
Karlsruhe Brainstormers - A Reinforcement

Learning Approach to Robotic Soccer

A. Merke and M. Riedmiller

Institut für Logik, Komplexität und Deduktionssyteme
University of Karlsruhe, 76131 Karlsruhe, Germany

Abstract. Our long-term goal is to build teams of agents where the
decision making is based completely on Reinforcement Learning (RL)
methods. It requires an appropriate modelling of the learning task and
the paper describes how robotic soccer can be seen as a multi-agent
Markov Decision Process (MMDP). It discusses how optimality of be-
haviours of agents can be defined and what difficulties one encounters in
developing concrete algorithms which are supposed to reach such optimal
agent/team policies. We also give an overview of already incorporated
algorithms in our ’Karlsruhe Brainstormers’ simulator league team and
report some results on learning of offensive team behaviour.

1 Introduction

The robotic soccer domain became very popular during the last few years. Since
1997 there are annual world championships to measure the progress of playing
quality between the different approaches pursued around the world. Our group
takes the approach of viewing the robotic soccer as MMDP while using tech-
niques from Reinforcement Learning. Section 2 introduces basic definitions of
optimality. In section 3 we show what difficulties have to be mastered to use the
theoretical optimality criteria defined in section 2. Finally in section 4 we dis-
cuss some practical work in the development of our Robocup competition team
’Karlsruhe Brainstormers’.

2 Robotic Soccer as a Reinforcement Learning Problem

A MMDP is defined as a tuple (cf. [3])

Mn := [S, A, r, p],

where S is the space of all states, A is a cartesian product of action sets A =
A1 × . . . × An and p denotes the state transfer probabilities, i.e. p(· |s, a) is a
probability measure on S depending on the current state s and the joint action
a = (a1, . . . , an). In this paper we will concentrate on two special MMDPs cases:
cooperative and zero sum MMDPs. We will combine them to characterise the

A. Birk, S. Coradeschi, and S. Tadokoro (Eds.): RoboCup 2001, LNAI 2377, pp. 435–440, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

436 A. Merke and M. Riedmiller

robotic soccer environment1. In the cooperative MMDP case all agents get the
same reinforcement i.e. r1 = . . . = rn. In the zero sum MMDP we have two
agents with reversed reinforcements, r1 = −r2.

To define optimality we need the notion of a (total) policy. A total determin-
istic policy π is a mapping

π : S → A = A1 × . . . × An

It is important to see that this definition concerns the behaviour of all agents
simultaneously and that the policy of a single agent i can be seen as a projection
πi : S → Ai in π = (π1, . . . , πn). Every agent concerns the value vi[π] of a total
policy, which is a expectation of the sum of its future reinforcement signals

vi[π](s) = vi[π1, . . . , πn](s) = E

[∑
k

ri(sk, π(sk)) | s0 = s

]
.

In the cooperative MMDP case we have v1[π] = . . . = vn[π] for all π. All we
need is an optimal total policy π� which has the maximal value

π� = argmax
π

vi(π).

The existence of π� is guaranteed ([6]), but this existence doesn’t say anything
how such a π� can be computed. We will discuss this peculiarity further in
section 3. In the two agent zero sum MMDP we have a total policy π = (π1, π2).
Borrowing from game theory we can define a minimax policy for each agent. We
look for a total policy (π�

1 , π�
2) which fulfils

v1[π�
1 , π�

2] = max
π1

min
π2

v1[π1, π2] = min
π1

max
π2

v1[π1, π2] = −v2[π�
1 , π�

2]

Existence of such a pair (π�
1 , π�

2) can be always assured (see [3]). Such policies
are in general no longer deterministic, i.e. they map from S to a probability
distribution over A.

Let us now turn our attention to robotic soccer. Here we have two teams
which perform a zero sum game. Each agent in the same team has the same
objective: to score more goals then the agents from the opposite team. This can
be expressed as zero sum MMDP of 2 cooperative teams

M = (S, A = B1 × . . . × Bm × C1 × . . . × Cn, r, p)

where r = (rb, . . . , rb, rc, . . . , rc) and rb = −rc express the team respectively zero
sum character. Using our previous optimality definitions it is now a straight
forward task to define a total optimal policy in the case of two competitive
teams (with cooperation within every team). We speak of an optimal total policy
(π�

1 , . . . , π�
m, φ�

1, . . . , φ
�
n) if

vb[π�
1 , . . . , π�

m, φ�
1, . . . , φ

�
n] = max

(π1,...,πm)
min

(φ1,...,φn)
vb[π1, . . . , πm, φ1, . . . , φn]

1 A more extensive presentation can be found in [5].

Karlsruhe Brainstormers 437

3 Learning in Independent Distributed Systems

In section 2 we discussed how an optimal policy could be defined. What we did
not discuss were the difficulties to find such a policy in a distributed way. We will
demonstrate this in the cooperative MMDP case considering a possible solution
in the zero sum MMDP with two teams as even harder to reach.

To illustrate the problem of action choice coordination imagine a small 1
state (deterministic) system with 2 cooperative agents, each having two actions:

M2 = [{s}, {a1, a2} × {b1, b2}, r = (r1, r2), p]

The reward function is for both agents equal r1 = r2 and given by r1(s, (a1, b1)) =
r1(s, (a2, b2)) = 2 and equal 0 in connection with the remaining actions. It is easy
to see that we have two optimal policies π�(s) = (a1, b1) and π̂�(s) = (a2, b2).
But if agent 1 decides to take the projection π�

1(s) = a1 with respect to π�

and agent 2 takes the projection π̂�
2(s) = b2 with respect to π̂� we get a total

policy π = (π�
1 , π̂�

2) which isn’t optimal anymore. The problem lies in the lack of
coordination. In the rest of this section we will use three differenf agent types to
demonstrate problems of multi-agent learning and coordination

– White Box Agents (WBA) also called Joint Action Learners (see [2]) are
agents which have knowledge of all the joint actions a = (a1, . . . , an) per-
formed in every step.

– Black Box Agents (BBA) also called Independent Learners are agents which
just know about their own actions. They aren’t really aware of the other
agents, all the influence through actions of other agents could also be inter-
preted as environmental noise.

– Gray Box Agents (GBA) are Black Box Agents which can communicate
with other agents. It is no further specified how much information can be
exchanged. If no communication takes place we remain having BBAs, but if
every agent communicates his action we get the special case of WBAs. But we
can do even more with communicating agents, we can exchange information
about their future intentions.

In figure 1 we can see the connections between the agents models. The WBA
case can be identified with the single agent MDP situation. We will demonstrate
this using the terminology of Q-learning ([11, 1]). To this end we define

q�(s, a) := r(s, a) +
∑
j∈S

p(j | s, a)v[π�](j)

in which π� in an optimal total policy. The value of q�(s, a) represents the
expected reward2 for using action a in state s and pursuing an optimal total
policy afterwards. The knowledge of q� amounts to knowing all optimal policies
as we have

π�(s) ∈ argmax
a∈A

q�(s, a)

2 We don’t distinguish different ri here because all agents get the same rewards.

438 A. Merke and M. Riedmiller

White Box Agents

Agents

t

Black Box Agents

Communicating
kn

ow
le

dg
e

ab
ou

t o
th

er
 a

ge
nt

s

knowledge at time t

Fig. 1. Illustration of potential knowledge during learning in the different mod-
els.

for an arbitrary optimal policy π�. Using Q-learning we are able to compute the
q� function provided we get access to enough tuples

〈st, at, rt, st+1〉
where st+1 is the successor state after using the joint action at in state st while
getting reward rt = r(st, at). Using Q-learning every WBA can build up his own
q� function. The problem of choosing an unique optimal total policy π� remains,
so that each agent can use the projection π�

i of the same optimal total policy.
We will not discuss the possibilities of attaining this goal but we just mention
that theoretically sorting all optimal total policies and taking the first will do
the job.

The major drawback using WBA and joint actions a = (a1, . . . , an) comes
from the fact that the number of such actions grows exponentially with the num-
ber of agents. Furthermore such learning is inflexible with respect to changing
the number of participating agents. These reasons are the main motivation for
using the considerably weaker model of BBAs. But in this model all that we can
hope for is to be able to compute

q�
i (s, b) = max

a∈A,ai=b
q�(s, a)

for each agent i. This is the maximal possible expected reward if agent i is
using action b in state s. Computing the q�

i (s, b) constitutes the first problem
which has to be solved. The second problem has to do with a coordinated choice
of actions from argmax q�

i . If for example {b, b′} = argmax q�
i , then we have

somehow to decide which of these two actions we’ll actually take. Both problems
can be solved if the underlying MMDP is deterministic (see [4]). In the case of
probabilistic state transitions and the pure BBA scenario, it can be shown, that
the computation of the q�

i (s, b) values is in general impossible (cf. [5]).
There remains the question of how to deploy communication or some other

coordination scheme to solve both problems using BBA agents (i.e. to use some

Karlsruhe Brainstormers 439

incarnation of GBAs). As far as we know no such algorithm has been published
yet. In the next section we will present some empirical work, which uses a sort
of implicit coordination while working with Black Box Agents.

4 Our RL Approaches to Robotic Soccer

In [8] we already published some of our work related to single agent reinforcement
learning. This includes successful deployment of moves to learn several basic
agent behaviors. All these moves were learned using reinforcement learning with
neural nets as function approximators.

On the tactical or team behaviour level we didn’t use reinforcement learning
until very recently. In particular our last year team used planning for players
with the ball and a priority list of moves for players without the ball (see [8] for
more details). As we already mentioned we work with higher level moves on the
tactical level. As the first step of developing a whole team policy with RL we
started with the attack behaviour.

We use 7 attackers against 7 defenders and one goalie. At the moment we
put all positions of the players as input to an neural network (34 dimensions).
Simultanously we also work on a feature extraction scheme, which will enable
us to ignore the exact number of defenders and to lower the dimension of the
encoding input vector.

Each of our attackers without ball has 10 actions to choose from. He can just
go to one of 8 direction, go to his home position or try to intercept the ball. To go
on we must say a little bit more about the home positions concept, as this is the
main coordinating scheme for our agents. Our team can use different formations
(for example 4-3-3) which are stretched over the soccer field with respect to the
ball position and the offside lines. As each of our attackers has the choice to go
towards his home position we have implicitly a mechanism which makes it easier
to avoid two attackers going to the same position. If one attacker gains the ball
he uses our planning algorithms which tries to find the shortest pass chain to
score a goal.

Our algorithm learns along trajectories which lead to a goal or to the loss
of the ball. In the first case we get a positive reward in the second a negative
cost. To update the value for every state along a trajectory we use TD[1] (see
[10]) to propagate the reward/cost along the whole trajectory. The update of the
neural networks are performed with a variant of the backpropagation algorithm
called RPROP (see [7]). The results of this learning scheme are very promising.
We used our last year team attack and the attack of the FCPortugal team3 for
comparison and our last year defence as a benchmark. The results are presented
in the following table

Brainstormers2000 TD[1] attack

success rate 13% 20%

3 Our team was runner up and the FCPortugal team was winner of the Simulation
League Robocup World Championship in Melbourne 2000.

440 A. Merke and M. Riedmiller

5 Summary

The soccer domain can be modelled as a multi-agent Markov Decision Pro-
cess (MMDP). To deal with the multi-agent aspects, we pursue both the in-
vestigation of theoretically founded distributed RL algorithms plus the empiri-
cal/heuristically motivated way of modified single-agent Q-learning. We report
very promising results in using learning of a coordinated offensive behaviour.
Still a lot of research questions are open, for example the dealing with partial
observability of state information, the definition of theoretically founded and
efficient distributed learning algorithms (including opponent modelling) and the
search for appropriate features.

5.1 Acknowledgements

We would like to thank our students (D. Eisenhardt, A. Hoffman, M. Nickschas,
A. Sinner, O. Thate, D. Withopf) for their active involvement in the development
of our team ’Karlsruhe Brainstormers’. Also many thanks go to former members
of our development team (S.Buck, S. Dilger, R. Ehrmann, D. Meier). Finally we
thank the CMU-Team 99 for providing parts of their world model.

References

[1] Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-dynamic programming. Opti-
mization and neural computation series ; 3. Athena Scientific, 1996.

[2] Caroline Claus and Craig Boutilier. The Dynamics of Reinforcement Learning in
Cooperative Multiagent Systems. In IJCAI, 1999.

[3] Jerzy Filar and Koos Vrieze. Competitive Markov decision processes. Springer,
1997.

[4] M. Lauer and M. Riedmiller. An algorithm for distributed reinforcement learning
in cooperative multi-agent systems. In Proceedings of International Conference
on Machine Learning, ICML ’00, pages 535–542, Stanford, CA, 2000.

[5] A. Merke. Reinforcement Lernen in Multiagentensystemen. Master’s thesis, Uni-
versität Karlsruhe, 1999.

[6] Martin L. Puterman. Markov decision processes : discrete stochastic dynamic
programming. Wiley series in probability and mathematical statistics : Applied
probability and statistics. Wiley, 1994.

[7] M. Riedmiller and H. Braun. RPROP: A fast and robust backpropagation learn-
ing strategy. In Marwan Jabri, editor, Fourth Australian Conference on Neural
Networks, pages 169 – 172, Melbourne, 1993.

[8] M. Riedmiller, A. Merke, D. Meier, A. Hoffmann, A. Sinner, O. Thate, C. Kill, and
R. Ehrmann. Karlsruhe brainstormers - a reinforcement learning way to robotic
soccer. In A. Jennings and P. Stone, editors, RoboCup-2000: Robot Soccer World
Cup IV, LNCS. Springer, 2000.

[9] P. Stone, R. S. Sutton, and S. Singh. Reinforcement learning for 3 vs. 2 keepaway.
In RoboCup-2000: Robot Soccer World Cup IV. Springer Verlag, 2001.

[10] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT
Press, 1998.

[11] Christopher J.C.H Watkins and Peter Dayan. Technical Note: Q-Learning. Ma-
chine Leaning, 8:279–292, 1992.

	Introduction
	Robotic Soccer as a Reinforcement Learning Problem
	Learning in Independent Distributed Systems
	Our RL Approaches to Robotic Soccer
	Summary
	Acknowledgements

