
RoboBase: An Extensible Framework

Supporting Immediate Remote Access to
Logfiles

John A. Sear and Rupert W. Ford

Centre for Novel Computing
Department of Computer Science

The University, Manchester
M13 9PL, United Kingdom
{jas,rupert}@cs.man.ac.uk

Abstract. This paper describes RoboBase, a system that provides im-
mediate access to entire libraries of RoboCup logfiles. A centralised
database stores the logfiles allowing them to be viewed remotely. Instead
of downloading a 2MB uncompressed logfile, the match is transferred
and displayed in real-time.
The system has been designed specifically to perform well in low band-
width situations by using a domain specific compression method. Dy-
namic frame-rates are also employed, providing uninterrupted viewing
in fluctuating network conditions.
The system conforms to an Object Oriented methodology and is imple-
mented in Java allowing extension of the software by the user.

1 Introduction

The RoboCup Soccer Simulation League (SSL) provides an interesting envi-
ronment for research in domains such as artificial intelligence and multi-agent
collaboration. The SSL community evaluate their research through periodically
held football competitions, the most prestigious being the annual Robo World
Cup. The relative success of teams in these football competitions is typically
taken as a measure of the advancement in the associated field of research.

A logfile is produced for every match held in these competitions and made
publicly accessible. Logfiles record all the information required for visual re-
plays of games (such as player and ball positions during the game and meta-
information such as goals and team names). Logfiles provide a very useful way
for team owners and their competitors to evaluate the strengths and weaknesses
of teams. As such it is important that these logfiles are easily accessible.

Currently there is no official repository for these logfiles and they are typi-
cally spread across the World-Wide-Web (WWW); this makes locating a logfile
a potentially laborious process. After a logfile has been located, its download
can be relatively time consuming. These files are typically greater than 2MB
uncompressed and are required in their entirety before viewing can commence.

A. Birk, S. Coradeschi, and S. Tadokoro (Eds.): RoboCup 2001, LNAI 2377, pp. 92–101, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

RoboBase: An Extensible Framework 93

This paper describes a central repository of logfiles, a logfile compression
technique and a viewing technique, which allow near instant remote viewing of
these files on low bandwidth connections, such as modems. These components
have been developed using an Open-Architecture (OA) approach, facilitating
modification or addition to any component. To illustrate the potential of this
approach, a full working implementation has been developed and is freely avail-
able from http://www2.cs.man.ac.uk/~searj6. When evaluating teams there
are many metrics (statistics) that may be used and different users will potentially
have very different requirements. An OA approach is expected to be particularly
useful here as provides a means to add new metrics.

This paper makes the following contributions: it develops logfile specific com-
pression techniques, describes a new open architecture framework which can be
easily extended, and introduces a Dynamic Frame-Rate Algorithm (DFRA) for
graceful degradation of viewing in poor network conditions.

2 Related Work

There are many ways of viewing existing logfiles. LogPlayer is included as part
of the SoccerServer system and replays the logfiles through the standard viewer
(SoccerMonitor). It is also possible to connect other viewers to the SoccerServer,
e.g. a 3D viewer: Virtual RoboCup [6]. However, stand-alone players are simpler
alternatives and several have been developed.

RoboMon [3] is a java applet which has both a 2D and 3D (VRML) version.
This is a commonly used viewer which has graphics that are simple but effective.
LogMonitor [8] is a simple 2D Java applet/application viewer with relatively ad-
vanced game analysis (statistics) features. The LogMonitor website [10] suggests
that new versions of the software may support some form of database, however
the intention of this is unknown to the author. Windows SoccerMonitor 1.3[4]
combines the SoccerMonitor and LogPlayer into a single program for Windows
operating systems. It is currently the easiest option for viewing files within a
Windows environment.

The above logplayers are able to play the logfiles at the standard frame-rate
of 10fps and provide basic features, such as fast-forward and rewind. However,
these logplayers are all limited in that the user must first trawl the internet to
locate the file and then wait to download the 2-3MB logfiles1 before play may
begin. Furthermore all facilities are hard coded and the user is therefore limited
to features implemented by the programmer at creation time.

Our approach solves the above problems by employing a central database, al-
lowing easy access to logfiles, providing near immediate random access to games,
avoiding logfile download times and being developed with an OA approach al-
lowing new features to be added.

1 These reduce to approximately 500k when compressed with gzip

94 John A. Sear and Rupert W. Ford

3 Design Issues

Figure 1 shows the overall structure of the proposed system. Data may be stored
in any database which supports the Java DataBase Connectivity (JDBC) pro-
tocol. An SQL command file generates a database capable of storing individual
matches and information regarding the competition structure. The system en-
ables the inclusion of individual games into the database but is also designed to
allow entire competitions to be added at once.

The test data for the database was generated from all of the matches played
in the Japan Open 2000 [1], a total of 7 groups and 53 games.

Oracle8i
Database

MySQL 3.23
Database

Other
Database

Custom 2D
Viewer
(Java)

VRML
Viewer

Maverick
Viewer

Server

JDBC

C
om

pression

Client

D
e-C

om
pression

Fig. 1. Overall System Structure

The client application communicates with the RoboBase server via a com-
pressed message format, which then expands these requests into full SQL state-
ments. For example, when the server receives an ’M’, this indicates that the
next timestep block is required, and since the server has kept a record of the last
transmitted block, it will be able to generate an SQL statement such as:

“select * from playertimestep where time>=400 and time<425;”
The data may be compressed before being sent through the communication

medium to the client. The data is sent using a send and acknowledge protocol
(rather than a constant byte stream) as it allows random access to matches and
instant match changes.

At the client side, the first step is to decompress the data (if necessary) and
store it in a buffer. Once the data is available, the client software analyses the
data and visualises it using the chosen viewer.

The system (Client, Server and StoreFile software) are implemented entirely
in Java. Java was chosen for portability as the developers of RoboCup clients
use a variety of platforms. Its Object Oriented (OO) nature also means that it
is particularly suited to the OA approach, through the extensibility of classes.

RoboBase: An Extensible Framework 95

4 Implementation Issues

The system is built from a number of components. This section discusses those
most relevant to this paper.

4.1 Client/Server

Once the decision was taken to store the data in a database, it was soon clear
that the overhead associated with accessing the database directly, meant that
real-time playback across low-bandwidth connections would not be possible.

This problem is solved by incorporating a server in between the database and
the client. Its function is to remove the JDBC overhead and compress the data
into a more concise format. In addition, the JDBC client code (150-500K) can
now be excluded resulting in a substantial saving in the program size. Further-
more, this approach solves another problem. There is an applet security issue
that needs to be considered, since applets are prohibited from connecting to an
IP address other than that from which they were downloaded. Therefore, the
server can act as the bridge between the client and database. An additional se-
curity benefit is that the the database can restrict access solely to a particular
IP address, the server, thus removing the potential problem of unwanted direct
connections.

4.2 Compression

In order to achieve the required viewing rate of 10fps through low bandwidth
connections some form of efficient data compression is required.

Gzip has already been shown to reduce logfiles from above 3MB to below
1MB and is therefore a potential option. Java includes support to zip and unzip
streams of data, hence, implementation of such a system would be relatively
simple. However, for low latency of playback, RoboBase requires small blocks of
data to be transferred. Under these conditions the compression ability of Gzip
is reduced. The processing requirement also places a high burden at the client
end, suggesting it might be too slow for real-time decompression.

Another solution is to send every nth frame and simply interpolate for un-
known values. Again, this is relatively easy to implement and has the advantage
that it requires little computational effort. However, it would introduce inaccu-
racies into the data at an early stage. This could cause problems in RoboCup as
players are not bound by normal physical limits and are able to teleport around
the field. Any generated statistics could become inaccurate, e.g. a goal may not
be detected if the timestep is absent where the ball has crossed the goal-line.

An alternative technique is to transmit only the differences between frames in
the data. Player positional prediction is an example of this. The current direction
and heading of a player are used to calculate the next timestep position. Since
the time between frames is only 0.1s, the differences are typically small and
therefore the prediction will be relatively accurate.

96 John A. Sear and Rupert W. Ford

Player prediction was chosen as the final compression routine because it
provides the highest compression ratio, allows parameters to alter data size, can
provide 100% accurate data and requires little computational effort.

timesteps

 1 2 3 4 5 6

Actual

Predicted

Key

Fig. 2. Prediction Concept

Figure 2 illustrates the prediction technique. Timesteps 1 and 2 are used to
calculate a heading and a velocity. The third timestep has only deviated very
slightly. Timestep 4 shows a reasonably large deviation. In a real game this would
be greater than the allowable tolerance, however, for illustrative purposes, the
threshold has been increased. Timestep 5 shows a deviation greater than the
threshold, therefore the real position must be stored. The predicted timestep 4
and the actual timestep 5 have been used to generate the predicted location in
timestep 6.

It is possible to compress the data further by only transferring relative posi-
tions. If a player only moves a small distance between timesteps then this can be
represented using a small number of bits. If a player has moved a considerable
distance then their absolute location must be conveyed. The compression algo-
rithm is depicted in Figure 3. The first bit defines whether the players are within
the tolerance of the bitsize, i.e. if the data sent is relative or absolute. (In the
example the bitsize is 4, therefore this tolerance is from -8 to +7). The next 23
bits correspond to which of the ball and players have been updated during this
timestep. Each bit set corresponds to a player exceeding the prediction toler-
ance. After this the player co-ordinate data is listed, ordered by player number.
The result is then separated into bytes which are sent across the network as a
byte stream.

The compression parameters are the bit size of relative co-ordinates, the max-
imum player distance tolerance and the number of timesteps per message. These
parameters were tuned by experimental examination of file size and accuracy.
Future work will examine the possibility of dynamically tuning these parameters
depending on network performance.

RoboBase: An Extensible Framework 97

11000000 00100001 00000000 01011101 00100001 01000010

1 10000000010000100000000 0101 1101 0010 0001 0100 0010

 Absolute/ Which players have
Relative exceeded the move tolerance x y x y x y

1 10000000010000100000000 5 -3 2 1 4 2

Ball Player 9 Home Team Player 3 Away Team

110000000010000100000000010111010010000101000010

Fig. 3. Compression Algorithm

As the compression class is implemented in the OA framework, new com-
pression algorithms can be added as appropriate.

4.3 Dynamic Frame-Rate Algorithm (DFRA)

If there is a delay in receiving data across the network, then the viewer may not
be able to sustain the desired frame-rate of 10fps. A buffer is used to reduce the
effect of network performance fluctuations, ensuring that saved data is available
when the network is slow and filling up when the network improves. In poor
conditions, using a buffer may not be enough to sustain the frame-rate.

Below are three possible approaches to the problem of poor network condi-
tions:

1. Play at a constant frame-rate of 10fps. Once the buffer empties, the viewer
pauses until more data arrives.

2. Reduce the frame-rate as the buffer empties. A potential problem is that
when the next message arrives, the frame-rate suddenly jumps back to full
speed.

3. Use a smoothed variable frame-rate. The frame-rate is reduced as the buffer
empties, as above, however once the new data arrives, the frame-rate is
gradually increased.

The third option was implemented as it provides the best results in terms of
maximising the minimum frame-rate, and provides the smoothest (most pleas-
ing) view to the user. The variables used to configure the DFRA include the
buffer threshold, desired, maximum, and minimum frame-rates, which have been
set as 50,10,10 and 2fps respectively.

Figure 4 shows how the frame-rate is reduced, once the buffer has less than
50 timesteps left. It is clear that the client has 18 seconds to receive the next
message, not the 10 if it were displayed at a constant (full speed) frame-rate.

98 John A. Sear and Rupert W. Ford

0

2

4

6

8

10

12

100 90 80 70 60 50 40 30 20 10 0
Frame Buffer Level

F
ra

m
eR

at
e

(fp
s)

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

Ti
m

e
(s

)

Dynamic Frame Rate

Total Time

Fig. 4. Dynamic Frame-Rate - Buffer initialised with 100 timesteps

4.4 Statistics

The statistical analysis component is also completely configurable. As the Robo-
Cup simulation community is large and diverse, it is impossible to target analysis
for every users requirement. Instead, an extendible class is provided to allow users
to implement their own statistics. It is also possible to use this class to interface
with other software, such as commentators.

As an illustration the standard statistics given in Sky-Sports English Premier-
ship televised matches are recreated and may be overlaid at anytime throughout
the game. A separately windowed statistic, ManMarking, can be seen in the
bottom right corner of the screenshot in Figure 5. Alternative metrics can also
be graphed using this approach.

Fig. 5. Screenshot of RoboBase Client

RoboBase: An Extensible Framework 99

4.5 Visualisation

The visualisation component is another completely configurable unit. At present
three versions have been implemented. The first is a basic display using simple
polygons to represent the match. The second is depicted in the Match Window
of Figure 5 and displays a more realistic 2D view, using images to represent
pitch, ball and players. The third employs Java3D to create a 3D view of the
stadium and players. It is possible to use this class to interface to other viewing
systems, such as VRML [9] using the External Authoring Interface (EAI) [5], or
Maverick [7].

5 Experiments and Results

5.1 Dynamic Frame-Rate

In order to test RoboBase’s playback performance, three client test conditions
were created: a) a 450Mhz Pentium 3 connected to the Internet via a 44000bps
modem connection, b) a 450Mhz Pentium 3 connected to the Internet via a
10Mbs ethernet connection and c) local playback of a file. The server is a MySQL
database running on a Pentium 3 800Mhz system.

For each test the logfile was played in its entirety using three slightly varying
compilations of RoboBase: a) visualisation enabled, b) visualisation disabled
and c) visualisation and statistical analysis disabled. All these experiments were
performed with the frame-rate limiter disabled. This combination of experiments
allowed the frame-rate to be attained for user playback and the effect of the
compression and analysis components to be assessed.

The timings for the locally stored logfile are included only as a guideline.
This is because when playing back a local logfile, stored in the standard format,
the prediction and compression routines are not required.

Visualisation
Enabled

Visualisation
Disabled

Visualisation and
Analysis Disabled

Modem (Ping time = 250ms) 33.84 34.09 34.20

Ethernet (Ping time<10ms) 57.51 63.42 65.79

Local logfile 59.04 74.06 74.93

Fig. 6. Frame-rate in test conditions

The results of these experiments are illustrated in Figure 6. For all the ex-
periments attempted the minimum frame-rate attained was 34fps; this lower
limit was demonstrated when using a modem with the visualisation enabled.
This is significantly in excess of the desired 10fps. The limiting factor in these
experiments was not the bandwidth of the modem but rather the time it takes
to acknowledge a message (ping time). This suggests further experimentation
should be performed by increasing the block size (timesteps per message).

100 John A. Sear and Rupert W. Ford

0

2

4

6

8

10

12

700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800

TimeStep

F
ra

m
eR

at
e

(f
p

s)

Constant 10 fps

DFRA - Smooth Down

DFRA - Full

Fig. 7. Frame-rate in poor conditions

Further experiments were performed with numerous clients attached. A group
of 10 400Mhz Pentium 3 machines running a mixture of Windows NT and Linux
were all connected to the 800Mhz server. Whilst the frame-rate did decrease
slightly, from the desired 10fps, with all 10 machines connected, the DFRA
ensured a ‘pleasing’ playback, with no machines dropping below 5fps and average
frame-rates above 7fps. This was due to the heavy load at the server end. This
may be improved by placing the database and server on different machines.

In our final network test we manufactured poor network conditions, by adding
a significant random delay to the response time of the server. Running the viewer
at a constant 10fps resulted in many periods of display inactivity, see Figure 7.
It can be seen that the DFRA ensures a constant playback and higher minimum
frame-rate.

5.2 Compression

The matches from group F of the Japan 2000 RoboCup were played using the
different compression ideas discussed earlier and the quantity of data trans-
ferred was recorded, see Figure 8. The benefits of the logfile specific techniques
described in this paper are clear. In this case the file size is approximately 25
smaller than the original uncompressed version and 5 times smaller than the
gzipped version. When downloading the Japan00 competition in its entirety,
the logfile specific compression technique reduces the uncompressed 104MB of
logfiles to to an estimated 5.5MB compared to 23MB with gzip.

6 Conclusions and Future Work

This paper has described Robobase, a system designed for near instant, remote
viewing of RoboCup logfiles. It comprises of a database, storage utility, server
and client which allows access to a library of games. Using compression and

RoboBase: An Extensible Framework 101

Uncompressed GZ RoboBase
11monkeys Vs PSI 2,014,534 453,158 93,707
PSI Vs Revolvers 2,118,202 399,728 75,183
Revolvers Vs 11monkeys 2,130,638 415,562 75,837
ThinkingAnts Vs 11monkeys 2,030,326 521,122 103,742
ThinkingAnts Vs PSI 2,060,962 505,609 102,370
ThinkingAnts Vs Revlovers 2,137,918 355,270 69,337

Total 12,492,580 2,650,449 520,176

File Size (bytes)
Match

Fig. 8. Compression Results for Japan00 Group F

DFRA it is able to achieve frame-rates in excess of the desired, even over a low-
bandwidth modem connection and in fluctuating network conditions. Examples
have also illustrated how the open architecture structure may be extended if
required.

The server and database support random access allowing retrieval of any
timestep without incurring additional time penalty. This aspect is planned to
be used to playback match highlights. Matches would be separated into obvious
sections, e.g. when the ball goes out of play. Each section is then rated according
to an interest value, such as a high rating for goals. Highlight programmes may
then be produced by specifying either a time limit or a minimum interest setting.

The work described in this paper also forms the start of prototyping work
for a new application area, ‘Interactive Sports Entertainment’, which provides
both video and data to the home viewer [2]. The results shown in Section 5.1
demonstrate that it is possible to watch a representation of a football match
over a low bandwidth connection. 3D rendering can then be used at the client
end to provide realistic generated match views, allowing virtual cameras to be
placed anywhere in the scene.

References

[1] Japan Open 00. http://ci.etl.go.jp/~noda/soccer/JapanOpen00/.
[2] Guy Blair, Rajeeb Hazra, and Richard Qian. White Paper: Intel’s vision of sports

entertainment and marketing. Intel Architecture Labs, 2000.
[3] Antonio Cisternino. Robomon, 2000.
[4] SoccerMonitor Klaus Dorer. http://www.iig.uni-freiburg.de/cognition/

team/members/dorer/robocup/.
[5] External Authoring Interface. http://hiwaay.net/~crispen/vrmlworks/.
[6] B. Jung, M. Oesker, and H. Hecht. Virtual robocup: Real-time 3d visualization

of 2d soccer games, 1999.
[7] MAVERICK. http://aig.cs.man.ac.uk/systems/Maverik/index.html.
[8] Tomoichi Takahasi. LogMonitor. 2000.
[9] VRML. http://www.vrml.org/technicalinfo/specifications/vrml97/.

[10] LogMonitor WebSite. http://157.110.40.100/robocup/LogMonitor/.

	Introduction
	Related Work
	Design Issues
	Implementation Issues
	Client/Server
	Compression
	Dynamic Frame-Rate Algorithm (DFRA)
	Statistics
	Visualisation

	Experiments and Results
	Dynamic Frame-Rate
	Compression

	Conclusions and Future Work

