RoboLog Koblenz 2001*

Jan Murray, Oliver Obst, and Frieder Stolzenburg

Universitat Koblenz-Landau, Al research group
Rheinau 1, D-56075 Koblenz, GERMANY
{murray,fruit,stolzen}@uni-koblenz.de

1 Introduction

Outline. A formalism for the specification of multiagent systems should be ex-
pressive enough to model not only the behavior of one single agent, but also the
collaboration among several agents and the influences caused by external events.
For this, state machines [4] seem to provide an adequate means. Therefore, the
approach of the team RoboLog Koblenz 2001 employs techniques from software
engineering and artificial intelligence research by using UML statecharts and
implementing them systematically with logic and deduction in Prolog [3].

The current work concentrates on formal agent design. The decision process
of soccer agents can be made more flexible by introducing utility functions for
rational behavior as proposed in [5]. Furthermore, it is desirable to be able
to check whether the multiagent system satisfies certain interesting properties.
Therefore, the formalism should also allow the verification or the formal analysis
of multiagent systems, e.g. by model checking, as described in [7].

The RoboLog team. The Robol.og team participated in the simulator competi-
tions in 1999 (Stockholm) and 2000 (Melbourne). 3 people, Jan Murray, Oliver
Obst and Frieder Stolzenburg (team leader), form the core of the team. There
are currently 6 additional members, namely Joschka Bédecker, Bjorn Bremer,
Marco Dettori, Marion Levelink, Jana Lind, and Karsten Sturm. However, most
of them joined the group very recently. As in previous years [8], the team is
implemented in two parts. The kernel, hosting the soccer server interface and
low-level functions, is implemented in C++, while the control program for the
team behavior is written in Prolog.

In Section I, we describe our approach with an explicit state machine and
its concrete implementation [2]. This is part of the current team, later on this
shall lead to verification [7] and more sophisticated decision making [5] of agent
systems. Building agents for a scenario such as the RoboCup also requires the
careful and efficient programming of low-level facilities (see Section B]). Ball in-
terception and marking are important features (already efficiently incorporated
into our team), but also the ability of more abstract, qualitative reasoning.

* This research is partially supported by the grants Fu 263/6-1 and Fu 263/8-1 from
the German research foundation DFG.

A. Birk, S. Coradeschi, and S. Tadokoro (Eds.): RoboCup 2001, LNAI 2377, pp. 526-BE30] 2002.
© Springer-Verlag Berlin Heidelberg 2002

RoboLog Koblenz 2001 527

2 Declarative Agent Design

Structured State Machines. Statecharts are a part of UML [] and a well ac-
cepted means to specify dynamic behavior of software systems. They can be
described in a rigorously formal manner, allowing for flexible specification, im-
plementation and analysis of multiagent systems [7]. In statecharts, states are
connected via transitions with conditions and actions annotated. Since states
may be simple, composite or concurrent, the behavior of agents or their state
machines, respectively, cannot be described by sequences of simple states (as for
finite automata), but of configurations.

A configuration cis a rooted tree of states, where the root node is the topmost
initial state of the overall state machine. A configuration must be completed by
the following procedure: if there is a leaf node in ¢ labeled with a composite state
s, then the initial state of s is introduced as immediate successor of s; if there is
a leaf node in ¢ labeled with a concurrent state s, then the tree branches at this
point. In the current implementation of our team, an explicit state machine is
built in. It processes the transitions, performing micro-steps in this case. Several
transitions can be executed in parallel if they stem from concurrent regions,
forming a macro-step [6] then.

Implementation with Logic. -

The agent specification can) \
effectively be transformed ------- R RS S .
into running Prolog code.
The resulting program con- scriptq] scripty scriptaq scripto
sists of several Prolog mod- - - - -
ules, which reflect the layered
specification of the agent.
The actual implementation,
which also contains an ex-
plicit state machine module,
is described in [2]. The soccer agents are designed with a three-level approach
(Figure [): the mode level contains the most abstract desires an agent has (e.g.
setup, attack, defend); the script level provides plan skeletons that are used as
long as the mode is not changed (e.g. marking, passing, role exchange); the skill
level hosts basic actions (e.g. kick, dribble).

Fig. 1. Three-level approach.

Extension by Utility Functions. The de- 100
sign of adaptive agents with the method o (97%)
presented so far is possible, but it is a & v

good idea to extend the approach by 70.}
a more adaptive action selection mech- ©7%)
anism and to facilitate a more explicit R
representation of goals of an agent. Until

now, the measure for the expected suc-
cess are Boolean conditions annotated at ~ Fig. 2. Searching for pass partners.

528 Jan Murray, Oliver Obst, and Frieder Stolzenburg

transitions. Actions with firing conditions are expected to be successful. If an
agent has more than one option to execute actions, the first applicable one is
selected. A more adaptive action selection mechanism should evaluate the use-
fulness of applicable options and execute the most useful one. Therefore,
proposes the use of utility functions in order to provide a mechanism to evaluate
the utility of a script in the current situation taking the commitment to selected
options into account.

In our team, utility functions are used for finding the best pass partner. The
utility function for pass partners prefers teammates closer to the opponent goal
and further away from the own goal. The search for a pass partner is executed
recursively for a fixed number of steps, so that a player prefers pass partners who
can pass to teammates in a better position. Only in the last step of the search
or if no teammate in a better position can be found, the value for the player’s
position is taken. In other cases, the preference value of the best pass partner
is used, so that players with good passing opportunities are preferred. Since we
want the players to prefer direct passes to a teammate over a chain of passes to
the same teammate, we discount each pass in the preference value of the pass
partner (see also Figure 2] where player 2 is about to pass to player 5).

3 Further Features

Ball Interception. An important feature of a soccer agent is ball interception.
The interception time can be computed effectively. In the soccer server, the ball
speed at time ¢ is calculated as v(t) = p - v(t—1) with g < 1. Therefore, if the
velocity of the ball is vy at time ¢t = 0, we have v(t) = vg - u'. For the distance
s, that the ball has moved after t steps, it holds:

t

t
o 1—
s(t)zzvo.uz 1:1}0.17/1/
i=1 H

In the sequel, we assume that an agent can move in any direction with a fixed
velocity v1. At time ¢t = 0, the ball is at position @ in the Cartesian coordinate
system with the agent at its origin. Let b (with ||b]| = vo) be the velocity vector
of the ball in this coordinate system. Then, after ¢ steps the position of the ball
is P(t) =+ s(t) - b.

Clearly, the agent can reach the ball at any time ¢ with ||P(¢)|| < vy - . Since
there is no closed form for ¢, we apply Newton’s method in order to find the zeros
of f(t) = ||P(t)]| — v1-t. We compute the following sequence t,,, until |f(¢,)| < €
for some small threshold e > 0:

0, ifn=0
tn =X tn_1— %, ifn>0and f'(tn—1) <O
999, otherwise

This procedure eventually yields the first of at most three zeros ¢t > 0. There
exists at least one zero; it is found at latest after ¢,, has been set to 999, which

RoboLog Koblenz 2001 529

avoids oscillation. If there are three zeros, then Newton’s method will find the
smallest one. This follows from the fact that the acceleration a of the ball (the
derivative of v) is negatively proportional to v. A similar (but different) method
for computing the interception time has been described in [9].

Stable Marriage. Close marking can be very helpful in a variety of situations. By
blocking the path between the ball and an opponent, the agent prevents direct
passes. But for close marking to work it is important that the agents select the
opponents to mark in an intelligent way. Otherwise situations arise in which
opponents are marked by more than one agent while others remain completely
free. In addition each player should mark an opponent that is as close as possible
to avoid stamina consuming dashes across the field.

This mapping of teammates to opponents can be seen as an instance of the
stable marriage problem [1]. The ranking of the opponents by each player is based
on the distance from the player to the individual opponents. It is then possible to
generate a solution which assigns the closest possible opponent to each player. If
all players have complete knowledge of the positions of teammates and opponents
on the field, each opponent will be marked by exactly one player.

Qualitative Reasoning. For the classification of situations occurring during a
match, mapping of quantitative numbers to qualitative data is helpful to describe
situations in a shorter and more natural way for the programmer. Usage of
qualitative predicates for distances and directions is already supported by our
C—++ interface.

With the soccer server version 7, a new application for qualitative reasoning
becomes obvious: the online coach can define regions, and inform or advise play-
ers about the current situation or actions they should perform. These regions
can be viewed as a qualitative abstraction from the quantitative data the online
coach gets. To effectively use the defined regions, the coach agent has to reason
about the implications of its advice to other players. Besides the development
and implementation of a coach using qualitative spatial data, qualitative reason-
ing about velocities and object movement is one of our next planned activities.

References

[1] D. Gale and L. Shapely. College admissions and the stability of marriage. American
Mathematical Monthly, 1962.

[2] J. Murray. Soccer agents think in UML. Diplomarbeit D 610, Fachbereich Infor-
matik, Universitdt Koblenz-Landau, 2001.

[3] J. Murray, O. Obst, and F. Stolzenburg. Towards a logical approach for soccer
agents engineering. In P. Stone, T. Balch, and G. Kraetzschmar, editors, RoboCup
2000: Robot Soccer World Cup IV, LNAI 2019, pages 199-208. Springer, Berlin,
Heidelberg, New York, 2001.

[4] Object Management Group, Inc. OMG Unified Modeling Language Specification,
1999. Version 1.3, June 1999.

530 Jan Murray, Oliver Obst, and Frieder Stolzenburg

[5] O. Obst. Specifying rational agents with statecharts and utility functions. In
Accepted paper at RoboCup International Symposium (RoboCup 2001), 2001. To
appear.

[6] A. Pnueli and M. Shalev. What is in a step: On the semantics of statecharts. In
T. Ito and A. R. Meyer, editors, International Conference on Theoretical Aspects
of Computer Software, LNCS 526, pages 244-264, Sendai, Japan, 1991. Springer,
Berlin, Heidelberg, New York.

[7] F. Stolzenburg. Reasoning about cognitive robotics systems. In R. Moratz and
B. Nebel, editors, Themenkolloquium Kognitive Robotik und Raumreprasentation
des DFG-Schwerpunktprogramms Raumkognition, Hamburg, 2001.

[8] F. Stolzenburg, O. Obst, J. Murray, and B. Bremer. Spatial agents implemented
in a logical expressible language. In M. Veloso, E. Pagello, and H. Kitano, editors,
RoboCup-99: Robot Soccer WorldCup III, LNAT 1856, pages 481-494. Springer,
Berlin, Heidelberg, New York, 2000.

[9] P. Stone and D. McAllester. An architecture for action selection in robotic soccer.
In Fifth International Conference on Autonomous Agents, 2001.

	Introduction
	Declarative Agent Design
	Further Features

