
Planning and Executing Joint Navigation Tasks

in Autonomous Robot Soccer

Sebastian Buck, Michael Beetz, and Thorsten Schmitt

Munich, University of Technology, Germany
{buck,beetzm,schmittt}@in.tum.de

Abstract. In this paper we propose a hybrid navigation planning and
execution system for performing joint navigation tasks in autonomous
robot soccer. The proposed system consists of three components: an ar-
tificial neural network controller, a library of software tools for planning
and plan merging, and a decision module that selects the appropriate
planning and execution methods in a situation-specific way. The sys-
tem learns by experimentation predictive models for the performance
of different navigation planning methods. The decision module uses the
learned predictive models to select the most promising planning method
for the given navigation task.
In extensive experiments using a realistic and accurate robot simulator
that has learned the dynamic model of the real robots we show that our
navigation system is capable to (1) generate fast and smooth navigation
trajectories and (2) outperform the state of the art planning methods.

1 Introduction

In order to perform plays competently, teams of autonomous robots playing
robot soccer must be capable to perform joint navigation tasks given by a target
state for each robot. In this paper we describe how the navigation system of the
AGILO RoboCup team [3] solves the joint navigation problem. The distinctive
characteristics of the AGILO navigation system are the following ones. First, the
system uses a recursive neural network controller as its basic execution compo-
nent. This neural network controller automatically learns how to best transform
the robot’s current dynamic state into a given target state. Second, the navi-
gation system employs a library of single robot navigation planning and plan
merging methods that it can select, combine, and apply to a given navigation
task. Third, the navigation system automatically learns to predict which meth-
ods are best for which kinds of navigation tasks. Exploiting this knowledge it
can apply the most promising planning method of its toolbox to the navigation
tasks it is to perform. This way the navigation system performs better than any
of the individual planning methods that it is using.
One of the key problems in the design of a multi robot navigation system is that
different multi robot navigation planning methods make different assumptions
about the kind of navigation problems they are to solve and the capabilities of
the robots they are to control. Because these assumptions are implicit and not

A. Birk, S. Coradeschi, and S. Tadokoro (Eds.): RoboCup 2001, LNAI 2377, pp. 112–122, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Planning and Executing Joint Navigation Tasks 113

(a) (b) (c)

4O

2O

3O

1O

start

target

current state

target state

Planner intermediate
statestarget

Nav. Task Features

method selection

prm
srpm apply srpm

Paths
Merged Paths

apply prm

Single Robot Nav. Tasks

decompose

situation
assessment

ξ ξξ

321

Joint Navigation Task

Hybrid

Toolbox

ANN
Controller

ANN ANN
Controller Controller

Decision Tree
t1 t2 t3

Fig. 1. Subfigure (a) shows navigation plans for one robot proposed by different path
planning methods. Subfigure (b) shows two possible trajectories a controller can guide
the robot. The orientation of start and target state is indicated by an arrow. The
width of the trajectory indicates the robot’s translational velocity. Subfigure (c): The
planning and execution system: The hybrid planner computes the situation dependent
navigation task features and uses a decision tree to determine an appropriate single
robot planning method (srpm) and plan repair method (prm). In the toolbox first
the srpm is applied to the decomposed single robot navigation tasks. Thereafter the
obtained paths are merged by the prm. The intermediate target states of the merged
paths are passed to the artificial neural network (ANN) controller of each robot. The
controller then computes the low level command ξ to be executed.

well understood, selecting the right planning method for a given application
domain and parameterize it optimally is very difficult.
Let us illustrate this point using a practical example. Figure 1(a) depicts a single
robot navigation task in a typical game situation and the navigation plans pro-
posed by different navigation planning algorithms. The figure illustrates that the
paths computed by the different methods are qualitatively very different. While
one path is longer and keeps larger distances to the next obstacles another one is
shorter but requires more abrupt directional changes. The performance that the
paths accomplish depends on many factors that the planning algorithms have
not taken into account. These factors include whether the robot is holonomic
or not, the dynamic properties of the robot, the characteristics of change in the
environment, and so on.
The conclusion that we draw from this example is that the choice of problem-
adequate navigation planning methods should be based on empirical investiga-
tions. For our investigations we develop a feature language which allows us to
classify navigation tasks along dimensions that challenge planning methods. The
remainder of this paper is organized as follows. An overview of the software ar-
chitecture is given in section 2. Section 3 introduces our basic robot controller.
Section 4 shortly describes the path planning algorithms used in our empirical
investigation. Section 5 introduces a set of features that can be used to measure
the characteristics of multi robot navigation problems along certain interesting
dimensions. Section 6 then summarizes the results of our empirical investigation.
We conclude with a review of related work and a discussion of the results.

114 Sebastian Buck, Michael Beetz, and Thorsten Schmitt

2 The Structure of the Hybrid Navigation System

To plan and execute a joint navigation task we use a hybrid system containing
a software robot controller, a toolbox for path planning, and a hybrid planner
to select the appropriate algorithms for execution.
The hybrid navigation planning and execution system works as follows (see fig-
ure 1(c)). The system is given a joint navigation task that specifies a target state
(position, orientation and velocity) for each robot of the team. The objective of
the navigation system is to achieve a state where each robot is at its target state
as fast as possible. The first step in the performance of the navigation task is
the selection of the most appropriate planning tools. This is done by first as-
sessing the given navigation task and the situation in which it is to be executed.
The assessment assigns a navigation task a set of characteristics described in
section 5.1. Thus features are then tested by a learned decision tree that assigns
to each feature vector the most promising single robot path planning and plan
merging method provided by the toolbox. In the second step, after the plan-
ning and plan repair methods have been chosen, the joint navigation task is
decomposed into single robot navigation problems. The individual problems are
then solved using the selected planning methods. Then, the individual plans are
repaired in order to avoid negative interferences between the different plans. Fi-
nally, the toolbox extracts sequences of target states from the repaired plans and
sends those sequences to the neural network controllers of the respective robots.
The robot controllers are used for basic navigation to reach a given target state as
fast as possible not considering any constraints. All constraints including moving
obstacles, walls etc. are considered in the path planning algorithms of the toolbox
which determine the intermediate target states.

3 A Recursive Neural Robot Controller

2.01.0 3.0

0.25

0.5

0.75

t/s

V/m/s

Fig. 2. The acceleration curve of
a Pioneer I robot resulting from
ξ = (0, 0) for any t < 0 and ξ =
(0.75, 0) for t ≥ 0. The dead time
delay is about 300 ms.

The basic component of a navigation sys-
tem is a controller that enables the robot to
achieve specified dynamic states quickly.
Such a controller receives the target state (for
example, the next state on a planned path)
of a robot and returns low level commands
that transform the current state into the tar-
get state as fast as possible. As shown in fig-
ure 1(b) there are different ways to solve this
problem. To arrive at the target state different
trajectories are possible. The dynamic state of
a Pioneer I robot [11] can be summarized as

a quintuple ζ = 〈x, y, ϕ, Vtr , Vrot〉, where x and y are coordinates in a global
system, ϕ is the orientation of the robot and Vtr (Vrot) are the translational
(rotational) velocities. Using the Saphira software [7] one can set a command
ξ = 〈Vtr, Vrot〉 at the frequency of 10 Hz where Vtr(Vrot) denote the target veloc-
ities in meters per second (degrees per second). But how to set them to quickly

Planning and Executing Joint Navigation Tasks 115

reach the target state? We have measured a time delay of around 300 ms from
the setting of ξ until the robot executes the command (see fig. 2). In order to take
that delay into account we map commands ξi to the state change ζi+3 → ζi+4

as depicted in figure 3. In the remainder of the paper ζi and ξi denote a state
and the respective command causing it.

i

i+1

i+2

i+3

i+4

i

i+1

i+2

i+3

i+5

i+6

i+7

i+8

i+4

i+9

100 ms

t

i+5

i+7

i+8

i+9

i+6

ζ

ζ

ζ

ζ

ζ

ζ

ζ

ζ

ζ

ζ

ξ

ξ

ξ

ξ

ξ

ξ

ξ

ξ
ξ

ξ

Fig. 3. Overcoming the dead time
delay by assigning ξ to the state
change 300 ms ahead.

A common approach (as proposed by [10]
and described more thoroughly in [16]) is the
use of fuzzy functions. This means to turn as
long as the robot does not head towards its
target state and to drive forward dependent
on the orientation with respect to the target
state.
In contrast, we learn a direct mapping from
the robot’s current state (ζ0) and the robot’s
target state (ζtarget) to the next command to
be executed (ξ0) using multi layer artificial
neural networks [4] and the RPROP [13] al-
gorithm: Net: 〈ζ0, ζtarget〉 �→ ξ0. Considering

the start state at x = 0, y = 0, ϕ = 0 in a local system we can reduce the input
dimension to 7 by converting the target state’s x, y, ϕ into that local system
(that means we regard ∆x, ∆y, ∆ϕ).

(a)
0 0

0 0
1 1

2

0

0

1

, 2 steps
recursive

inverse map

0

1

1

2 generation

2

1

1

2

0

1

(ζ , ξ) ζ

(ζ , ξ) ζ

(ζ , ζ) ξ
(ζ , ζ) ξ

(ζ , ζ) ξ

ξ
ξ

ζ
ζ

ζ

(b)
ζ

0

ζ
20

ζ
40

targetζ

settings of ξ:

ξ = (0.75,22.5)

ξ = (0.75,22.5)
ξ = (0,0)

0

39

40

ζ
0 targetζ

ζ
0

ζ
40

= (0.75,22.5)ξ

= (0.75,22.5)ξ

ζ
20 targetζ = (0.75,22.5)ξ

ζ
40 targetζ

x

x

x

x ξ = (0,0)
= (0,0,0,0,0)

= (0.98,0.42,41.3,0.72,22.3)

= (1.59,1.72,85.9,0.72,22.3)

= (1.61,2.04,87.1,0.0,0.0)

some obtained patterns:

Fig. 4. Subfigure (a): Recursive generation of train-
ing patterns for the neural controller: Two succes-
sive state changes observed are inverted and com-
bined to one new pattern. Subfigure (b): Driving 4
seconds with ξ = (0.75, 22.5) and thereafter with
ξ = (0, 0) leads to numerous different patterns. The
states from ζ0 = (0, 0, 0, 0, 0) to ζtarget and 4 exam-
ple patterns are plotted in the graph.

To collect training data
we do several runs with ξ
set to certain constant val-
ues1 and recording the state
changes resulting. Out of it
we get a huge number of
patterns 〈〈ζi, ξi〉 �→ ζi+1〉.
These patterns are inverted
to 〈〈ζi, ζi+1〉 �→ ξi〉. Succes-
sive patterns 〈〈ζi, ζi+1〉 �→
ξi〉 and 〈〈ζi+1, ζi+2〉 �→ ξi+1〉
can recursively be combined
to 〈〈ζi, ζi+2〉 �→ ξi〉 as illus-
trated in figure 4(a). From
one simple trajectory we get
lots of useful training patterns
as we can see in figure 4(b).
Patterns are created not only
from start and target state
but from any two consecutive
states or patterns of the tra-

1 one should always try to drive fast and not to increase, decrease and increase velocity
again. Driving with only half speed on a straight line for example will teach the
controller to do so even if it could reach the target state faster!

116 Sebastian Buck, Michael Beetz, and Thorsten Schmitt

jectory. Recapitulatory we learn the dynamic driving behavior of Pioneer I robots
and exploit it for navigation.
A Robot Simulator that Learns Models of Dynamic Behavior. An im-
portant means for developing competent navigation systems for robot soccer is
a robot simulator that allows for controllable and repeatable experiments. For
this reason we have developed a robot simulator that simulates how the dynamic
state of the robot changes as the robot’s control system issues new driving com-
mands such as setting the target translational and rotational velocities.
The dynamic state of the robot is given as defined above. The robot control
system issues driving commands 〈Vtr , Vrot〉. The dynamic model used by the
simulator is acquired by learning the mapping ∆ : ζi × ξi �→ ζi+1 from expe-
rience, that is recorded data from real robot runs. Our simulator learns this
mapping using a simple multi layer neural network [4] and supervised learning
with the RPROP algorithm [13]. Using this learning simulator we have learned
the dynamics of Pioneer I robots. During data acquisition we have executed a
wide variety of navigation scenarios that correspond to soccer plays. We have
collected a total of more than 10000 training patterns from runs with a real Pio-
neer I robot. The accuracy for navigation tasks (including acceleration) is around
99% The accuracy decreases to about 92% in situations where both velocities,
the translational and rotational one, are changed abruptly at the same time.
These inaccuracies are caused by the lack of representative training patterns as
well as the high variance in navigation behavior with maximal acceleration.

4 A Toolbox for Multi Robot Navigation Planning

The second component of our navigation system is a library of software tools
for planning and repairing multi robot navigation plans. So far the planning
methods library contains single robot navigation planning methods and methods
for integrating the single robot plans through plan merging and plan repair
afterwards.

4.1 Single Robot Path Planning

The path planning methods we will use in our toolbox include the Potential Field
Method [5,1,15], the Shortest Path Method [9,6], Circumnavigating Obstacles [14],
and Maximizing the Clearance [8]. Buck et al. [2] discusses in a more detailed
overview the employed algorithms, their features, and abilities.

4.2 Plan Merging and Repair

The algorithms for single robot path planning can be coupled with plan merging
and repair methods. We will now address the question of how to combine the
individual plans in order to obtain a good performance on the joint navigation
tasks.
Waiting Simply combining the paths computed by each robot without taking
further precautions entails the danger that two robots might collide if their paths

Planning and Executing Joint Navigation Tasks 117

intersect. The simplest fix is to let one robot wait when two robots are to reach
an intersection at about the same time until the other robot has crossed the
intersection.
Path Replanning The remaining methods try to revise the individual plans
such that no negative interferences will occur. Again we assign priorities to the
robots according to the importance of their navigation tasks and ask the robots
with lower priority to revise their plans to avoid conflicts with the paths of
the higher priority robots. We have considered three different methods for path
revision called Defining Temporary Targets, Hallucinating Obstacles at Criti-
cal Sections, and Inserting New Obstacles. The first one modifies the path by
introducing additional intermediate target points. The second one hallucinates
additional obstacles at the positions where collisions might occur. The third one
simply considers the other robot at its respective position as a static obstacle.
Advantages and drawbacks of these methods are discussed in [2].

5 A Hybrid Navigation Planner

The third component of our navigation system is the hybrid navigation planner.
The hybrid navigation planner selects based on the particular navigation task
and the situation the task is to be performed in the most appropriate single robot
planning and plan repair method. The working horse of the hybrid navigation
planner is a decision tree where pairs consisting of a single robot planning and a
plan repair method are stored in the leaves. The branches of the tree are labelled
with tests on the characteristics of the navigation problem. The semantics of the
decision tree is the following. For any navigation task that satisfies all the tests
on a branch b is the planning method proposed by the leaf of the branch b the
most appropriate one. In our case the main reason for using a decision tree for
classification is that it leads to understandable rules while a neural network for
example does not (by the advantage of quantifying the planning methods).
In the remainder of this section we describe the feature language that we use for
the characterization of navigation tasks and the automatic learning of decision
trees for the selection of the most appropriate planning methods.

5.1 A Feature Language for Multi Robot Navigation Tasks

O
44

O2

1O
O3

s

s
s

t

t

t

F2 m bounding box
F3 mindist start−start

F5 mindist line−line
F4 mindist target−target

F6 max line length

F1 # crosspoints = 0

F7 # obstacles in bound. box = 3

2

F6

Fig. 5. Visualization of navigation task
features that are used for classifying nav-
igation tasks.

As mentioned in section 4 a large
variety of different single robot nav-
igation planning and plan merging
methods exist, that have different
strengths and weaknesses, and make
different assumptions about the navi-
gation problems at hand. This obser-
vation suggests that we need a lan-
guage in which we can describe the
characteristics of navigation problems

118 Sebastian Buck, Michael Beetz, and Thorsten Schmitt

in a given robot control application and use these characteristics to select the
appropriate new planning method.
In our investigations we will use 7 different features (see fig. 5). These features
are: (1) the number of intersections between the line segments that represent the
navigation tasks, (2) the size of the bounding box of the navigation tasks, (3) the
minimal linear distance between different starting positions, (4) the minimal lin-
ear distance between different target positions, (5) the minimal distance between
the line segments that represent the navigation tasks, (6) the maximum length
of the linear distances of the individual navigation tasks, and (7) the number of
obstacles in the bounding box of the joint navigation task.

5.2 Predicting the Performance of Planning Methods

A natural way for encoding a predictive model of the expected performance
of different navigation planning methods in a given application domain is the
specification of rules that have the following form:

if c1 ∧ ... ∧ cn then fastest-method(〈 srpm,prm〉)
In this rule pattern the cis represent conditions over the features that we use
to classify navigation problems. The then-part of the rule asserts that for nav-
igation problems that satisfy the conditions ci the combination of the single
robot planning method srpm together with the plan repair method prm can be
expected to accomplish the navigation task faster then any other combination
of single robot planning and plan repair method.
We have collected a training set of 1000 data records and used it for decision tree
learning. From this training set the C4.5 algorithm [12]2 with standard parame-
terization and subsequent rule extraction has learned a set of 10 rules including
the following one:

if there is one intersection of the navigation problems
∧ the navigation problems cover a small area (≤ 10.7m2)
∧ the target points are close to each others (≤ 1.1m)
∧ the starting/target point distances are small (≤ 5m)

then fastest-method(〈potential field,temp. targets 〉)

This rule essentially says that the potential field method is appropriate if there
is only one intersection and the joint navigation problem covers at most one
fourth of the field, and the target points are close to each others. This is because
the potential field algorithm tends to generate smooth paths even for cluttered
neighborhoods.
The accuracy of the ruleset for predicting the fastest navigation method is about
50% both for the training and the test set. A substantially slower algorithm was
chosen only in very few cases. The inaccuracies of the rules have several reasons.
First, the feature language as it has been introduced is not yet expressive enough.
We expect that the accuracy of the rules can be substantially increased by adding
2 For our experiments, we have used the public domain version of Quinlan’s C4.5

algorithm

Planning and Executing Joint Navigation Tasks 119

additional features such as the angle between the robot’s current orientation and
the direction to the target position. Second, in many navigation problems dif-
ferent methods achieved almost the same performance. In those cases we only
selected the best one even when the margins where very narrow. Obviously, these
data records are very noise sensitive. Third, in many runs collisions were caused
by dynamic obstacles and have caused robots to get stuck. These runs resulted
in outlier results that are not caused by the planning methods. Thus, for higher
accuracy those runs have to be handled differently.
The conclusions that we draw from this experiment are that even with crude
feature languages, without sophisticated data transformations and outlier han-
dling a robot can learn useful predictive models for the performance of different
navigation methods in a given application domain.

6 Experimental Results

In order to empirically evaluate our hybrid navigation planning and execution
system we have performed extensive experiments using the simulator introduced
in section 3. This simulator has enabled us to collect the necessary amount
of realistic data, to make a simple quantitative comparison with respect to the
average performance of the individual methods, and to find clusters of navigation
tasks within the navigation tasks in the application that the individual methods
solve well or poorly.
In the remainder of this section we describe two experiments. The first one is a
quantitative comparison of the performance achieved by the different planning
and plan repair methods provided by the toolbox. The results of this experiment
suggest that it can, in general, not be expected that a single planning method can
achieve heterogeneous navigation tasks equally well. In other words, we cannot
expect navigation methods that dominate other ones in such complex application
domains as robot soccer.
The second experiment shows that the hybrid navigation planner outperforms
the individual planning methods on large collections of randomly sampled joint
navigation tasks. This result suggests that it is indeed possible — even with such
a simple feature language as ours — that a robot team can automatically learn
predictive models of their planning methods that enable them to improve their
performance both in a substantial and a statistically significant way.

6.1 Comparative Experiments

We set the number of obstacles to 4 (which is the team size of the mid size
league). We carry out experiments with 3 robots (resulting from 3 field players
in RoboCup). All our experiments underlie the same randomly generated situa-
tions: A robot starts at a randomly defined state in its configuration space and
needs to get to a randomly defined target state. The obstacles move linearly from
a randomly generated start point to a randomly defined target. If an obstacle
reaches its target a new target is defined immediately. Obstacles move with a

120 Sebastian Buck, Michael Beetz, and Thorsten Schmitt

Mean time values of 1000 train and 1000 test problems
Algorithm TRAIN TEST

µ/sec significance level µ/sec significance level
P (µtree < µ) P (µtree < µ)

Simple Potential Field 15.49 99.99 % 15.92 99.99 %
Shortest Path 13.36 99.99 % 13.14 99.99 %
Maximum Clearance 12.35 99.71 % 12.31 99.84 %
Viapoint 12.14 94.62 % 11.95 96.25 %

Decision Tree 11.64 50.00 % 11.44 50.00 %

Fig. 6. Results (mean time needed to solve a navigation task) of four evaluated algo-
rithms and the trained decision tree. The significance level is based on a t-test.

random but constant velocity. Defining these preconditions we consider different
dynamic behaviors of the obstacles without building a complex behavior model
which would mean another laborious task.
Figure 6 pictures the mean value of the time resources required to complete a
joint navigation task using the different planning methods introduced in sec-
tion 4. The statistical data was acquired by performing 1000 randomly chosen
navigation problems and performing the planning methods at a frequency of 10
Hz. The results show that based on the empirical data we cannot determine a
single method that outperforms the other ones in a statistically significant way.
This suggests that we should try to identify specializations of the navigation
problems for which one planning method outperforms the other ones.

6.2 A Hybrid Navigation Planner

We have performed a bootstrapping t-test based on 1000 different joint navi-
gation tasks (fig. 6) in order to empirically validate that the hybrid navigation
planner performs better than the individual planning methods that we are us-
ing. Based on these experiments we obtained a 99.9% confidence in the test set
(99.9% in the training set) that the hybrid method outperforms the potential
field method (with its respective parameterization). The respective probabilities
for the shortest path method are 99.9% (99.9%), for the maximum clearance
method 99.84% (99.71%), and for the viapoint method 96.25% (94.62%). This
means that our hypothesis that the hybrid planner dominates the other planning
methods could be validated with statistical significance (≥ 95%).

7 Conclusions

In this paper we have shown that in complex multi robot navigation planning
domains it is extremely difficult to predict the performance of different kinds of
planning methods. This is because the different planning methods make different
kinds of assumptions. The maximum clearance method, for example, assumes

Planning and Executing Joint Navigation Tasks 121

that it is better to keep larger distances to the objects and follow a longer path
with higher speed, on the other hand, the circumnavigation methods assume
that it is better to pass obstacles at a closer distance. This, however, requires
the robot to have more accurate control over its dynamics, for example to be
equipped with an omnidirectional drive. Therefore, it is unclear for most appli-
cation domains to which degree the navigation tasks match the assumptions of
the different methods. Even worse, yet within a single application domain we
can identify classes of navigation problems for which the algorithms’ suitability
varies.
In this paper, we have therefore proposed to select problem-adequate navigation
planning methods based on empirical investigations, that is the robots should
learn by experimentation to use the best methods. To support this development
strategy we have provided a feature language for classifying navigation prob-
lems and software tools that enable the robots to automatically learn predictive
models for the performance of different navigation planning methods in a given
application domain. We have shown, in the context of robot soccer, that a hybrid
planning method that selects planning methods based on a learned predictive
model outperforms the individual planning methods. The results were validated
in extensive experiments using a realistic and accurate robot simulator that has
learned the dynamic model of the real robots.
Even though these results are conclusive we expect that the performance can be
substantially improved by using a more sophisticated feature language for the
classification of navigation problems and by devising more sophisticated prepro-
cessing methods for the data elements used for learning. In particular, we would
expect that a competent module for rejecting outliers would reduce the devia-
tions in the data substantially and improve the predictability drastically. These
extensions of our basic framework are subject of our future investigations.

References

1. J. Barraquand, B. Langlois, and J. Latombe: Numerical potential field tech-
niques for robot path planning. IEEE Transactions on Systems, Man, Cybernetics,
22(2):224–241, March/April 1992.

2. S. Buck, U. Weber, M. Beetz, and T. Schmitt: Multi Robot Path Planning for
Dynamic Environments: A Case Study. Accepted for publication at IEEE/RSJ
IROS, 2001.

3. S. Buck, R. Hanek, M. Klupsch, and T. Schmitt: Agilo RoboCuppers: RoboCup
Team Description. RoboCup 2000: Robot Soccer World Cup IV, Springer, 2000.

4. J. Hertz, A. Krogh, R.G. Palmer: Introduction to the Theory of Neural Computa-
tion. Addison-Wesley, 1991.

5. Y. K. Hwang and H. Ahuja: A Potential Field Approach to Path Planning. IEEE
Transactions on Robotics and Automation, vol. 8, 1, 23-32, 1992.

6. K. Konolige: A Gradient Method for Realtime Robot Control. Proceedings of the
IEEE/RSJ IROS, 2000.

7. K. Konolige, K. Myers, E. Ruspini, and A. Saffiotti: The Saphira Architecture: A
Design for Autonomy. Journal of Experimental and Theoretical Artificial Intelli-
gence, 9:215-235, 1997.

122 Sebastian Buck, Michael Beetz, and Thorsten Schmitt

8. J.-C. Latombe: Robot Motion Planning. Kluwer Academic Publishers, 1991.
9. J. Lengyel, M. Reichert, B. Donald, and D. Greenberg: Real–time robot mo-

tion planning using rasterizing computer graphics hardware. Proceedings of SIG-
GRAPH, pages 327–335, August 1990.

10. B. Nebel and T. Weigel: The CS Freiburg 2000 Team. Fourth International Work-
shop on RoboCup, Melbourne, Australia, 2000.

11. Pioneer Mobile Robots, Operation Manual, 2nd edition, Active Media, 1998.
12. R. Quinlan: Induction of decision trees, Machine Learning 1 (1), 1986
13. M. Riedmiller and H. Braun: A direct adaptive method for faster backpropagation

learning: the Rprop algorithm. Proceedings of the ICNN, 1993.
14. A. Schweikard: A simple path search strategy based on calculation of free sections

of motions. Engineering Applications of Artificial Intelligence, 5, 1, 1 - 10, 1992.
15. P. Tournassoud: A strategy for obstacle avoidance and its application to multi-robot

systems. Proceedings of the IEEE ICRA, pp. 1224-1229, 1986.
16. T. Weigel: Roboter-Fuball: Selbstlokalisierung, Weltmodellierung, Pfadplanung und

verhaltensbasierte Kontrolle. Master Thesis, University of Freiburg, Germany, 1998

	Introduction
	The Structure of the Hybrid Navigation System
	A Recursive Neural Robot Controller
	A Toolbox for Multi Robot Navigation Planning
	Single Robot Path Planning
	Plan Merging and Repair

	A Hybrid Navigation Planner
	A Feature Language for Multi Robot Navigation Tasks
	Predicting the Performance of Planning Methods

	Experimental Results
	Comparative Experiments
	A Hybrid Navigation Planner

	Conclusions

