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Abstract. Recently rule based languages focussed on the use of rewrit-
ing as a modeling tool which results in making specifications executable.
To extend the modeling capabilities of rule based languages, we explored
in a previous work the possibility of making the rule applications subject
to probabilistic choices, and started to study the generalization of the
results in the rewriting community about abstract reduction systems to
systems with probabilistic choices.
This paper presents a new contribution on this line by presenting a gen-
eralization of classical equational proof theory. We obtain a nice proof
theory which is sound and complete, and which has initial models.

1 Introduction

Term rewriting has been developed since the last thirty years, leading to a deep
and solid corpus of knowledge about the rewrite relation induced by a set of
rewrite rules: see [1, 12] for example for an introduction. More recently, rule
based languages focussed on the use of rewriting as a modeling tool, which results
in making the out-coming specification executable in a very efficient way [10].
Such languages enlighten the fundamental role of rewrite strategies, either for
computation or for deduction.

To extend the modeling capabilities of rule based languages, we explored in a
previous work the possibility of making the rule application subject to probabilis-
tic choices [3]. We introduced the notion of probabilistic strategy, and showed
that it provides a natural and nice framework to model and prototype systems
with probabilistic choices [3]. This was demonstrated on several examples, deal-
ing with classical toy problems as well as for the prototyping of randomized
algorithms [3].

Dealing with rewriting with probabilistic firing of rules leads to numerous
theoretical problems about the understanding of the underlying theoretical no-
tions and results. In our previous work, we started to discuss what could be
the generalization of the classical definitions in rewriting community for systems
with probabilistic firing of rules. Indeed, in [3], we introduce a notion of prob-
abilistic abstract reduction system, and introduce notions such as almost-sure
termination or confluence, probabilistic termination or confluence, and we give
some generalizations of the results known in the classical setting: see [3] for the
details.



In this paper, we try to go to next step which is to understand what could
be the generalization of the notion of equational proof theory.

It turns out that the theory that we obtain, which was originally motivated
by probabilities, is actually closer to fuzzy logic, and could actually be called
fuzzy equational proof theory: see [7] for an introduction to deductive systems
in fuzzy logic.

Many papers have been devoted to the question of understanding the links
between logic and probabilities: see for example [15, 2, 8, 15, 6, 5, 9, 13, 16]. Among
them, some focus particularly on the links between fuzzy logic and probabilities:
see for example [8, 11, 14]. However, one may understand that fuzzy logic and
probability theory are à priori distinct since these two theories are different and
can prove different things: see [4, 8] for discussions.

However, we think that this work can help to understand the proof theory
of systems with randomized choices, or at least with fuzziness.

In Section 2, we fix some way of measuring derivations. In Section 3, we recall
some basic usual notions of classical equational proof theory. In Section 4, we
introduce the notion of valued relation, that we also call ∗-relation. In Section
5, we introduce the rewrite relation induced by a set of valued identities. This
relation is characterized as the smallest ∗-similarity relation, closed by substitu-
tion, and closed by Σ-operations in Section 6. We introduce valued equational
proof theory in Section 7. We define its models in Section 8. Sections 9 and 10
prove that valued equational proof theory is respectively sound and complete.
Finally, we conclude in Section 11.

Note that the plan and the organization of this paper follows closely the
presentation of the classical settings in [1].

2 Measuring derivations

We will first need to have a way to put a measure (or according to the the fuzzy
logic view a “truth degree”) on rewrite steps. We propose to do it abstractly, by
defining the notion of operation.

Definition 1 (Operation). Let Π be a complete lattice: Π is a set with some
partial order ≤ on it, such that any finite subset A ⊆ Π has a maximum denoted
by max(A), and such that any subset A ⊆ Π has a least upper bound denoted by
sup(A). Such a set must1 have a minimal element 0 and a maximal element 1.

A operation on Π is an associative and commutative function from Π ×Π
to Π.

Sometimes, we will need to avoid bad ones (our good operations corresponds
to the notion of t-norm in fuzzy logic: see for example [7]).

Definition 2 (Good operation). An operation is good if furthermore:

1. x ≤ x′ and y ≤ y′ implies x ∗ y ≤ x′ ∗ y′;

1 Consider 0 = sup{x|∀y ∈ Π,x ≤ y} and 1 = sup(Π).



2. x ∗ 1 ≤ x for all x;
3. 0 ∗ x = 0 for all x.

For example, one can take:

Example 1 (Counting rewrite steps). Π = N ∪ {+∞}, 0 = +∞,1 = 0, x ≤ y
true iff y is less or equal to x, and x ∗ y defined as x+ y: that will correspond in
what follows to counting the number of rewrite steps in a derivation.

Example 2 (Product logic). Π = [0, 1],0 = 0, 1 = 1 and x ∗ y defined as xy: that
will correspond in what follows to evaluation of the truth degree of a derivation
in product logic.

Example 3 (Lukasiewicz logic). Π = [0, 1],0 = 0, 1 = 1, and x ∗ y defined as
max(x+y−1, 0): that will correspond in what follows to evaluation of the truth
degree of a derivation in Lukasiewicz Logic.

3 Signature, Terms, Positions, Substitutions

We now recall some classical definitions in rewriting community: see for example
[1, 12].

Definition 3 (Signature). A signature Σ is a set of function symbols, where
each f ∈ Σ is associated with a non-negative integer n, the arity of f . For every
n ≥ 0, we denote by Σ(n) the set of elements of Σ of arity n. A constant symbol
is an element of Σ(0).

Definition 4 (Terms). Let Σ be a signature, and X a set of variables with
Σ ∩X = ∅. The set T (Σ,X) of Σ-terms over X is inductively defined as:

1. X ⊆ T (Σ,X);
2. for all n ≥ 0, for all f ∈ Σ(n), and all t1, . . . , tn ∈ T (Σ,X), we have

f(t1, . . . , tn) ∈ T (Σ,X).

For example, t = f(e, f(x, i(x))) is a term over signature Σ = {f, i, e} and
X = {x}.

Definition 5 (Positions). Let s ∈ T (Σ,X) be a term over signature Σ.

1. The set of positions of a term s is the set Pos(s) of strings over the alphabet
of positive integers, which is inductively defined as follows:
(a) for x ∈ X, Pos(x) = {ε}, where ε is the empty word;
(b) for n ≥ 0, f ∈ Σ(n), s1, . . . , sn ∈ T (Σ,X), Pos(f(s1, . . . , sn)) = {ε} ∪⋃n

i=1{ip|p ∈ Pos(si)}.
2. The sub-term of s at a position ρ ∈ Pos(s), denoted by s/ρ is defined by

induction on the length of ρ by: for all n ≥ 0, f ∈ Σ(n), s, s1, . . . , sn ∈
T (Σ,X)
(a) s/ε = s;



(b) f(s1, . . . , sn)/iρ = si/ρ.
3. s[t]ρ denotes the term that is obtained by replacing s/ρ by t in s, that is, for

all n ≥ 0, f ∈ Σ(n), s, s1, . . . , sn ∈ T (Σ,X),
(a) s[t]ε = t;
(b) f(s1, . . . , sn)[t]iρ = f(s1, . . . , si[t]ρ, . . . , sn).

For the above example, we have Pos(t) = {ε, 1, 2, 21, 22, 221}, t/22 = i(x),
t[i(e)]22 = f(e, f(x, i(e))).

Definition 6 (Substitution). Let Σ be a signature, and X a set of variables
with Σ ∩ X = ∅. A T (Σ,X)-substitution, or simply substitution, is a function
σ : X → T (Σ,X) such that σ(x) 6= x for only finitely many x.

Any T (Σ,X)-substitution can be extended in a unique way to a mapping
σ′ : T (Σ,X) → T (Σ,X) defined as follows:

1. σ′(x) = σ(x) for x ∈ X;
2. σ′(f(s1, . . . , sn)) = f(σ(s1), . . . , σ(sn)) for all n ≥ 0,f ∈ Σ(n), s1, . . . , sn ∈

T (Σ,X).

From now, as it is usually done, we will not distinguish between substitutions
and their extensions.

On our previous example, if we take substitution σ(x) = i(f(e, e)), we have
σ(t) = f(e, f(i(f(e, e)), i(i(f(e, e))))).

Lemma 1. For any terms s, t ∈ T (Σ,X), for any substitution σ, and for any
position ρ ∈ Pos(s), we have:

1. σ(s)/ρ = σ(s/ρ)
2. σ(s[t]ρ) = (σ(s)[σ(t)]ρ

Proof. Easy induction on the length of ρ.

Definition 7 (Identity). Let Σ be a signature and V a countably infinite set
of variables disjoint from Σ.

A Σ-identity, or simply identity, is given by a multi-pair {s, t} with s ∈
T (Σ, V ) and t ∈ T (Σ, V ). Such an identity will be written as s ≈ t.

4 Valued-relations

We assume from now that some operation ∗ on some set Π is fixed.
In this section, we introduce the notion of valued relation, that we will also

call ∗-operation.

Definition 8 (Valued relation R). Let A be a countable set.
A valued relation (or ∗-relation) R on A is a function from A×A→ Π.

This is a clear generalization of the classical notion of binary relation: to a
classical binary relation Rc on A corresponds the valued relation R defined by
R(a, b) = 1 if Rc(a, b), 0 otherwise.



Definition 9 (Relations Rn). Let R be a ∗-relation on A. Let n ≥ 0 be some
integer.

∗-relation Rn is defined by induction on n ≥ 0 as follows:

1. R0 is the identity relation: for all a, b ∈ A, R(a, b) is 1 if b = a, 0 otherwise;
2. R1 is ∗-relation R;
3. Rn is defined for all a, b ∈ A by

Rn(a, c) = sup{Rn−1(a, b) ∗R(b, c)|b ∈ A}

Definition 10 (Relations R−1). Let R be a ∗-relation on A. ∗-relation R−1

is defined for all a, b ∈ A by

R−1(a, b) = R(b, a).

Definition 11 (Comparing ∗-relations). Let R1, R2 be two ∗-relations on A.
We say that R1 is included in R2, denoted by R1 ⊆ R2, if for all a, b ∈ A,

R1(a, b) ≤ R2(a, b).

Definition 12 (Union of ∗-relations).

1. Let R1, R2 be two ∗-relations on A.
The union of R1 and R2, denoted by R1 ∪R2 is the ∗-relation defined for all
a, b ∈ A by

R1 ∪ R2(a, b) = max{R1(a, b), R2(a, b))};

2. Let (Ri)i∈N be a family of ∗-relations on A.
The union of the (Ri)i∈N, denoted by

⋃
i∈N

Ri is the ∗-relation defined for
all a, b ∈ A by

(
⋃

i∈N

Ri)(a, b) = sup{Ri(a, b)|i ∈ N}.

We are now ready to give the generalization of the notion of equivalence
relation in the classical setting (we call it “similarity relation” according to fuzzy
logic terminology: see for example [7]):

Definition 13 (∗-similarity relation). Let R be a ∗-relation on A.
R is said to be a ∗-similarity relation iff

1. it is reflexive: Id ⊆ R;
2. it is symmetric: R−1 ⊆ R;
3. it is transitive: R2 ⊆ R.

As in the classical settings, one can easily prove:

Proposition 1 (Reflexive transitive closure of a ∗-relation). Let R be a
symmetric ∗-relation on A.

The ∗-relation R∗ defined by

R∗ =
⋃

i∈N

Ri,

called the transitive reflexive closure of R, is the smallest (for inclusion) ∗-
similarity relation which contains R.



5 Rewriting relation induced by a set of valued identities

We now introduce the rewrite relation induced by a set of valued identities. We
first define what a valued identity is:

Definition 14 (∗-identities). Let Σ be a signature and V a countably infinite
set of variables disjoint from Σ.

A ∗-Σ-identity, or simply ∗- identity, or valued identity, is a Σ-identity s ≈ t
plus some p ∈ Π. p is called the cost of the ∗-identity.

Such a ∗-identity will be written as s ≈p t.

We can now define:

Definition 15 (Reduction relation →E). Let E be a finite set of ∗-Σ-identities.
The reduction relation →E : T (Σ,X) × T (Σ,X) → Π is the ∗-relation on
T (Σ,X) defined as (we write s→E

p t as a synonym for (s→E t) = p):

1. s →E
p t if there exists a ∗-identity l ≈p r in E, ρ a position of s, and σ

a substitution such that s/ρ = σ(l), t = s[σ(r)]ρ, and p maximal with this
property;

2. s→E
0
t otherwise.

Definition 16 (Relation ↔E, ↔E∗). Let E be a finite set of ∗-Σ-identities.

The ∗-relation ↔E is defined as →E ∪(→E)
−1

.

The ∗-relation ↔E∗ is defined as the reflexive transitive closure of ↔E.

6 Characterizing the induced rewriting relation

We now show that ↔E∗ can be characterized as the smallest ∗-similarity re-
lation on T (Σ, V ) which contains E, is closed by substitution, and closed by
Σ-operations.

We need first some new definitions:

Definition 17 (Closure by substitution). Let ≡ be some ∗-relation on T (Σ,X).

Relation ≡ is closed under substitution iff, for all s, t ∈ T (Σ,X), and for all
substitution σ,

s ≡ t ≤ σ(s) ≡ σ(t).

Definition 18 (Compatibility with Σ-operations). Let ≡ be some ∗-relation
on T (Σ,X).

Relation ≡ is compatible with Σ-operations iff, for all n ≥ i ≥ 0, f ∈ Σ(n)

and s1, . . . , si−1, s, t, si+1, . . . , sn ∈ T (Σ,X), we have

s ≡ t ≤ f(s1, . . . , si−1, s, si+1, . . . , sn) ≡ f(s1, . . . , si−1, t, si+1, . . . , sn).



Definition 19 (Closure by Σ-operations). Let ≡ be some ∗-relation on
T (Σ,X).

Relation ≡ is closed by Σ-operations iff, for all n ≥ 0, f ∈ Σ(n) and
s1, . . . , sn, t1, . . . , tn ∈ T (Σ,X), we have

(s1 ≡ t1) ∗ (s2 ≡ t2) ∗ . . . ∗ (sn ≡ tn) ≤ f(s1, . . . , sn) ≡ f(t1, . . . , tn).

Definition 20 (Compatibility with Σ-contexts). Let ≡ be some ∗-relation
on T (Σ,X).

Relation ≡ is compatible with Σ-contexts if, for all s, s′, t ∈ T (Σ,X) and for
all position ρ, we have

s ≡ s′ ≤ t[s]ρ ≡ t[s′]ρ.

Proposition 2. Let E be a finite set of ∗-Σ-identities. The reduction relation
→E is closed under substitutions and compatible with Σ-operations.

Proof. Assume that s→E
p t with p > 0. Then there exists a ∗-Σ-identity l ≈p r

in E, ρ a position of s, and σ′ a substitution such that s/ρ = σ′(l), t = s[σ′(r)]ρ.
From Lemma 1, we have σ(s)/ρ = σ(s/ρ) = σ(σ′(l)) and σ(t) = σ(s[σ′(r)]ρ) =

σ(s)[σσ′(r)]ρ. From definition of →E , we get p = s→E t ≤ σ(s) →E σ(t).
In a same vein, let n ≥ 0, f ∈ Σ(n) and s1, . . . , sn ∈ T (Σ,X). We have

f(s1, . . . , si−1, s, si+1, . . . , sn)/i.ρ = σ′(l) and f(s1, . . . , si−1, s, si+1, . . . , sn)[σ′(r)]i.ρ
= f(s1, . . . , si−1, s[σ

′(r)]ρ, si+1, . . . , sn) = f(s1, . . . , si−1, t, si+1, . . . , sn). From
definition of →E we get p = s →E t ≤ f(s1, . . . , si−1, s, si+1, . . . , sn) →E

f(s1, . . . , si−1, t, si+1, . . . , sn).
We get s→E t ≤ σ(s) →E σ(t) and s→E t ≤ f(s1, . . . , si−1, s, si+1, . . . , sn) →E

f(s1, . . . , si−1, t, si+1, . . . , sn) when p > 0, and since this clearly also holds for
p = 0 (recall that 0 is a minimal element of Π), this holds for all p ∈ Π .

Proposition 3. Assume that ∗ satisfies 0 ∗ x = 0 for all x, and x ∗ y ≤ x′ ∗ y′

whenever x ≤ x′ and y ≤ y′.
Then ↔E∗ is closed under substitutions and compatible with Σ-operations.

Proof. An easy generalization of the previous proof shows that for all n ≥ 0, (↔E

)n is closed under substitutions and compatible with Σ-operations. Taking sup
over n over both sides of the inequalities s(↔E)nt ≤ σ(s)(↔E)nσ(t) and s(↔E

)nt ≤ f(s1, . . . , si−1, s, si+1, . . . , sn)(↔E)nf(s1, . . . , si−1, t, si+1, . . . , sn) yields
the result.

Proposition 4. Let ≡ be some ∗-relation on T (Σ, V ).
Relation ≡ is compatible with Σ-operations iff it is compatible with Σ-contexts.

Proof. Indirect sense is obvious. Direct sense, is easy by an easy induction on
the length of position ρ.

Proposition 5. Let ≡ be some ∗- relation on T (Σ, V ).
Assume that ∗ satisfies x ≤ x′ and y ≤ y′ implies x∗y ≤ x′ ∗y′ and x∗1 ≤ x

for all x.
Assume that ≡ is reflexive and transitive.
Relation ≡ is compatible with Σ-operations iff it is closed under Σ-operations.



Proof. Direct sense is easy using transitivity. Indirect sense is easy using reflex-
ivity and x ∗ 1 ≤ x for all x.

The main theorem of this section is:

Theorem 1. Let E be a finite set of ∗-Σ-identities.
Assume that ∗ is good.
Relation ↔E∗ is the smallest (for inclusion) ∗-relation on T (Σ, V ) which

contains E, is a ∗-similarity relation, is closed by substitution, and is closed by
Σ-operations.

Proof. ↔E∗ is an ∗-similarity relation from Proposition 1. It is also closed by
substitution and compatible with Σ-operations by Proposition 3. from Proposi-
tion 5, it is closed under Σ-operations. Furthermore, it contains E.

Conversely, assume that ≡ is a ∗-similarity relation, closed by substitution,
and by Σ-operations. If we prove that →E⊆≡ we are done, since that implies
↔E⊆≡ ∪ ≡−1⊆≡, and from Proposition 1, that in turn implies ↔E∗⊆≡. As-
sume that s→E

p t for some s, t ∈ T (Σ, x), p ∈ Π . There exists a ∗-identity l ≈p r
in E, ρ a position of s, and σ a substitution such that s/ρ = σ(l), t = s[σ(r)]ρ .
Since ≡ contains E, from l ≈p r ∈ E, we deduce l →E r ≤ l ≡ r. Closure by
substitution yields p = l →E r ≤ σ(l) ≡ σ(r). Closure by Σ-operations yields
by Proposition 5 compatibility with Σ-operations, and hence compatibility with
Σ-contexts. We obtain l →E r ≤ σ(l) ≡ σ(r) ≤ s = s[σ(l)]ρ ≡ s[σ(r)]ρ = t, and
hence →E⊆≡.

7 ∗-equational logic

The previous theorem says that ↔E∗ can be obtained by starting with the
∗-relations of E, and then closing by reflexivity, symmetry, transitivity, substi-
tution, and Σ-operations.

Describing this closing process as inference rules, leads to ∗-equational logic.

Definition 21 (∗-equational logic).
∗-equational logic is the logic obtained using the following inference rules:

(s ≈q t) ∈ E

E ` s ≈q t

E ` s ≈1 s

E ` s ≈q t

E ` t ≈q s

E ` s ≈q t E ` t ≈r u

E ` s ≈q∗r u

E ` s ≈q t

E ` σ(s) ≈q σ(t)



E ` s1 ≈q1
t1 E ` sn ≈qn

tn
E ` f(s1, . . . , sn) ≈q1∗q2...∗qn

f(t1, . . . , tn)

We can then introduce the notion of provability degree of some Σ-identity:

Definition 22 (Provability degree). Let s, t ∈ T (Σ,X) be two Σ-terms. The
provability degree of s ≈ t, denoted by |s ≈ t|, is defined as

|s ≈ t| = sup{p|E ` s ≈p t}

The results of previous section can then be restated as:

Theorem 2. Let E be a finite set of ∗-Σ-identities.
Assume that ∗ is good.
For all s, t ∈ T (Σ,X),

|s ≈ t| =↔E∗ (s, t).

8 Algebras

We are now going to talk about algebras and models (we still follow the presen-
tation of (classical) equational proof theory of [1]).

From now, we assume that some good operation ∗ on a complete lattice Π is
fixed.

Definition 23 (Σ-algebra). Let Σ be a signature. A Σ-algebra A consists of

1. a carrier set A;
2. a mapping that associate to each function symbol f ∈ Σ(n) a function fA :

An → A;
3. a ∗-congruence =A on A: that is to say, a ∗-similarity relation =A which is

compatible with the interpretations of all function symbols of A. That means
that for all n ≥ 0, f ∈ Σ(n), a1, . . . , an, b1, . . . , bn ∈ A, we have (for a, b ∈ A,
we note a =A b for =A (a, b)):

(a1 =A b1) ∗ . . . ∗ (an =A bn) ≤ (fA(a1, . . . , an) =A fA(b1, . . . , bn)).

We can now give the definition of an homomorphism between two Σ-algebras
(when =A is some ∗-congruence on A, and p ∈ Π is some value, we note a =A

p b

as a synonym for =A (a, b) = p):

Definition 24 (Homomorphism). Let Σ be a signature, and A,B be two Σ-
algebras.

A Σ-homomorphism φ : A → B is a mapping φ : A → B such that for all
n ≥ 0, f ∈ Σ(n), and a, b, a1, . . . , an ∈ A, we have:

1. φ(fA(a1, . . . , an)) =B
1
fB(φ(a1), . . . , φ(an));

2. a =A
1
b implies φ(a) =B

1
φ(b).



Lemma 2 (Composition of homomorphisms). Let Σ be a signature, and
A,B, C be three Σ-algebras.

The composition of a Σ-homomorphism φ : A → B and a Σ-homomorphism
ψ : B → C is a Σ-homomorphism ψ ◦ φ : A → C.

Proof. For all n ≥ 0, f ∈ Σ(n), and a1, . . . , an ∈ A, we have φ(fA(a1, . . . , an)) =B
1

fB(φ(a1), . . . , φ(an)). We obtain ψ◦φ(fA(a1, . . . , an)) =C
1
ψ(fB(φ(a1), . . . , φ(an))).

We deduce ψ ◦ φ(fA(a1, . . . , an)) =C
1
fC(ψ ◦ φ(a1), . . . , ψ ◦ φ(an)) from ψ ◦

φ(fA(a1, . . . , an)) =C
1
ψ(fB(φ(a1), . . . , φ(an))) and fC(ψ◦φ(a1), . . . , ψ◦φ(an)) =C

1

ψ(fB(φ(a1), . . . , φ(an))) using transitivity and 1 ∗ 1 = 1.
Assume that a =A

1
b. We have φ(a) =B

1
φ(b), and then ψ(φ(a)) =C

1
ψ(φ(b)).

We then introduce the Crisp term algebra.

Definition 25 (Crisp Term Algebra). Let Σ be a signature and X a count-
able set of variables disjoint from X.

The Crisp Σ-term algebra T=(Σ,X) has T (Σ,X) as carrier set, = as ∗-
relation on it (that is to say =T=(Σ,X) (s, t) = 1 if s = t and 0 otherwise), and
interprets the function symbols f ∈ Σ(n) as follows:

fT=(Σ,X)(t1, . . . , tn) = f(t1, . . . , tn).

The following remark will be useful:

Lemma 3 (Substitution versus Homomorphisms). Let Σ be a signature
and X a set of variables disjoint from X. A substitution σ is an homomorphism
from the Crisp Term Algebra T=(Σ,X) to itself.

We have all the ingredients to define the notion of validity of a valued identity:

Definition 26 (Validity of an identity). A ∗-Σ-identity s ≈p t holds in a Σ-
algebra A, denoted by A |= s ≈p t iff, for all Σ-homomorphism φ : T=(Σ,X) →
A, we have p ≤=A (φ(s), φ(t)).

We obtain the notion of model of a set of valued identities:

Definition 27 (Model of a set of ∗-Σ-identities). Let Σ be a signature and
E a finite set of ∗-Σ-identities. A Σ-algebra A is a model of E, denoted by
A |= E, iff every ∗-Σ-identity of E holds in A.

9 Soundness of ∗-equational proof theory

In this section, we prove that ∗-equational proof theory is sound. To do so, we
introduce the notion of truth degree of an identity.

Definition 28 (Truth degree of an identity). Let Σ be a signature and E
a finite set of ∗-Σ-identities. Let s, t ∈ T (Σ,X) be two terms.

The truth degree of identity s ≈ t, denoted by ‖s ≈ t‖, is defined as

‖s ≈ t‖ = inf{p|A |= s ≈p t for some Σ-algebra A with A |= E}



Soundness of ∗-equational proof theory can then be expressed by:

Proposition 6 (Soundness). Assume that ∗ is good.
Then ∗-equational proof theory is sound: for any finite set E of ∗-Σ-identities,

for any terms s, t ∈ T (Σ,X), we have

|s ≈ t| ≤ ‖s ≈ t‖.

Proof. If we prove that for any Σ-algebra A with A |= E, and for all rules of
∗-equational theory the conclusion follows from the premise, we are done: taking
supremum (over proofs) of {p|E ` s ≈p t} and infimum (over Σ-algebras) of
{p|A |= s ≈p t,A |= E} yields the required inequality.

Since A |= E, we have A |= s ≈q t for all s ≈q t ∈ E. From reflexivity
of =A, we have φ(s) =A

1
φ(s) for all Σ-homomorphism φ : T=(Σ,X) → A,

and hence A |= s ≈1 s. From symmetry of =A, A |= s ≈q t clearly im-
plies A |= t ≈q s. Now A |= s ≈p t and A |= t ≈q u implies that A |=
s ≈q∗r u: since =A is transitive, for any Σ-homomorphism φ : T=(Σ,X) → A
we have =A (φ(s), φ(t))∗ =A (φ(t), φ(u)) ≤=A (φ(s), φ(u). Now, since ∗ is
good, from p ≤=A (φ(s), φ(t)) and q ≤=A (φ(t), φ(u)) we deduce p ∗ q ≤=A

(φ(s), φ(t))∗ =A (φ(t), φ(u)) ≤=A (φ(s), φ(u)). A |= s ≈q t implies A |= σ(s) ≈q

σ(t) for all substitution σ: indeed, for any Σ-homomorphism φ : T=(Σ,X) → A
we have A |= φ(σ(s)) ≈q φ(σ(t)) since by Lemma 2 and Lemma 3 φ ◦ σ
is a particular Σ-homomorphism φ : T=(Σ,X) → A. Now A |= s1 ≈q1

t1
. . .A |= sn ≈q1

tn implies A |= f(s1, . . . , sn) ≈q1∗q2∗...∗qn
f(t1, . . . , tn). In-

deed, by hypothesis for any Σ-homomorphism φ : T=(Σ,X) → A we have
q1 ≤=A (φ(s1), φ(t1)), . . . , qn ≤=A (φ(sn), φ(tn)). From the goodness of ∗ we
get q1 ∗ . . . ∗ qn ≤=A (φ(s1), φ(t1)) ∗ . . . ∗ =A (φ(sn), φ(tn)) which is less than
=A (φ(f(s1, . . . , sn)), φ(f(t1, . . . , tn))) because =A is a congruence.

10 Completeness of ∗-equational proof theory

We now prove completeness of ∗-equational proof theory.
First, we need to consider the term algebra with other ∗-congruence relation

than equality =.

Definition 29 (≡-Term Algebra). Let Σ be a signature and X a set of vari-
ables disjoint from X.

Let ≡ be some ∗-congruence relation on T (Σ,X).
The Σ-term algebra associated to ≡, denoted by T≡(Σ,X) , has T (Σ,X) as

carrier set, ≡ as ∗-congruence on it, and interprets the function symbols f ∈ Σ (n)

as follows:
fT≡(Σ,X)(t1, . . . , tn) = f(t1, . . . , tn).

In other words, the crisp Σ-term algebra T=(Σ,X) is the Σ-term algebra
associated to equality =.

We can now observe:



Proposition 7 (Provability congruence). Let E be a finite set of ∗-Σ-identities.
Assume that ∗ is good and is a continuous function.

The ∗-relation on T (Σ,X) defined by

(s ≡ t) = |s ≈ t|

for all s, t ∈ T (Σ,X) is a ∗-congruence relation.
This ∗-congruence will be called the provability congruence.

Proof. For all s ∈ T (Σ,X), from E ` s ≈1 s, we get |s ≈ s| ≥ 1. We have
|t ≈ s| = |s ≈ t| for all s, t ∈ T (Σ,X), since one can swap the role of t and s in
any ∗-equational proof. Let ε > 0. For any δ > 0, there exists a proof E ` s ≈p t
for some p ≥ |s ≈ t| − δ, and a proof E ` s ≈q t for some q ≥ |t ≈ u| − δ. From
the transitivity rule of ∗-equational theory, we have E ` s ≈r u for r = p ∗ q,
and so |s ≈ u| ≥ r . Since ∗ is a continuous function, one can choose δ so that
r = p∗q ≥ |s ≈ t|∗ |t ≈ u|−ε. This yields |s ≈ u| ≥ |s ≈ t|∗ |t ≈ u|−ε. Since this
is true for all ε > 0, we must have |s ≈ u| ≥ |s ≈ t| ∗ |t ≈ u|. Let n ≥ 0, f ∈ Σ(n)

and a1, . . . , an, b1, . . . , bn ∈ T (Σ,X). Let ε > 0. For all δ, and 1 ≤ i ≤ n, there
exists a proof of E ` ai ≈pi

bi with pi ≥ |ai ≈ bi| − δ. From the congruence
rule of ∗-equational theory, we have E ` f(a1, . . . , an) ≈q f(b1, . . . , bn), with
q = p1 ∗ . . . ∗ pn, and hence |f(a1, . . . , an) ≈ f(b1, . . . , bn)| ≥ p1 ∗ . . . ∗ pn = q.
Observing that have (|a1 ≈ b1| − δ) ∗ . . . ∗ (|an ≈ bn| − δ) ≤ p1 ∗ . . . ∗ pn =
q, and since ∗ is continuous, one can choose δ such that this q satisfies q ≥
|a1 ≈ b1| ∗ . . . ∗ |an ≈ bn| − ε. Since this is true for all ε > 0, we must have
|f(a1, . . . , an) ≈ f(b1, . . . , bn)| ≥ |a1 ≈ b1| ∗ . . . ∗ |an ≈ bn|.

We now introduce some new binary relation:

Proposition 8 (Relation ∼=). Let A be a Σ-algebra.
The (classical) binary relation on A defined by

x ∼= y iff =A (x, y) = 1

1. is an equivalence relation;
2. is compatible with the interpretation of all function symbols of A: for all

n ≥ 0, f ∈ Σ(n), a1, . . . , an, b1, . . . , bn ∈ A, we have a1
∼= b1, . . . , an

∼= bn
implies fA(a1, . . . , an) ∼= fA(b1, . . . , bn));

3. is compatible with the ∗-congruence relation of A: for all a1, a2, b1, b2 ∈ A,
we have a1

∼= b1, a2
∼= b2 implies =A (a1, a2) ==A (b1, b2).

Proof. Point 1. follows from reflexivity, symmetry, and transitivity of =A. Point
2. follows from ∗-congruence of =A. Point 3. follows from transitivity of =A.

To anyΣ-algebra one can associate its quotient through the previous relation:

Definition 30 (Quotient algebra). Let A be a Σ-algebra. The Σ-algebra
whose carrier set is A/ ∼=, the equivalence classes of A with respect to the previ-
ous relation ∼=, whose ∗-similarity relation is

=A/∼= ([s]/ ∼=, [t]/ ∼=) ==A (s, t)



, and whose interpretation for all n ≥ 0, f ∈ Σ(n), a1, . . . , an ∈ A is given by

fA/∼=([a1]/ ∼=, . . . , [an]/ ∼=) = [fA(a1, . . . , an)]/ ∼=

is called the quotient algebra of A trough ∼=, denoted by A/ ∼=.

We can now define a particular model, called the initial model, defined as the
quotient of Σ-term algebra associated to the provability congruence through ∼=.

Definition 31 (Initial model). Let Σ be a signature, and E be a finite set of
∗-Σ-valued identities.

Let T≡(Σ,X) be the Σ-term algebra associated to the provability congruence.

The quotient of this Σ-term algebra through the corresponding ∼= is called the
initial model of E, and is denoted by IE . Formally,

IE = (T≡(Σ,X))/ ∼= .

The following result is easy:

Lemma 4. Any Σ-homomorphism φ : T=(Σ,X) → T≡(Σ,X)/ ∼= can be written
as ψ◦σ where σ : T=(Σ,X) → T=(Σ,X) is a substitution, and ψ is the canonical
endomorphism ψ : T=(Σ,X) → T≡(Σ,X)/ ∼=: ψ(x) = [x]/ ∼= for all x.

Proof. Exercice.

We can then prove completeness:

Theorem 3 (Completeness). Assume that ∗ is good and is a continuous func-
tion.

∗-equational theory is complete. For any finite set E of ∗-Σ-identities, for
any terms s, t ∈ T (Σ,X), we have

‖s ≈ t‖ ≤ |s ≈ t|.

Proof. It is sufficient to observe that the initial model IE is a model of the
∗-Σ-identities of E, since this is a particular Σ-algebra.

Let s, t ∈ T (Σ,X) be two terms with s ≈p t ∈ E. We must show that
for all Σ-homomorphism φ : T=(Σ,X) → IE , we have p ≤ |φ(s) ≈ φ(t)|, to
get IE |= s ≈p t. From Lemma 4, such a Σ-homomorphism φ can be written
as ψ ◦ σ where σ is a substitution and ψ is the canonical endomorphism from
T=(Σ,X) to T≡(Σ,X)/ ∼=. Since s ≈p t ∈ E, we have E ` s ≈p t. From the
rules of ∗-equational proof theory, we then have then E ` σ(s) ≈p σ(t). This
yields |σ(s) ≈ σ(t)| ≥ p. We then have from definitions, =IE (ψ ◦ σ(s), ψ ◦
σ(t)) ==T≡(Σ,X) (σ(s), σ(t)) = |σ(s) ≈ σ(t)| ≥ p.

To summary, we have:



Theorem 4 (Soundness and completeness of ∗-equational theory). As-
sume that ∗ is good and is a continuous function.

∗-equational theory is sound and complete.
For any finite set E of ∗-Σ-identities, for any terms s, t ∈ T (Σ,X),

|s ≈ t| = ‖s ≈ t‖.

Observe that IE corresponds correctly to the usual notion of initial model in
the sense that:

Proposition 9 (Initiality of IE). For any finite set E of ∗-Σ-identities, for
all s, t ∈ T (Σ,X), p ∈ Π,

IE |= s ≈p t iff E |= s ≈p t.

11 Conclusion

In this paper, we have introduced ∗-equational proof theory. We proved that this
theory is sound and complete, as soon as ∗ is a continuous t-norm. Furthermore,
we proved that ∗-equational proof theory has a notion of natural initial model.

Future work may include understanding techniques for solving equational
problems (see for example [1]) in such theories, or for understanding the frontier
between effectiveness and non-effectiveness.

Clearly this work can be related to soundness and completeness results for
some particular fuzzy logics: see [7] for a tutorial about deductive systems in
fuzzy logic. Our work can been seen as a consequence of known results about
soundness and completeness for particular fuzzy logics, as classical equational
proof theory can be seen as a consequence of the soundness and completeness
of classical first-order logic. Observe however, that we have a notion of initial
model, like what happens in the classical equational proof theory settings, and
unlike what happens in the (classical) general first-order proof theory settings.

Note that this work was originally motivated by understanding rewriting in
presence of probabilities. It turns out that we obtain a theory for understanding
rewriting in presence of fuzziness. Future work includes to understand if a notion
of rewriting when (true) probabilities are used can exist: see [15, 2, 8, 15, 6, 5, 9,
13, 16] for discussions and problems about mixing logic and probabilities.
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