated process enactment systems, such as workflow
controllers and software agent systems. It is widely recognized that state-of-the art
workflow technology provides only rudimentary support for exception handling [2,
9]. The result of our work will be a prototype implementation of a domain-
independent exception handling engine, which oversees the enactment of a workflow
script, monitors for exceptions and decides (automatically for the most part) how to
intervene in order to resolve them. Given an “ ideal” workflow script, the engine first
uses the exception handling knowledge base in order to anticipate potential
exceptions and augment the system with additional actions that play the role of
software sentinels. During enactment time, these sentinels automatically trigger the
diagnostic services of the engine when they detect symptoms of exceptional
conditions. The diagnostic services traverse the taxonomy of exception types, select
(possibly with human assistance) a diagnosis and then select and instantiate a
resolution plan. The resolution plan is eventually translated into a set of workflow
modification operations (e.g. add tool, remove tool, modify connection, etc.), which
are dynamically applied to the executing workflow.

For further information about our work, please see the Adaptive Systems and
Evolutionary Software web site at http://ccs.mit.edu/ases/. For further information on
the Process Handbook, see http://ccs.mit.edu/

Acknowledgment

The authors gratefully acknowledge the support of the DARPA CoABS Program
(contract F30602-98-2-0099) while preparing this paper.

References

 1. E. Auramaki and M. Leppanen. Exceptions and off ice information systems. In B. Pernici
and A.A. Verrijn-Stuart, editors: Office Information Systems: The Design Process, pp.167-
182, North Holland Publishing Co., 1989.

16

2. P. Barthelmess and J. Wainer. Workflow Systems: a few Definitions and a few Suggestions.
Proceeding of the Conf. On Organizational Computing Systems (COOCS’95), pp. 138-147,
1995.

3. L. Birnbaum, G. Colli ns, M. Freed and B. Krulwich. Model-Based Diagnosis of Planning
Failures. Proceedings of the 8th National Conf. on Artifi cial Intelli gence (AAAI-90), pp.318-
23, 1990.

4. C.A. Broverman and W.B. Croft. Reasoning About Exceptions During Plan Execution
Monitoring. Proceedings of the 6th National Conf. on Artifi cial Intelli gence (AAAI-87), pp.
190-195, 1987.

5. W. J. Clancey. Heuristic Classification. Artifi cial Intelli gence 27(3), pp. 289-350, 1985.
6. T. Davenport. Process Innovation: Reengineering Work through Information Technology.

Harvard Business School Press, 1993.
7. J. deKleer and B. Willi ams. Reasoning About Multiple Faults. Proceedings of the 5th

National Conference on Artifi cial Intelli gence (AAAI-86), pp. 132-9, 1986.
8. C. Dellarocas, J. Lee, T.W. Malone, K. Crowston and B. Pentland. Using a Process

Handbook to Design Organizational Processes. Proceedings of the AAAI 1994 Spring
Symposium on Computational Organization Design, pp. 50-56, 1994.

9. C.A. Elli s, K. Keddara and G. Rozenberg. Dynamic Change Within Workflow Systems.
Proceedings of the Conf. On Organizational Computing Systems, (COOCS’95), pp. 10-21,
1995.

10. S. Fay. The collapse of Barings. W.W. Norton, New York, 1997.
11. V. Grover and W. J. Kettinger, editors. Business Process Change: Concepts,

Methodologies and Technologies. Idea Group Publishing, 1995.
12. Hammer, M. and J. Champy. Reengineering the Corporation: A Manifesto for Business

Revolution. Harper Business, 1994.
13. B.H. Karbe and N. G. Ramsberger. Influence of Exception Handling on the Support of

Cooperative Off ice Work. In S. Gibbs and A. A. Verriji n-Stuart, editors: Multi -User
Interfaces and Applications, Elsevier Science Publishers, pp. 355-370, 1990.

14. D. Katz and S. Manivannan. Exception management on a shop floor using online
simulation. Proceedings of the 1993 Winter Simulation Conference, pp.888-96. 1993.

15. M. Klein. Conflict resolution in cooperative design. University of I lli nois at Urbana-
Champaign Technical Report UIUCDCS-R-89-1557.

16. M. Klein. Supporting Conflict Resolution in Cooperative Design Systems. IEEE
Transactions on Systems, Man and Cybernetics, 21(6), pp. 1379-1390, 1991.

17. M. Klein. An Exception Handling Approach to Enhancing Consistency, Completeness
and Correctness in Collaborative Requirements Capture. Concurrent Engineering: Research
and Applications, 5 (1), pp. 37-46, 1997.

18. T. Kreifelts and G. Woetzel. Distribution and Error Handling in an Off ice Procedure
System. Proceedings of IFIP WF 8.4 Working Conference on Methods and Tools for Office
Systems, Pisa, Italy, 1987.

19. M. Krishnamurthi and D.T. Philli ps. An expert system framework for machine fault
diagnosis. Computers & Industrial Engineering 22 (1), Jan. 1992, pp.67-84.

20. T.W. Malone, K. Crowston, J. Lee and B. Pentland, Tools for Inventing Organizations:
Toward a Handbook of Organizational Processes, Proceedings of 2nd IEEE Workshop on
Enabling Tech. Infrastructure for Collaborative Enterprises (1993) 72-82.

21. T.W. Malone, K. Crowston, J. Lee, B. Pentland, C. Dellarocas, G. Wyner, J. Quimby, C.
Osborne, and A. Bernstein. Tools for inventing organizations: Toward a handbook of
organizational processes. Management Science, in print.

17

22. P. Mi and W. Scacchi. Articulation: An Integrated Approach to the Diagnosis, Replanning
and Rescheduling of Software Process Failures. Proceedings of the Eighth Knowledge-
Based Software Engineering Conference, IEEE Comput. Soc. Press. 1993, pp.77-84.

23. S. Parthasarathy. Generalised process exceptions-a knowledge representation paradigm for
expert control. Proceedings of the Fourth International Conference on the Applications of
Artifi cial Intelli gence in Engineering, 1989, pp.241-56.

24. D. Raheja. Software system failure mode and effects analysis (SSFMEA)-a tool for
reliabilit y growth. Proceedings of the Int’ l Symp. on Reliabilit y and Maintainabilit y
(ISRM’90), Tokyo, Japan, pp. 271-77, 1990.

25. D.M. Strong. Decision support for exception handling and quality control in off ice
operations. Decision Support Systems 8(3), June 1992, pp. 217-27.

26. A. Visser. An exception-handling framework. International Journal of Computer
Integrated Manufacturing 8(3), May-June 1995, pp.197-203.

27. G. Zhang. Barings bankruptcy and financial derivatives. World Scientific Publishing Co,
Singapore, 1995.

