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1 Introduction

At Carnegie Mellon, we have developed several small-size robot teams that have
helped us to investigate a variety of aspects of the small-size RoboCup compe-
tition. The CM-Dragons’01 is our new team complete with new hardware and
sensing and behavior-processing algorithms. Although still in the development
phase, a number of modules have been developed that we feel can contribute to
the RoboCup community. In this paper, we briefly describe our vision and track-
ing modules, the new robot hardware and our new communications modules. Our
primary interest is on presenting our advances in modeling and prediction us-
ing an Extended Kalman-Bucy Filter (EKBF) that tracks the ten robots and
the ball through vision. We identify that Kalman-Bucy filters are susceptible
to white noise caused by misidentifications. Within CM-Dragons’01, we devel-
oped a new approach, Improbability Filtering, that addresses this problem in a
computationally efficient yet principled manner.

Throughout this paper, we assume that the reader is familiar with the general
structure of small-size robot soccer applications (for further details, please see
other articles in this book or for example [6]).

2 Vision

The image processing module consists of the low-level CMVision color segmen-
tation library and high-level vision algorithms that analyze the colored regions
reported by CMVision to identify robots, their orientation, and the ball. CMVi-
sion is public software available under GPL [2]. The vision algorithms work as
follows. CMVision segments pixels using a 3D lookup table, which is a subsam-
pled version of the color space with 8 levels for Y, and 32 levels each for U and V.
The YUV table is generated off-line using a GUI editor. Identically segmented
pixels are collected into horizontal runs, which in turn are combined into re-
gions. The run unification stage calculates statistics for use by the high-level
vision algorithm.

Identifying robots is a two-stage process, namely: (i) suitable colored regions,
as determined by the bounding box, are mapped into world coordinates using a
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precalculated camera model, and given confidence ranking based on their area
and field position; (ii) robot identification and orientation is accomplished by
scanning for the closest orientation markers (pink patches) and identity markers
(white squares) within a suitable distance. The orientation markers are offset
forward on the robot so that the orientation has only one solution.

Running at 60Hz with interlaced 640x240 YUV 4:2:2 images, the whole vision
module takes about 40% of the processor on an Athalon 1.3GHz PC. With the
loop closed, considering vision to action, the system has a latency of about 100ms
corresponding to 6 to 7 fields. Additionally, vision suffers the usual problems
of intermittency, noise due to pixelization, and occasional misidentifications.
Tracking such data over time to produce robust position and velocity estimates
is the job of the tracking software discussed next.

It is our experience, that global vision processing, as permitted in this league,
offers difficult challenges. Robot identification and orientation need to be partic-
ularyly robust to false positives. We describe next an algorithm to achieve this
robustness. The behaviors can only produce successful results if the state of the
world can be processed and modeled with reliability and accuracy.

3 Tracking

To track the ten robots and ball, and to make predictions regarding the future
state of these objects, we use multiple independent EKBF’s combined with Im-
probability Filters (ImpF). EKBF’s are widely used state estimators that provide
optimal state tracking for non-linear systems with Gaussian noise components
[4], [7]. We used independent EKBF’s, based on the assumption that tracking
and dynamics noise between objects was negligible, to track the robots and the
ball. Due to space considerations we will not show the full equations that de-
scribe the tracking module. Instead we refer the reader to [1] and our earlier work
[5]. In short, the EKBF’s are a straight implementation of the algorithm with a
dynamical model of the robots that reflects their kinematic motions, acceleration
limits and velocity commands. Similarly the ball EKBF uses a dynamics model
that reflects the physics of its motion including the friction of the field and the
motion along the inclined walls.

EKBF’s provide an optimal estimator of the system state provided the tracked
system has only Gaussian noise components. With the appropriate choice of pa-
rameters, EKBF’s are robust to moderate violations of the Gaussian noise as-
sumption. However, they are not robust in the short term to white noise in the
form of misidentifications. In such cases the filter jumps across the field causing
havoc to the robot behaviors and ball prediction mechanisms. We devised and
implemented a new approach, called Improbability Filtering (ImpF) [1], to reject
false-positives thereby overcoming the white noise problem.

The ImpF rejects false-positive, cases where the vision module reports con-
fidently but incorrectly, by determining the likelihood of observing the reported
observation given the current model as specified by x̃k and Pk the estimated
state and covariance, respectively. The observation likelihood is just the condi-
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tional probability density function (pdf) P [zk|x̃k, Pk] evaluated for the reported
observation. Given the Gaussian model stored by the EKBF we have :

Ck = HT
k PkHk + Rk (1)
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1
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n
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e
−1
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Ck(zk−Hkx̃k) (2)

All terms are identical to their use in [7] and are described more fully in
[1]. We have Hk as the Jacobian of the observation function z′k = h (x̃k) with
respect to the state variables, zk is the observation, Rk is the observation noise
covariance, x̃k and Pk are the state estimate and covariance, k is the time step,
and n is the number of state variables (4 for the ball and 6 for the robots).

Observations that are sufficiently likely, as determined by a threshold set
to reject a majority of false-positives, are accepted and incorporated into the
EKBF estimates while low likelihood observations are ignored. This approach
operates efficiently to remove white noise from the vision output and produces
good, robust tracking behavior.

We use the EKBF’s for both filtering and prediction. Clearly, the EKBF will
filter small Gaussian noise from the vision output and with the ImpF it will
also remove false-positives. In addition to filtering, we use the EKBF dynamics
equations to create future state estimates and their associated covariances. Es-
sentially, the dynamics update is applied repeatedly corresponding to the number
of time steps into the future the estimate is required. The prediction capability
allows us to overcome latency issues. In short, we predict ahead the estimated
latency and use the predicted values for the robot behaviors and motion control.

4 Hardware

The CM Dragons are a heterogeneous team consisting of two different types
of hardware platforms; a fast differential drive robot and an omni-directional
robot. Both robots use identical electronics consisting of a processor board with
associated power circuitry and a communications board. The differential drive
robot, hereafter the diffbot, is capable of high acceleration, enough to break
stiction while in motion, with a top speed of 2.5m.−1. Given the dimensions of
the field and the limited acceleration enforced by wheel slip, the robot can barely
approach its top speed in normal play. The omni-directional robot, hereafter
omnibot, uses three roller wheels from North American Roller Products in a Y
arrangement. The omnibot has lower acceleration capabilities but a higher top
speed with maximum figures of 3m.s−1 and 3m.s−2, respectively.

The robots use identical electronics; a processor board and communications
board. The processor board, the brain of the robot, is based on a TMS320LF2407
16-bit, 30 MIPS DSP from Texas Instruments. The DSP offers both computa-
tional power, low power consumption, and lots of functionality via its on-chip
peripherals. In particular, the on-chip timer module facilitates generation of
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dead-band PWM signals to drive the motors with minimal shoot-through cur-
rent losses. The communications board is based around the 50kbps commercially
available lynxTM HP-II modules. These dedicated transmitters and receivers op-
erate in the International Science and Medicine (ISM) band from 900MHz-1GHz
with eight selectable operating channels. These devices provide two key advan-
tages over the common Radiometrix module; a) the ISM band is away from the
heavily used 418/433MHz band and b) the modules offer multiple channels on a
single chip. The reliability of the modules is excellent with our testing reporting
packet losses of 1% or less at 38.4kbps where a packet consisted of a start byte,
id byte, frame byte three data bytes and a stop byte. Software wise, the robots
currently act as dumb slaves and operate velocity PID loops where the set point
for the PID loops is obtained from the received RF packets.

5 Conclusions and Future Directions

CM-Dragons’01 represents a new research effort on teams of heterogeneous
robots. We briefly presented our EKBF-based tracking system and the novel
ImpF algorithm used to overcome white noise caused by misidentifications.

At RoboCup-2001, the different efforts within CM-Dragons’01 were in a pre-
liminary phase of development and their integration was not fully operational.
Much work remains to develop the CM-Dragons platform into a truly integrated
and competitive multi-robot system. In particular, we are finishing the robot
platforms and high-level vision primitives. Finally, our future aims are to step
towards developing automated strategies where the team changes playing mode
as a function of the overall state of the game.
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