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Abstract. Failure detection and group membership are two important compo-
nents of fault-tolerant distributed systems. Understanding their role is essential
when developing efficient solutions, not only in failure-free runs, but also in runs
in which processes do crash. While group membership provides consistent in-
formation about the status of processes in the system, failure detectors provide
inconsistent information. This paper discusses the trade-offs related to the use of
these two components, and clarifies their roles using three examples. The first
example shows a case where group membership mayfavourably be replaced by a
failure detection mechanism. The second example illustrates a case where group
membership is mandatory. Finally, the third example shows a case where nei-
ther group membership nor failure detectors are needed (they may be replaced by
weak ordering oracles).

1 Introduction

Fault-tolerance in distributed systems may be achieved by replicating critical compo-
nents. Although this idea is easily understood, the implementation of replication leads
to difficult algorithmic problems. A distributed algorithm requires the specification of a
system model. Two main models have been proposed: thesynchronous model and the
asynchronous model. The synchronous model assumes (1) a known bound on the trans-
mission delay of messages, and (2) a known bound on the relative speed of processes
— while the slowest process performs one step, the fastest process performs at most
k steps wherek is known). The asynchronous system does not assume any bound on
the transmission delay of messages, and on the relative speed of processes. Obviously,
the asynchronous model is more general. If some algorithmA is proven correct in the
most general model (e.g., in the asynchronous model),A is also correct in a more re-
stricted model (e.g. in the synchronous model). Clearly, it is advantageous to develop
algorithms for the most general system model.

Unfortunately, it has been proven that a very basic fault-tolerant problem, thecon-
sensus problem, cannot be solved by a deterministic algorithm in the asynchronous
model when a single process may crash [15]. The same problem may be solved by a
deterministic algorithm in the synchronous system model. However, the synchronous
system model requires that bounds be defined, which leads to a dilemma. If the bounds
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are chosen too small, they may be violated: in this case, the algorithm might behave
erroneously. If the bound is too large, this has a negative impact on the performance of
the algorithm if there is a crash: the crash detection time will be long, and the algorithm
will be blocked in the meantime.

Two other system models have been defined, which are between the asynchronous
and the synchronous system models: the partially synchronous system model [ 11,14]
and the asynchronous model augmented with failure detectors (which we will simply
refer to as thefailure detector model) [5].1 Consensus is solvable in these two system
models. The partially synchronous model assumes that bounds exist, but they are not
known and hold only eventually. The failure detector model specifies the properties
with regard to failure detection in terms of two properties:completeness andaccuracy.
Completeness specifies the behaviour of the failure detectors with respect to a crashed
process. Accuracy specifies the behaviour of failure detectors with respect to correct
processes. For example, the♦S failure detector is defined (1) bystrong completeness —
which requires that each faulty process is eventually suspected forever by each correct
process — and (2) byeventual weak accuracy — which requires that eventually there
exists some correct process that is no longer suspected by any correct process. The
failure detector model has allowed a very important result to be established:♦S is the
weakest failure detector that allows us to solve consensus [4].

The results for failure detectors, and other work performed over the last 10 years,
have contributed to providing a good understanding of the algorithms related to repli-
cation, e.g., consensus, atomic broadcast, group membership. The main open problem
that remains is understanding the various algorithms from a quantitative point of view.
This means not only comparing the cost of these algorithms in failure-free runs, but also
in runs with process crashes. For crash detection, most existing infrastructures rely on
a group membership service, whereas algorithmic papers rely on failure detectors. As
shown below, this has an important impact on performance, and leads to the following
questions: when is a membership service really needed, and when is a failure detection
mechanism preferable?

Before addressing these questions, Section 2 introduces the group membership prob-
lem, and discusses solutions to this problem. Section 3 illustrates a case where group
membership can favourably be replaced by a failure detection mechanism. However,
failure detection alone is not enough: Section 4 gives an example where membership is
necessary. Finally, Section 5 shows that it is sometimes possible to do without failure
detection and group membership. Section 6 concludes the paper.

2 The Group Membership Problem

2.1 Specification

Roughly speaking, agroup membership service manages the formation and mainte-
nance of a set of processes called agroup. The successive memberships of a group
are calledviews, and the event by which a new is provided to a process is called the
install event. A process mayleave the group as a result of an explicit leave request

1 Other system models have been defined, e.g., [10,18].
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or because it failed. Similarly, a process mayjoin the group, for example to replace
a process that has left the group. One distinguishes two types of group membership
services:primary-partition andpartitionable. Primary-partition group membership ser-
vices attempt to maintain asingle agreed view of the current membership of the group.
On the contrary, partitionable group membership services allowmultiple views of the
group to coexist in order to model network partitions. In the paper we only consider the
primary-partition membership service.

2.2 Solving Group Membership

Many algorithms have been proposed to solve the group membership problem. These
algorithms have in common to be complex. This is the case of the protocol in [ 24], but
there are two more recent examples. In [17] Lotem et al. describe a membership proto-
col that requires the introduction of notions such as quorums, sub quorums, ambiguous
sessions, last formed sessions, resolution rules, learning rules. In [7], and in its recent
version [20], an Atomic Broadcast algorithm is described, which is based on a ring of
processes. The protocol requires areformation phase if one of the processes in the ring
is suspected. The reformation phase decides on the processes that form the new ring,
i.e., it solves the membership problem. The authors of [20] propose a complex protocol,
based here on a three-phase commit protocol.

Understanding these protocols is not easy and takes time. However, the membership
problem becomes trivial using consensus, which is a well understood problem [ 5,25].
Consider the current membership (also calledview) v i and the problem of defining
the next membershipvi+1. This is can be seen as a consensus problem to be solved
among processes invi, where the initial value of each process is a proposal for the
next view (e.g., the set of processes not suspected), and the decision is the next view
vi+1 (see Algorithm 1) [19].2 Algorithm 1 completely hides the complexity of group
membership in the consensus black box. In [17] the authors claim that the solution based
on consensus is more costly in terms of communication rounds. However, the figures
given (i.e., five communication rounds) is not correct: the right number is one plus the
cost of consensus, i.e., the protocol can terminate in three communication rounds.3 It is
doubtful that [17] requires less that three communication rounds.

3 Failure Suspicions Instead of Membership Exclusion

Developing complex membership protocols — instead of reducing membership to con-
sensus — had an indirect consequence. It has hidden the benefit of decoupling “failure
detection” from “membership exclusion”. While a group membership service gives a
consistent information about the state of processes (correct or not), failure detection

2 One part of the algorithm is missing here. If one correct process starts the protocol, all other
processes have also to start the protocol (otherwise consensus might not terminate). This can
be done using Reliable Broadcast [16].

3 Consensus can be solved in two rounds, e.g., [25].
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Algorithm 1 Solving group membership amongcurrent-view by reduction to con-
sensus (code of processp)

1: vp ← current-view \ suspected-processes ;
2: decisionp ← consensus(vp) ;
3: {execute consensus amongcurrent-view; vp is the initial value for consensus}

4: new-view← decisionp ;

provides an inconsistent information. It may sometimes be sufficient and less costly to
rely on inconsistent failure detection information rather than on consistent group mem-
bership information. Consider the following example. Letv i = {p, q, r} be the current
view of a group (information known top, q andr) and letp wait for a message fromq.
If only membership information are accessible top, thenp waits for the message until
a new viewv′ is installed from whichq is excluded. If failure detection information
is accessible top, thanp waits until it suspectsq to have crashed: the view is stillv,
other processes not necessarily suspectq, processp might later change its mind about
q, and it is possible thatq is never excluded from the membership. Failure detection is
a lightweight service, compared to a membership service — which relies on a failure
detection service. We show below a concrete example of the benefit of relying on failure
suspicions instead of membership exclusion.

3.1 Replication Techniques

There exists two main classes of replication techniques that ensure strong consistency:
active andpassive replication (Fig. 1). Both replication techniques are useful since they
have complementary features. With active replication [26], each request is processed
by all replicas. This ensures a fast reaction to failures, and sometimes makes it easier to
replicate legacy systems. However, active replication uses processing resources heavily
and requires processing of requests to be deterministic.4 With passive replication (also
calledprimary-backup replication) [3] only one replica (the primary) processes the re-
quest, and sends update messages to the other replicas (the backups). This uses less re-
sources than active replication does, without the requirement of operation determinism.
However, passive replication is known to have a slow reaction to failures. The reason is
related to failure detection. Passive replication is usually based on a group membership,
which excludes the primary whenever it is suspected to have crashed [ 2,21].

Excluding a process from the membership has a high cost, which leads a group
membership to avoid excluding processes that have not crashed. This requires a high
failure detection timeout value, which leads to a slow reaction to the crash of the pri-
mary, and a high response time for the client. High response time can be prevented
by decoupling failure suspicions from membership exclusion, as shown by the semi-
passive replication technique.

4 Determinism means that the result of an operation depends only on the initial state of a replica
and the sequence of operations it has already performed.
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Fig. 1. Principle of activevs passive replication

3.2 Semi-passive Replication

Semi-passive replication [13,12] is a variant of passive replication: it retains its ma-
jor characteristics (e.g., allows for non-deterministic processing). The main difference
between passive and semi-passive replication is the selection of the primary. In semi-
passive replication the selection of the primary is based on the rotating coordinator
paradigm [7,14]; in passive replication the selection of the primary is based on a group
membership service. The rotating coordinator paradigm allows the primary to be sus-
pected without being excluded. This has a big advantage: it reduces the overhead of an
incorrect suspicions. Consider the two cases: (1) the correct primary has been suspected
and excluded from the membership, and (2) the correct primary has been suspected but
not excluded from the membership. In case (1), in order to keep the same degree of
replication, the excluded process needs to join again the membership, which leads to an
new execution of the membership protocol (join operation), followed by the costly state
transfer.5 In case (2) no special action needs to be taken. In other words, an incorrect
failure detection is costly in case (1), while it costs almost nothing in case (2). This al-
lows in case (2) the failure detection mechanism to be much more aggressive, while in

5 A correct process that is excluded from the membership is forced to commit suicide, and has
to take a fresh copy of the state shared among the members.
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case (1) it needs to be conservative. An aggressive failure detection time reduces the re-
sponse time in case of the crash of the primary, i.e., corrects one of the major limitation
of the class of passive replication techniques compared to the class of active replication
techniques. Semi-passive also allows us to keep one of the major advantage of the class
of passive replication techniques: parsimonious processing.

3.3 Semi-passive Replication and Lazy Consensus

With semi-passive replication the client sends its request to all replicas (see Fig. 2),
but a single process handles the request, the primary (unless suspected). Processing the
request provides the stateupdate information to the primary. The primary then starts an
instance of consensus to decide on thestate update value. Upon decision, all replicas —
the primary and the backups — apply the update to their current state. In other words,
the initial value for consensus is a “state update value”.

If all replicas need to have an initial value before starting consensus, then each
replica would have to process the client request, which would be costly. To prevent this,
semi-passive replication relies on a variant of consensus calledlazy consensus [ 12].
With consensus, processp calls the procedure that solves consensus with its initial value
vp as a parameter. With lazy consensus, the parameter is a function calledgiv (which
stands forget initial value). This function is called byp within the consensus algorithm
wheneverp needs an initial value. Lazy consensus is solved by a variant of the Chandra-
Toueg♦S consensus algorithm based on the rotating coordinator paradigm [ 5]. If the
first coordinatorc is not suspected, then onlyc calls thegiv function to get the update
value. In other words:

– Semi-passive replication technique leads to a sequence of lazy consensus.
– Lazy consensus is based on the rotating coordinator paradigm, where the coordina-

tor for consensus is the primary from the point of view of the replication algorithm.
– The initial value for consensus is obtained by calling thegiv function, which pro-

cesses the client request.
– If the first coordinator is suspected (Fig. 2, Scenario 2), a new process takes over

the coordinator role for consensus, i.e., becomes the primary from the point of view
of the replication algorithm. Changing the primary does not exclude the previous
primary from the membership!

To summarise, group membership is a nice abstraction, but needs be used with
care. Group membership transforms failure suspicions into process exclusion. There
are cases where failure suspicions should not lead to process exclusion.

4 Failure Suspicion with Membership Exclusion

The previous section has illustrated a case where failure suspicion should not lead to
process exclusion. In this section we give an example of failure suspicion that requires
process exclusion.
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Fig. 2. Semi-passive replication. In Scenario 1, only the first coordinator (replica 1)
calls theget initial value (giv) function. In Scenario 2, the first coordinator crashes or
is wrongly suspected, replica 2 takes over the role of the coordinator, and calls thegiv
function.

4.1 Reliable Channels?

In the context of fault-tolerance, theoretical papers usually assume that channels are
reliable — if p sends a message toq, andq is correct,6 thenq eventually receivesm
— or quasi-reliable — if p sends a message toq, and the two processes are correct,
then q eventually receivesm. However, real channels are neither reliable nor quasi-
reliable. Lossy channels (and finite memory) lead to the exclusion of processes from the
membership (see below). This explains that group membership is always considered in
real systems, but is mostly absent from theoretical papers (apart from papers solving
the group membership problem).7

6 A correct process is a process that never crashes.
7 This explains also the difficulty to come to a convincing specification for the group member-

ship problem: a convincing specification requires to understand exactly when membership is
needed, and when membership is not needed.
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4.2 Lossy Channels and the Time-Bounded Buffering Problem

Consider the implementation of the quasi-reliable channel betweenp andq over fair-
lossy channels.8 Let SEND andRECEIVE be the primitives providing quasi-reliable
communication, andsend, receive the primitives of the low-level lossy channel (Fig. 3).
To executeSEND(m) to q, processp copiesm into an output buffer and executes
send(m) repeatedly until it receives an acknowledgement ofm from q, denoted by
ack(m). The first timeq receivesm, it executesRECEIVE (m). Each timeq receives
m, it sendsack(m) back top. Whenp receivesack(m), it deletesm from its output
buffer.

send (m) receive (m)

RECEIVE (m)SEND (m)

output buffer to q input buffer from q Quasi-reliable channel

Lossy channel

Fig. 3. Implementation of quasi-reliable channels over lossy channels

In this implementation, ifq crashes,p might never receiveack(m), and so might
never deletem from its output buffer. This issue can be formalised by thetime-bounded
buffering problem [8]. Letm be a message in the output buffer of processp that must be
sent to processq: time-bounded buffering ensures thatp eventually deletesm from its
output buffer. The problem cannot be solved in an asynchronous system model, neither
in an asynchronous system model augmented with failure detectors of classS or class
♦P [5,8]. The same holds for Reliable Broadcast over fair-lossy channels. Real system
overcome this impossibility by relying onprogram-controlled crash [ 6], which gives
processes the ability to kill other processes. Consider processp with messagem in its
output buffer toq. If after some durationp has not receivedack(m) from q, it decides
(1) to excludeq from the membership (i.e., to killq), and (2) to discardm from its
output buffer: asq eventually crashes, there is no obligation forq to deliverm.

There is a better solution than using timeouts to killq. Processp kills q if, upon
execution ofSEND(m) to q, p’s output buffer to q is full. The murder ofq is here
the consequence of lack of resources, and not time-related. This is the best solution: it
makes sense forp to kill q iff p has not enough space to buffer messages forq.

8 A fair-lossy channels do not create, duplicate and garble messages, and ensure that ifp sends
an infinite number of messages toq, andq is correct, thenq receives and infinite number of
messages fromp.
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4.3 Process Suspicion vs Process Exclusion

In the above example, the exclusion ofq from the membership is different from the
exclusion of the primaryr in the context of passive replication. With passive replication,
if the primaryr crashes at timet, then the replication service is immediately blocked.
In the example of Section 4.2, ifq crashes at timet, thenp is blocked much later
(depending on the size of its output buffer toq). This shows that when the blocking
time an issue, suspecting the primaryr fast is important, whereas suspectingq fast in
the example of Section 4.2 is not important. In one case (primaryr) the suspicion is
input-triggered, whereas in the other case the suspicion isoutput-triggered [ 8]:

– Input-triggered suspicions: p suspectsq becausep waits a message fromq, and its
input buffer fromq is empty. Processp is blocked until it suspectsq.

– Output-triggered suspicions: p suspectsq because some message remains for a long
time in its output buffer toq, or because its output buffer toq is full.

There is no reason for input-triggered suspicions to lead to process exclusion: semi-
passive replication is a good example. On the other hand, if the output buffer ofp
to q is full, p does not have many options: block or excludeq. In other words, input
triggered suspicionsshould never lead to exclusion, while output-triggered suspicions
should always lead to exclusion. This gives a clean picture. A group membership service
should not react to input-triggered suspicions, but only to output-triggered suspicions.

Most existing systems handle input-triggered and output-triggered suspicions in the
same way, i.e., by excluding processes. This is a poor choice from a performance point
of view. If p waits a message fromq, the timeout to detect the crash ofq should be short
(in order to reduce the blocking period). Ifp sends a message toq, there is no need to
detect the crash ofq quickly. A single failure detection mechanism, requires a compro-
mise: the suspicion should not be too fast (do avoid too many wrong suspicions) and
not too slow (do reduce the blocking time). Having input-triggered suspicions (without
exclusions) on one hand side, and output-triggered exclusions on the other hand side
allows to escape from the dilemma.

4.4 Input/Output-Triggered Suspicions vs Partitionable Membership

The distinction between input and output triggered suspicions is orthogonal to the dis-
tinction between primary partition and partitionable membership. Partitionable mem-
bership [9] does not distinguish between input-triggered and output-triggered suspi-
cions: it relies on one single failure detection mechanism.

The difference between (1) input and output-triggered suspicions in the context of
primary partition membership, and (2) partitionable membership can be clarified on the
following example. Consider a system of five processes (Fig. 4): two client processes
c1, c2, and three server processess1, s2, s3 (which implement semi-passive replica-
tion). Consider the following scenario, where the exclusion of the serverss i is output-
triggered:

– At time t0 all processes are reachable from all processes. The server membership
is {s1, s2, s3}. No process is suspected, and all client requests are handled by the
s1. The servers1 broadcasts the “update” message (Sect. 3) tos2 ands3.
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– At time t1, a link failure occurs, which partitions the system in two components:
Π1 = {c2, s1} andΠ2 = {c1, s2, s3}: processess2, s3 suspects1 (ands1 suspects
probablys2 ands3). The requests ofc1 are handled by another server, says2. The
servers2 broadcasts the update message tos1 ands3. If the output buffer ofs2 to
s1 is large enough,s1 is not excluded.

– At time t2, the link failure is repaired. No special action needs to be taken. The
update sent bys2 to s1 during the link failure have been buffered, and can now
reachs1. The occurrence of the partition is transparent to the servers.

s2

s3

c1
c2

s1

Π1 Π2

o

o
o

o

o

Fig. 4. Partition of the processes in two componentsΠ1 andΠ2

With partitionable membership, the link failure is not transparent. In the interval
[t1, t2] a partitionable membership defines two concurrent views. Once the link failure
is repaired, the states of the two partitions would have to be merged (at the application
level).

5 Doing without Failure Suspicion

In Section 3 we have shown the benefit of decoupling failure suspicion from mem-
bership exclusion. In Section 4 we have introduced the distinction between input and
output-triggered suspicions, and explained the relationship between output-triggered
suspicions and membership exclusion. We address now the following question: can
input-triggered suspicions be avoided? Indeed the following dilemma remains: what
timeout value should be chosen for input-triggered suspicions? On one hand the time-
out value should be large in order to avoid wrong suspicions (they still have a negative
impact on performance9). On the other hand timeout values should be small in order to
ensure fast reaction to failures. Avoiding input-triggered suspicions avoids the dilemma
of fine tuning the failure detection mechanism.

Randomisation is one solution, since it allows us to solve consensus in asynchronous
systems [1,23]. However, randomisation leads to slow algorithms. Another solution is
to augment the asynchronous system withweak ordering oracles [22], which order

9 Even if wrong suspicions have less impact on performance than process exclusion, they still
have a negative impact.
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messages frequently, but might also deliver messages out of order. Weak ordering ora-
cles capture the behaviour of network multicast in state-of-the-art local area networks:
if messages are multicast in a local area network, there is a good chance that some of
them will be received by all processors in the same order. Experiments have shown
that if the interval between broadcast is around 0.15 ms, then very few messages are
received out of order (about 5%) [22].

5.1 Weak Ordering Oracles

Weak ordering oracles are defined by two primitives,W-ABroadcast(r,m) and
W-ADeliver(r,m). The first primitive asks the oracle to broadcastm. The second prim-
itive corresponds to the delivery ofm by the oracle. The parameterr groups messages
with the samer value (they can be seen asround numbers). The weak ordering property
holds for roundr if there exists some messagem such that all processes deliverm be-
fore the other messages of roundr. To illustrate this property, consider three processes
p1, p2, p3 executing the following queries to the oracle:

– p1 executes W-ABroadcast(0, m1); W-ABroadcast(1, m2); W-ABroadcast(2, m3)
– p2 executes W-ABroadcast(0, m4); W-ABroadcast(1, m5); W-ABroadcast(2, m6)
– p3 executes W-ABroadcast(0, m7); W-ABroadcast(1, m8); W-ABroadcast(2, m9)

and assume the following sequences of W-ADeliver(r, m) (for brevity, we denote next
W-ADeliver(r, m) by D(r, m)):

– onp1: D(0, m1); D(1, m2); D(0, m4); D(2, m3); D(0, m7); . . .
– onp2: D(0, m4); D(0, m1); D(1, m5); D(0, m7); D(2, m3); . . .
– onp3: D(0, m4); D(0, m7); D(2, m3); D(1, m8); . . .

The weak ordering property holds for roundr = 2 (m 3 is the first message withr = 2
delivered byp1, p2, p3), but does not hold for eitherr = 0 or r = 1. The oracle can
make mistake: it does not have to satisfy the weak ordering property for all rounds.

The definition of the oracle assumes that each process executes W-ABroadcast(r, m)
sequentially for roundsr = 1, 2, . . .. Let firstp(r) denote the first message of round
r delivered byp. Thek-Weak Atomic Broadcast (or k-WAB) Oracle is defined by the
following properties:

– Validity: If a correct process executes W-ABroadcast(r, m), then all correct pro-
cesses eventually execute W-ADeliver(r, m).

– Uniform Integrity: For every par(r, m), W-ADeliver(r, m) is executed at most
once, and only if W-ABroadcast(r, m) was previously executed.

– Eventual Uniform k-Order: If all processes execute an infinite sequence of
W-ABroadcast(r, m), for r = 1, 2, . . ., then there existk valuesr1, . . . , rk such
that, for alli ∈ [1, k] and all processesp, q, we havefirstp(ri) = firstq(ri).



12 André Schiper

Algorithm 2 Ben-Or binary consensus algorithm: code of processp (f < n/2)
1: Consensus (initV al):

2: estimatep ← initV al
3: decided← false
4: rp ← 0

5: while true do

6: send(FIRST, rp, estimatep) to all
7: wait until received(FIRST, rp, v) from n− f processes
8: if ∃ v s.t. received(FIRST, rp, v) from n− f processesthen
9: estimatep← v

10: else
11: estimatep ← ⊥

12: send(SECOND, rp, estimatep) to all
13: wait until received(SECOND, rp, v) from n− f processes
14: if not decidedp and (∃ v �= ⊥ s.t. received(second, rp, v) from f + 1 processes)then
15: decidev {continue the algorithm after the decision}
16: decidedp ← true
17: if ∃ v �= ⊥ s.t. received(SECOND, rp, v) then
18: estimatep ← v
19: else
20: estimatep ← coin() {toss the coin}

21: rp ← rp + 1

5.2 Solving Consensus with 1-WAB Oracles

Consensus can be solved in an asynchronous system augmented with a 1-WAB ora-
cle [22]. The algorithm is inspired by Ben-Or’s randomised binary consensus algo-
rithm [1] (Algorithm 2). Ben-Or’s algorithm executes a sequence of rounds, where each
round has two phases (n is the number of processes,f < n/2 is the maximum number
of processes that can crash):

– Phase I, lines 6-11: processp sends its currentestimatep (0 or 1) of the decision
value to all, and waits to receive the estimate value fromn − f processes. If the
same valuev is received fromn − f processes, thenestimatep is updated to the
value received, elseestimatep is set to⊥.

– Phase II, lines 12-20: processp sends again itsestimatep to all, and waits to re-
ceive the estimate value fromn− f processes. If the same valuev is received from
f + 1 processes, thenp decidesv. If some value different from⊥ is received, then
estimatep is set tov, otherwiseestimatep is updated with random value (0 or 1) .

Algorithm 3 is the 1-WAB consensus algorithm. Lines 6-22 of Algorithm 2 are iden-
tical to lines 6-19 of Algorithm 3. Line 20 in Algorithm 2 (random coin toss) is replaces
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with line 23 in Algorithm 3. Lines 6-8 in Algorithm 3 are new (query and response
of the oracle): the weak ordering oracle replaces the coin toss. It is interesting to note
that, contrary to Ben-Or’s algorithm which solves only the binary consensus problem,
the 1-WAB consensus algorithm solves the non-binary consensus problem. Proving that
the Algorithm 3 satisfies the safety properties of consensus is not very different from
the proof of Ben-Or’s algorithm. Proving termination relies on the eventual uniform
1-WAB property of the 1-WAB oracle.

Algorithm 3 Consensus alg. using 1-WAB oracles: code of processp (f < n/2)
1: Consensus (initV al):

2: estimatep ← initV al
3: decided← false
4: rp ← 0

5: while true do

6: W-ABroadcast(rp, estimatep)
7: wait until W-ADeliver of the first message(rp, v)
8: estimatep ← v

9: send(FIRST, rp, estimatep) to all
10: wait until received(FIRST, rp, v) from n− f processes
11: if ∃ v s.t. received(FIRST, rp, v) from n− f processesthen
12: estimatep ← v
13: else
14: estimatep ← ⊥

15: send(SECOND, rp, estimatep) to all
16: wait until received(SECOND, rp, v) from n− f processes
17: if not decidedp and (∃ v �= ⊥ s.t. received(second, rp, v) from f + 1 processes)then
18: decidev {continue the algorithm after the decision}
19: decidedp ← true
20: if ∃ v �= ⊥ s.t. received(SECOND, rp, v) then
21: estimatep ← v
22: else
23: estimatep ← initV al

24: rp ← rp + 1

5.3 Solving Atomic Broadcast with WAB Oracles

A Weak Atomic Oracle (or WAB Oracle) is ak-WAB Oracle wherek = ∞. The 1-
WAB consensus algorithm can be extended to an atomic broadcast algorithm, which re-
quires a WAB oracle [22]. Contrary to the classical solution, in which atomic broadcast
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is reduced to consensus [5], the solution directly relies on the oracle. This shows that
consensus can sometimes be bypassed. Moreover, contrary to failure detection based
solution, the algorithm does not suffer from the failure detection dilemma. There is no
timeout to tune, and no notion ofreaction time to failures. The performance is as good
in the presence of failures as in the absence of failures.

6 Conclusion

While fault-tolerant distributed algorithms in the context of replication are nowadays
well understood, the important trade-off related to the reaction to process failures has
not attracted the attention that it deserves. The trade-off is between (1) fast reaction to
crashes, and (2) infrequent wrong failure suspicions. We have seen how to escape from
this trade-off using semi-passive replication (which relies on consensus) rather than pas-
sive replication (which relies on group membership). More generally, we have seen how
to escape from this trade-off by distinguishing on one hand input-triggered suspicions
that do not lead to process exclusions, and on the other hand output-triggered suspi-
cions that lead to process exclusion. Finally, while the timeout trade-off remains for
input-triggered suspicions, we have seen that it can be avoided by using weak ordering
oracles instead of failure detectors.

These trade-offs are important in the context of quantitative evaluation of consen-
sus and atomic broadcast algorithms, and more generally of group communication al-
gorithms. Such evaluations represent an important challenge. Some preliminary results
have been obtained, but much more needs to be done. Understanding group commu-
nication algorithms from a quantitative point of view is mandatory, before considering
that group communication is a solved problem.
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