To appear in:

"Business Process Management: Models, Techniques, and Empirical Studies", edited
by Wil van der Aalst, Jérg Desel and Andreas Oberweis, Springer Verlag Publishing
Co., 1999.

A Knowledge-Based Approach for Designing Robust
Business Processes

Chrysanthos Dellarocas and Mark Klein

Center for Coordination Science
Sloan Schod of Management
Massadhusetts Ingtitute of Techndogy
Room E53-315 Cambridge, MA 02139 USA
{dell, mklein}@nrit.edu

Abstract. This chapter describes a novel knowledge-based methoddogy and
computer toolset for helping business processdesigners and participants better
manage exceptions (unexpeded deviations from an ided sequence of events
caused by design errors, resource failures, requirement changes etc.) that can
occur during the enadment of a process This approad is based onan online
repository exploiting a generic and reusable body d knowledge, which
describes what kinds of exceptions can occur in coll aborative work processes,
how these exceptions can be deteded, and haw they can be resolved. This work
buil ds upon pevious eff orts from the MIT ProcessHandbook pojed and from
reseach onconflict management in coll aborative design.

1 Introduction

Business process models typicdly describe the “normal” flow of events in an ided
world. For example, the model of a product development processtypicdly includes a
“design product” activity, followed by a “build product” activity, which, in turn, is
followed by a “deliver product” activity. Redity, however, tends to be more
complicated. During the enadment of a businessprocessa lot of exceptions, that is,
deviations from the ided sequence of events, might occur. For example, product
design might prove to be inconsistent with the cgabiliti es of the manufaduring gant.
Manufaduring stations might bre&k down in the middie of jobs. Delivery trucks
might go onstrike. To asaure that a processis 4gill able to fulfill its organizaional
goals, process participants must be ale to deted, diagnose and successully resolve
such exceptional condtions asthey occur.

Traditionally, managers have relied on their experience and undrstanding o a
processin arder to handle deviations from the expeaed flow of events. However, the
increasing complexity of modern business processes and the accéerating pacewith
which these proceses change has made the reliance on individua managers
experience and intuition an increasingly less stisfactory way to ded with exceptions.
There is an incressing reed for systematic business process operationd risk

management methoddogies. Such methoddogies will asdst business process
designers to anticipate potential exceptions and instrument their proceses o that
exceptions can either be avoided or be deteded in a timely way. Furthermore, when
exception manifestations occur during [rocess enaament, these methoddogies assst
in seleding the best way of resolving them.

Current process modeling methoddogies and todls [6, 11, 12] do nd make any
provision for describing exception handling procedures sparately from “main-line”
processng. This approadh, however, is problematic for a number of reasons. Firdt, it
results in cluttered, overly complex, models, which hinder instead of enhancing
understanding and communicéion. Seand, the anticipation d possble failure modes
once aain relies on the experience and intuition o the model designers. Third, the
approach canna help with exceptions that have not been explicitly hard-coded into
the model.

This chapter describes a knowledge-based approach for designing robust business
processs. Rather than requiring pocess designers to anticipate dl possble
exceptions up front and incorporate them into their models, this approacd is based on
aset of novel computerized processanalysistoals, which asdst designersin analyzing
“ided” process models, systematically anticipating passble exceptions and
suggesting ways in which the “ided” processcan be instrumented in order to deted
or even to avoid them. When exception manifestations occur, these tools can help
diagnaose their underlying causes, and suggest spedfic interventions for resolving
them. The gproach is based on an extensible knowledge base of generic strategies
for avoiding, deteding, diagnasing and resolving exceptions.

The remainder of this chapter is gructured as follows: Sedion 2 povides an
overview of the proposed approach. Sedion 3 describes how the gproach has been
succesfully applied to analyze operational risks of the Barings Bank trading
processs. Sedion 4 dscuses related work. Finally, Sedion 5 pesents me
diredionsfor future work.

2 A Knowledge-based approach to Exception handling

2.1 What isan exception?

We define an exception as any deviation from an “ided” collaborative process that
uses the available resources to achieve the task requirements on an optimal way. An
exception can thus include arors in enading a task or distributing results between
tasks, inadequate resporses to changesin tasks or resources, missed oppatunities and
so on To make this more @ncrete, consider the posshle exceptions for the generic
coordination pocess known as “subcontrading’. Subcontrading can be used
whenever one wants to share agents who do a service anong requestors of that
service The requestor for a service sends out a request for bids (RFB) asking for
agents to perform a given task. Interested subcontradors respond with bids. The

requestor awards the task to the subcontrador with the best bid (based for example on
anticipated cost, quality or timelines9, at which pdnt the subcontrador performs the
task and returns the results to the requestor. This medianism makes many implicit
asumptions; violations of any ore of them can leal to exceptions (Figure 1):

Contractor Role Subcontractor Role

No lost/garbled/delayed
messages

Create RFB
(Request For Bids) S
794
RFB is not cancelled or 8
changed
Contractor does not die .
Create Bid
59°
22
Subcontractor remains capable/available
Cost doesn't change
| Bi Bid is correct and timel
Select Bid ,q%r y
(o4

At least one acceptable bid o,,(
Picks a good bid fairly /'eq
No better options appear
Contract matches RFB
Contract is not cancelled or &
changed GQ&S

2

Perform Work

Correct and timely results
Subcontractor does not die or cancel

Receive Results

Fig. 1. Implicit Assumptions for Subcontrading.

Plain text items on the left and right represent tasks dore by the Contractor (on the
left) on the Subcontracor (on the right). Labeled arcs represent interadions between
the Contrador and Subcontrador. Items in italics represent implicit assumptions
made by this mechanism (for example that the task required by the Contrador does
not change dter it has nt out the RFB, that the Subcontractor does not cancd the
task it was assgned, become incapable of doing it, make amistake dc.). Any event
that results in the violation d any of these asamptions represents a possble
exception for the subcontrading process In addition to that, some exceptions take the
form of dysfunctional systemic behavior that may result even when the mechanism is
followed perfedly. Deadlock (where several agents are eat waiting for ancther one
to do something) and resource poaching (wherein high-priority tasks are unable to
access needed resources becaiuse these resources they have drealy been reserved by
lower priority tasks) are dl examples of this.

We have developed, as a result of analyses like that shown abowve, a growing
taxonamy of exception types, a subset of which is srow below (Figure 2):

il Specialization Yiewer: "Exception Root’
File Edit View Object ‘Window

]Default Parent Exception —
Athrash\ng [livelock]

[esaurce poaching
/emelgenl dysfunctions F|receivad no acceptable bids

\
|
|
\lcircular wait deadlock ‘
|
_ |tragedy of the commans ‘

: ad . |< ‘

|

|p|otoco| mizmatch
agent error ‘
|agent slow ‘
[agent problems [[agent unavailable |
\
|

|agenl loses capability
agent is malicious

Jsuboplimal coordination

Eexcessive market power

finter-agent conflict

|Excepliun Root [

qmechanism failure [

I T |

|
%IESDUICE problems |
|
|

Hcommilmenl changes

qmissed opportunities

Fig. 2. A Subset of the Exception Type Taxonamy.

As we shall see the esence of our work is developing a knowledge base that
cgptures guch exceptions and relates them to (1) the processes that they can occur in,
and (2) the processs that can be used to manage (anticipate, deted, avoid and
resolve) them.

2.2 Preparing for Exceptions

The first step in ou approach helps process designers to anticipate, for a given
“ided” process model, the ways that the process may fail and then instrument the
process ® that these fail ures can be deteded or avoided. The principal ideahereisto
compare the process model against a taxonamy of elementary process elements
annatated with possble failure modes.

A process element taxonamy can be defined as a hierarchy of process element
templates, with very generic dements at the top and increasingly spedali zed elements
below. For example, Figure 3 depicts a small adivity taxonamy. Each adivity can
have dtributes, e.g. that define the challenges for which it is well-suited. Note that
adivity spedalization is different from decompaosition, which involves breging an
adivity down into subadivities. While asubadivity represents a part of a process a
spedalizaion represents a “subtype” or “way of” doing the process [20, 21].
Resource goal and assumption taxonamies can be defined in asimilar manner.

Root
* performer unavailable

* performer error

Core Activities Coordination M echanisms
I
[I]
Order Fulfillment M anage Flow M anage Prerequisite M anage Sharing
* order/invoice mismatch | |* misrouted * B without A
*d elayed * A without B

l—l—l

Pull-Based Push-Based
* resource poaching * manager bias

Fig. 3. An Example of a Generic Activity Taxonamy Annatated with Fail ure Modes.

Processelement templates are annaated with the ways in which they can fall, i.e.
with their charaderistic exception types. Failure modes for a given processtemplate
can be uncovered uwsing failure mode analysis [24]. Each process element in a
taxonamy inherits al charaderistic failure modes of its parent (generalizaion) and
may contain additi onal failure modes which are spedfic to it.

perform design
(tean 1)

distribute shared

?&7 ?gq[]g)ufceﬁ consoli date build
perform design sub-designs product
(tean 2)

allocae design

tasks (manager) g%:j\:gt
perform design
(team 3)

use product

Fig. 4. An Example"Ided" ProcessModd!.

Given an “ided” process model, to identify failure modes we need only identify
the generic processelement templates that match ead comporent of the model. The
potentially applicable exception types will then consist of the union o all falure
modes inherited from the matching templates. We can see for example, that the
“distribute shared design resources’ activity in Figure 4 is a subtype of the generic
“pull-based sharing” processtemplate in Figure 3, sincethe resources are “pulled” by
their consumers rather than “pushed” (i.e. allocated) by their producers. This template
includes among its charaderistic faillure modes the ecception cdled “poacing’,
wherein resources go dspropartionately to lower priority tasks becaise ggents with
lower priority tasks happen to reserve them first. The “deliver product” activity is a

spedalizaion d the “manage flow” template, with charaderistic exceptions such as
“item delayed”, “item misrouted” and so on All adivities also inherit the
charaderistic failure modes from the generalizaions of these matching templates,
such as “resporsible agent is unavailable”, and so on

The processdesigner can seled, from thislist of possble exception types, the ones
that seem most important in hisser particular context. He/she might know, for
example, that the “deliver product” processis arealy highly robust and that there is
no real to augment it with additional exception handling capabiliti es.

For eat exception type of interest, the process designer can then dedde how to
instrument the processin order to deted these exceptions. While processes can fail in
many dfferent ways, such failures have arelatively limited number of different
manifestations, including missed deallines, violations of artifad constraints,
excedaling resource limits, and so on Every exception type includes pointers to
excetion detedion process templates in the process taxonamy that spedfy how to
deted the symptoms manifested by that exception type. These templates, once
interleaved into the “ided” processmodel by the workflow designer, play the role of
“sentinels’ that chedk for signs of adual or impending failure. The template for
deteding the “resource poaching” exception, for example, operates by comparing the
average priority of tasks that quickly recave shared resources against the average
priority of all tasks. The “item delayed”, “agent unavailable”, and “item misrouted”
exceptions can al be deteded using time-out mechanisms. Similar pointers exist to
excetion avoidarnce processes, whose purpose is to try to prevent the exceptional
condtion from occurring at all.

2.3 Diagnosing Exceptions

When exceptions adually occur during the enaament of a process our todls can
asgst process participants in figuring ou how to read. Just asin medicd domains,
seleding an appropriate intervention requires understanding the underlying cause of
the problem, i.e. its diagnasis. A key challenge here, however, is that the symptoms
reveded by the exception cetedion processes can suggest a wide variety of posshle
underlying causes. Many dfferent exceptions (e.g. “agent not available”, “item
misrouted” etc.) typicdly manifest themselves, for example, as missed deadlines.

Our approach for diagnosing exception causes is based on teuristic dasdficaion
[5]. It works by traversing a diagnosis taxonamy. Exception types can be aranged
into ataxonamy ranging from highly general fail ure modes at the top to more spedfic
ones at the bottom (Figure 2). Every exception type includes a set of defining
charaderistics that need to be true in order to make that diagnasis potentially
applicable to the airrent situation

When an exception is deteded, the resporsible process participant traverses the
exception type taxonomy top-down like adedsion tree starting from the diagnoses
implied by the manifest symptoms and iteratively refining the spedficity of the
diagnoses by eliminating exception types whaose defining charaderistics are not
satisfied. Distinguishing among candidate diagnases will often require that the user

get additional information about the aurrent exception and its context, just as medicd
diagnasis often involves performing additional tests.

Imagine, for example, that we have deteded a time-out exception in the “deliver
product” step (seeFigure 4). The diagnases that can manifest this way include “agent
unavailable”, “item misrouted”, and “item delayed”. The defining charaderistics of
these exceptions are:

e agent unavailable: agent resporsible for task is unavail able (i.e. sick, on vacdion,
retired, etc.)

e item misrouted: current location and/or destination d item not match original
target destination

< item delayed: item has corred target destination bt is behind aiginal schedule

The user then has a spedfic set of questions that he/she can ask in order to narrow
down the exception dagnasis. If the gpropriate information is avail able on-line, then
answering such guestions and thereby eliminating some diagnoses can paentially be
at least partially automated.

2.4 Resolving Exceptions

Once a exception hes been deteded and at least tentatively diagnosed, one is ready
to define aprescription that resolves the exception and returns the processto a viable
state. This can be adieved, in ou approad, by seleding and instantiating ore of the
generic exception resolution strategies that are asociated with the hypahesized
diagnasis. These strategies are processes like any ather, are catured in a portion o
the process taxonamy, and are aanaated with attributes defining the precondtions
that must be satisfied for that strategy to be gplicable. We have acumulated roughy
200such strategiesto date, including for example:

e |Faprocessfails, THEN try adifferent processfor achieving the same goal

« |IF ahighly serial processis operating too slowly to meed an impending dceadline,
THEN pipeline (i.e. release partial results to allow later tasks to start ealier) or
parallelizeto increase ancurrency

* |F an agent may be late in producing a time-critica output, THEN seewhether the
consumer agent will accet a less acarrate output in exchange for a quicker
resporse

« |F multiple agents are caising wasteful overhead by frequently trading the use of a
scarce shared resource, THEN change the resource sharing pdicy such that eadh
agent getsto use the resourcefor alonger time

* |F a new high-performance resource gplicable to a time-criticd task bemmes
available, THEN redlocae the task from its current agent to the new agent

Since an exception can have several possble resolutions, ead suitable for diff erent
situations, we use aprocedure identicd to that used in diagnasis to find the right one.

Imagine, for example, that we want a resolution for the diagnaosis “agent unavail able”.
We start at the roat of the process resolution taxonomy branch asoociated with that
diagnasis. Three spedfic strategies are available, with the following precondtions
and adions:

e wait till agent available IF the origina agent will be available in time to
complete the task on the aurrent schedule THEN wait for origina agent to start
task

« find new agent with same skills: IF ancther agent with the same skills is
available, THEN asdgn task to that agent

e changetask to meet available sKills: IF the task can be performed a diff erent way
using agents we have aurrently available THEN modify and re-assgn.

The system user can prune suggested strategies based onwhich precondtions are
satisfied, and enad or customize astrategy seleded from the remainder. Note that the
substantial input may be neealed from the user in some caes in arder to refine a
generic strategy into spedfic adions.

2.5 Summary

Figure 5 summarizes the knowledge structure which serves as the basis of the
approach described in the previous sdions. It consists of two crossreferenced
taxonamies. a spedalizaion taxonomy of process templates and a taxonamy of
exception types.

During process design time, process models are mmpared against the process
taxonamy in order to identify posdble failure modes. Once failure modes are
identified, the exception type taxonamy provides links to appropriate detedion and
avoidance processes. During process enadment time, exception manifestations are
compared against the exception type taxonomy in order to identify possble
diagnases. Once plausible diagnoses have been identified, the exception taxonamy
provides linksto resolution rocesses.

Activity Type |, | Exception Type

w \ / Diagnosnc fules

" i i Links to detection

Postconditions Links to avoidance
processes

Links to possible Links to resolution
exception types processes

ey

“Process Taxonomy Exception Taxonomy

Fig. 5. Overview of Exception Handling Knowledge Structures.

3 Case Study: Barings Bank

The gproach described in the previous dion can be gplied in order to help design
robust new processes. It can also be ahelpful too when testing the robustness of
existing businessprocesses. This edion ill ustrates how the method has been used in
order to systematicdly expose potential dangers (and suggest possble fixes) in a
well-known case of afailed businessprocess

In February 1995 233-yea old Barings Bank, one of the oldest and most respeaed
investment houses in the United Kingdam, went bankrupt. The entire bank coll apsed
because of losses of $1.4 hilli onincurred in a matter of days by a single youngtrader,
Nicholas Leeson. Nicholas Leeson was a futures trader in the Singapore branch o the
bank. For a number of reasons, which are till not entirely clea, Leeson began to
engage in ureuthorized futures trading in the Singapore exchange. Due to inadequate
internal corntrols and aher process failures, Leeson was able to maintain his
unauthorized and highly risky adivity undeteded by the bank headquartersin London
until the very end.

The ollapse of the Barings Bank is one of the most dramatic and talked abou
recent disasters in financia markets. There eist several detaled acouns and
analyses of why and haw it happened (for example, [10, 27]). From our perspedive,
the Barings disaster is interesting because it was the result of a series of undeteaed
exceptions in ore of the bank’'s fmndary business processes. the futures trading
processin Singapore.

In this ®dion, we will demonstrate how the gproach described in this paper can
be used to systematicdly paint out the gaps in the Barings trading processcontrols, as
well asto suggest ways for closing those gaps.

Customer

Place
Request
Trader Buy Receive Send
P Futures > o >
Contrad Certificate Payment
'y A
P rm e e s
Bank Treasury 1
Transfer
Funds Prerequisite —_—
Flow - =

Fig. 6. The Barings Futures Trading Process

As described in the previous fdion, the gproac begins with an “ided” model of
the process Figure 6 depicts a smplified bu acarrate model of the futures trading
process based onthe descriptions contained in [10] and [27]. The model consists of
boxes, which describe process adivities, and lines, which describe various
dependency relationships, that is, constraints that must hold true in order for the
process to succeal. The following is a brief description d the process When a
customer requests a futures trade, the trader asks the bank headquarters for advances
of funds in order to cover the austomer’'s margin acourt!. Once the funds have
arrived, the trader performs the trade, waits to recave the rrespondng seaurity
catificate and finally pays the exchange. In an “ided” world, a trader only performs
trades when authorized to doso by customers, corred certificaes are dways receved,
and payment for trades exadly match the funds forwarded to the trader by the bank
headquerters. These wndtions are implied by the “prerequisite” and “flow”
relationships, which are part of the “ided” processmodel.

The first step in our exception handing methoddogy consists of identifying the
possble exceptions that are sswciated with ead element of the “ided” process
model. For smplicity we will only consider here exceptions assciated with
dependency relationships in the model.

According to the failure mode taxonamy shown in Figure 3, one posshle
exception d any prerequisite relationship is a prerequisite violation (“B without A”),
that is, the posshility of adivity B happening withou a prior occurrence of adivity
A. In the mntext of the Barings trade process sich violations would trandate into
unauthorized trading, unwanted seaurity recdpts and unrecessary payment (Figure
7).

! Tofind ou more dou derivatives trading and the meaning o margin acourts, the interested
reader is referred to Zvi Bodie, Alex Kane, Alan J. Marcus, Investments (4th Edition), Irwin,
1998(Part IV).

1N

Customer

Place nauthoriz
trade W_r ong
Request certificate

Trader .| Bw »| Recéve 5 Send
v| Futures 7| certificae "] Payment
ontract ay*

Bank Treasury

Prerequisite —
Fow —-=»

Fig. 7. The Barings Futures Trading Processwith Asociated Exceptions

Likewise, one posdble exception o a “flow” processis mismatch between the
amourt produced and the amournt consumed. In the @ntext of the Barings process
thiswould trandate into a misuse of headquarter funds.

After possble exceptions have been identified, the next step is to use the
information stored in the exception type taxonamy (Figure 2) in order to find ways
for avoiding a deteding the exceptions. It turns out that, becaise the trading process
at Barings involves sveral independent entities (customer, bank, exchange) and
requires me initiative from the part of the trader, there ae were no padicd
medhanisms for avoiding the exceptions. There were, however, several medchanisms
for deteding them.

Exception
Avoidance
Process

@

iodic Consistency Check |

4
v
Per|

Prerequisite =%
Exdusive access 4===9

Fig. 8. LogdngisaGeneric Processfor Deteding Prerequisite Violations

11

Customer Fow =%
Prerequisite =%
Place Exclusive access 4-----9
Request
Update Updat Updat:
I_>f'nmm/' I_> Rear |_> Fé?de
Trader Buy A Recaive A Send A
P Futures —p o P Margin :
Contract : Certificate| : t :
Update | |Update ontract Pami
Regs Funds A : : .
é é .— " o T ————————— i_ LR | E
Bank Treasury 4 H l H H H
Transfer
Margin
-] Fun(h]] -
h 4 h 4 h 4 h 4

v
| Daily Consistency Check |

Fig. 9. Barings ProcessProperly Instrumented with Loggng Processes.

For example, loggng is one (out of several) generic mechanism for deteding
prerequisite relationship violations (Figure 8). Loggng involves recording all
occurrences of adivities A and B in some reliable storage medium and periodicdly
conducting chedks for prerequisite violations. In order for loggng to be succesdul it
is, inturn, required that (@) all occurrences of A and B are reliably logged and (b) the
log can orly be modified bythe processes that do the loggng.

If we insert a loggng process for all dependencies listed in Figure 8 we get a
model of a properly instrumented trading process(Figure 9).

At this point, we can compare the process derived using ou approach with the
adual Barings described in [10, 27]. It can immediately be seen that, although
Barings did log some information abou trades, it had two crucial gaps relative to the
properly instrumented processof Figure 9 (seeFigure 10):

First, it failed to log and compare the anourt of funds forwarded by realquarters
to the trader to the anounts acually paid by the trader for customer trades (in ather
words, the log labeled “Funds’ in Figures 9-10 was misdng from the Barings
procesy. Seand, Nick Leeson, in addition to being a trader, was also in charge of the
badk room operations in the Singapore branch. This gave him the aithorizaion to
modify the trades logs (and thus violated requirement (b) above of the loggng
process.

Nick Leeson was able to use these two gaps to his advantage & foll ows: Whenever
he recaved a trade request from a austomer, he requested an amount of funds far
greder than what was required for the austomer trade. He then performed the
customer trade, as well as me alditional unauthorized trades on hs behalf. All of
these trades were automaticdly logged into logs “Commits’, “Receved” and “Paid”
(see Figures 9-10). Leeson then erased the records of his unauthorized trades from
logs “Commits’, “Recéaved” and “Paid”. Therefore, at the end d ead day, the log o

19

“Requests’ matched perfedly the other threelogs. By nat chedking for discrepancies
between the funds forwarded to Leeson and the total funds recorded at the “Paid” log,
headquerters remained uraware of Leeson’s adivities urtil it wastoo late.

Customer
Baringsfailed to
Place compare funds
Request transferred against Barings failed to safeguard
funds used for against exclusive access
client transactions. ppdate violations because'trader p| Update
| [commits, was given log modification Paid
Trader Buy privileges and
Futures t— /e/’_’—m,fgin
update| | update Contract Paynﬁent
Regs Funds A d
- mm s ma e o mm r mmon mm o mmow ommow el
Bank Treasury l
Transfer
0 Ot vaen | [O O
Funds

‘ Daily Consistency Check ‘

Fig. 10. Comparison ketween Ided and Actual Barings Process

It is probably too simplistic to claim that the Barings disaster would have been
avoided if the management of Barings had at their disposa knowledge-based
exception handling methoddogies, such as the ones described in this paper.
Nevertheless this exercise demonstrates that these methoddogies and todls can be
used in red-life caes to alert management of potential weaknesses and suggest ways
for making \ital businessprocesses more robust.

4 Related Work

The gproach described here integrates and extends two longstanding lines of
reseach: one aldressng coordination science principles abou how to represent and
utili ze process knowledge, another addressng hav artificial intelli gence techniques
can be goplied to deteding and resolving corflictsin coll aborative design settings:
One mmporent is a body d work pursued ower the past six yeas by the Process
Handbook pojea at the MIT Center for Coordination Science[8, 20, 21]. The goal of
this projed isto produce arepository of processknowledge and associated tods that
help people to better redesign aganizaiona processs, lean abou organizations, and
automaticdly generate software. The Handbook dtabase @ntinues to grow and
currently includes over 4500models covering a broad range of businessprocesss. A
mature Windows-based todl for editing the Handbook @tabase cntents, as well as a
Web-based tod for read-only access have been developed. A key insight from this

112

work is that a repository of businessprocesstemplates, structured as a spedalization
taxonamy, can asdst people to design innovative businessprocesses more quickly by
alowing them to retrieve, contrast and customize interesting examples, make “distant
analogies’, and uili ze ‘recombinant” (mix-and-match) design techniques.

The other key comporent of this work is nealy a decale of development and
evaluation o systems for handling multi-agent conflicts in collaborative design [15,
16] and collaborative requirements capture [17]. This work resulted in principles and
techndogy for automaticdly deteding, diagnasing and resolving design conflicts
between bah human and computational agents, building upona knowledge base of
rougHy 300conflict types and resolution strategies. This techndogy hes been applied
succesgully in several domains including architedural, locd areanetwork and fluid
sensor design. A key insight from this work is that design conflicts can be deteded
and resolved uwsing a knowledge base of generic and highly reusable cnflict
management strategies, structured using dagnastic principles originally applied to
medicd expert systems. Our experience to date suggests that this knowledge is
relatively easy to acquire and can be gplied urchanged to multi ple domains.

The work described in this paper integrates and extends these two lines of reseach
in an innowetive and, we believe, powerful way. The central insights underlying this
integration are that (1) business process exceptions can be handled by generalizing
the diagnastic dgorithms and knavledge base underlying design corflict and (2) the
exception handiing knovledge base can be catured as a set of processtemplates that
can be retrieved, compared and customized using the principles emboded in the
ProcessHandbook

This work also constitutes, we believe, a substantive and nowel contribution to
previous efforts on exception handing, which have been pusued in the context of
workflow [1, 9, 13, 18, 22, 25 manufaduring control [14, 23, 26], model-based fault
diagnasis [3, 7, 19|, planning [3, 4], and failure mode analysis reseach [24]. Most
workflow reseach has focused on languages for expressng corrednesspreserving
transforms on workflow models, providing no gudance however concerning which
transforms to use for a given situation. There has been some manufaduring and
workflow reseach on poviding gudance for how to hande exceptions, but this has
been applied to few domains (mainly software engineging and flexible
manufaduring cdl control) and/or has addressed a small handful of exception types.
The planning work, by contrast, has developed a range of computational models but
they are only applicable if the planning techndogy was used to develop the original
work process Thisistypicaly nat the cae for workflow settings where processes are
defined by people rather than planning todls. Model-based fault diagnasis approaches
use asingle generic dgorithm to urcover the caises of faultsin a system withou the
need for a knowledge base of failure modes and resolution heuristics. This approach
is predicaed, however, on the availability of a cmplete and corred model of the
system’s behavior. This is pasdble for some domains (e.g. the analysis of eledricd
circuits) but not for many athers including, we would argue, most coll aborative work
settings that include human beings and/or complex computer systems as participants.
Model-based fault diagnosis also typicdly assumes that resolution, once afault has
been dagnosed, is trivial (e.g. just replacethe faulty comporent) and thus does not

1A

provide mntext-spedfic suggestions for how to resolve the problem. Current work on
failure mode analysis describes a systematic process However, the adual work must
be dore by people based ontheir experience and intuitions. This is potentially guite
expensive, to the extent that this analysis is rarely dore, and can miss important
failure modes due to limitations in the experience of the analyst [24].

5 FutureWork

This chapter has emphasized the use of our exception handling knavledge base & a
dedsion suppat toa for humans. Our ongdng work is aso focused on conreding
our techndogy with automated process enadment systems, such as workflow
controllers and software agent systems. It is widely recognized that state-of-the at
workflow techndogy provides only rudimentary suppat for exception handing [2,
9]. The result of our work will be a prototype implementation o a domain-
independent exception handing engine, which oversees the enadment of a workflow
script, monitors for exceptions and deddes (automaticdly for the most part) how to
intervene in order to resolve them. Given an “ided” workflow script, the engine first
uses the exception handling knowledge base in order to anticipate potential
exceptions and augment the system with additional adions that play the role of
software sentinels. During enadment time, these sentinels automaticdly trigger the
diagnastic services of the engine when they deted symptoms of exceptiond
condtions. The diagnastic services traverse the taxonamy of exception types, seled
(possbly with human asdstance) a diagncsis and then sdled and instantiate a
resolution dan. The resolution dan is eventually trandated into a set of workflow
modificaion operations (e.g. add todl, remove tool, modify conredion, etc.), which
are dynamicdly applied to the exeauting workflow.

For further information abou our work, plese see the Adaptive Systems and
Evolutionary Software web site & http://ccs.mit.edwases/. For further information on
the ProcessHandbook seehttp://ccs.mit.edu/

Acknowledgment

The aithors gratefully adknowledge the suppat of the DARPA CoABS Rogram
(contrad F3060298-2-0099 whil e preparing this paper.

References

1. E. Auramaki and M. Leppanen. Exceptions and dfice information systems. In B. Pernici
and A.A. Verrijn-Stuart, editors: Office Information Systems: The Design Process pp.167-
182, North Holland Publishing Co., 1989

1B

2. P. Barthelmessand J. Wainer. Workflow Systems: a few Definitions and a few Suggestions.
Procealing d the Conf. On Orgarizationd Computing Sstems (COOCS 95), pp. 138-147,
1995

3. L. Birnbaum, G. Callins, M. Freed and B. Krulwich. Model-Based Diagnosis of Planning
Fail ures. Procealings of the 8" Nationa Contf. on Artificial Intelli gence (AAA-90), pp.318
23,1990

4. C.A. Broverman and W.B. Croft. Reasoning Abou Exceptions During Plan Exeaution
Moritoring. Procealings of the 6" Nationd Corf. on Artificial Intelli gence (AAA-87), pp.
190-195, 1987

5. W. J. Clancey. Heuristic Classficdion. Artificial Intelli gence27(3), pp. 289-350, 1985

6. T. Davenpat. Process Innovation: Reengineeing Work through Information Techndogy.
Harvard BusinessSchod Press 1993

7. J. deKleag and B. Williams. Reasoning Abou Multiple Faults. Proceadings of the 5"
Nationd Conferenceon Artificial Intelligence (AAAI-86), pp. 132-9, 1986

8. C. Dellarocas, J. Lee T.W. Maone, K. Crowston and B. Pentland. Using a Process
Handbook to Design Organizaiona Processs. Procealings of the AAAl 1994 Sping
Sympaosium on Computationd Orgarization Design, pp. 50-56, 1994

9. C.A. Ellis, K. Keddara and G. Rozenberg. Dynamic Change Within Workflow Systems.
Proceelings of the Conf. On Organizationd Computing Systems, (COOCS 95), pp. 10-21,
1995

10. S. Fay. The ollapse of Barings. W.W. Norton, New York, 1997

11 V. Grover and W. J. Kettinger, editors. Business Process Change: Concepts,
Methoddogies and Techndogies. IdeaGroup Publishing, 1995

12. Hammer, M. and J. Champy. Reengineaing the Corporation: A Manifesto for Business
Rewolution. Harper Business 1994

13. B.H. Karbe and N. G. Ramsberger. Influence of Exception Handling onthe Suppat of
Cooperative Office Work. In S. Gibbs and A. A. Verrijin-Stuart, editors. Multi-User
Interfaces and Appli cations, Elsevier Science Publishers, pp. 355-370, 199Q

14. D. Katiz and S. Manivannan. Exception management on a shop floor using orine
simulation. Proceelings of the 1993Winter Smulation Conference, pp.888-96. 1993

15. M. Klein. Corflict resolution in cooperative design. University of Illinois at Urbana-
Champaign Tedhnicd Report UIUCDCS-R-89-1557.

16. M. Klein. Suppating Corflict Resolution in Cooperative Design Systems. IEEE
Transactions on Systems, Man andCybernetics, 21(6), pp. 13791390 1991

17. M. Klein. An Exception Handling Approach to Enhancing Consistency, Completeness
and Corrednessin Coll aborative Requirements Capture. Concurrent Engineeing: Research
and Applications, 5 (1), pp. 37-46, 1997

18. T. Kreifelts and G. Woetzd. Distribution and Error Handling in an Office Procedure
System. Proceedings of IFIP WF 8.4 Working Conference on Methods and Todls for Office
Systems, Pisa, Italy, 1987

19. M. Krishnamurthi and D.T. Phillips. An expert system framework for machine fault
diagnasis. Computers & Indwstrial Engineering 22 (1), Jan. 1992 pp.67-84.

20. T.W. Mdone, K. Crowston, J. Lee ad B. Pentland, Tods for Inventing Organizations:
Toward a Handbook & Organizationa Processes, Procealings of 2nd IEEE Workshop on
Enabling Tedh. Infrastructure for Collaborative Enterprises (1993 72-82.

21. T.W. Malone, K. Crowston, J. Lee B. Pentland, C. Dellarocas, G. Wyner, J. Quimby, C.
Osborne, and A. Bernstein. Todls for inventing aganizaions: Toward a handbook &
organizaiona processes. Management Science, in print.

1A/

22. P. Mi and W. Scacdi. Articulation: An Integrated Approacd to the Diagnasis, Replanning
and Rescheduling o Software Process Failures. Procealings of the Eighth Knowledge-
Based Sdtware Engineeing Conference, IEEE Comput. Soc. Press 1993 pp.77-84.

23. S. Parthasarathy. Generalised process exceptions-a knowledge representation paradigm for
expert control. Procealings of the Fourth Internationd Conference on the Applications of
Artificial Intelligencein Engineeing, 1989 pp.241-56.

24. D. Rahgja. Software system failure mode and effeds anaysis (SSAMEA)-a toal for
reliability growth. Proceelings of the Int'l Symp. on Reliability and Maintainahlity
(ISRM’90), Tokyo, Japan, pp. 271-77, 1990

25. D.M. Strong Dedsion suppat for exception handling and quelity control in dffice
operations. Dedsion Suppaot Systems 8(3), June 1992 pp. 217-27.

26. A. Vis=®r. An exceptionhanding framework. Internationd Journa of Computer
Integrated Manuacturing 8(3), May-June 1995 pp.197-203

27. G. Zhang. Barings barkruptcy and finarcial derivatives. World Scientific Publishing Co,
Singapore, 1995

17

