
Extracting Exact Time Bounds from Logical
Proofs

Mauro Ferrari, Camillo Fiorentini, and Mario Ornaghi

Dipartimento di Scienze dell’Informazione
Università degli Studi di Milano

{ferram,fiorenti,ornaghi}@dsi.unimi.it

Abstract. Accurate evaluation of delays of combinatorial circuits is cru-
cial in circuit verification and design. In this paper we present a logical
approach to timing analysis which allows us to compute exact stabiliza-
tion bounds while proving the correctness of the boolean behavior.

1 Introduction

Accurate evaluation of delay times of combinatorial logic components is cru-
cial in circuit verification and design [4,8]. For example, it is fundamental in
determining the clock rate. Thus, various timing analysis methods have been
developed in the literature for detecting different kinds of delays, as worst case
or minimum delays, as well as for evaluating exact data-dependent delays (see [4,
8] for a discussion). In traditional approaches, timing analysis does not take into
account data dependencies. In this way false paths, i.e., paths that cannot be ac-
tivated by any input, may be detected and false path elimination is necessary to
ensure accurate timing analysis. Moreover, many approaches model worst case
and minimum gate delays as constants, while such delays may depend on the
rising and falling times of the input signals and more accurate gate models are
needed [4].

Among the timing analysis methods that have been developed in the litera-
ture, here we consider the logically based ones, see, e.g., [1,2,5,7,8]. Their logical
nature automatically excludes false paths, since they are based on sound logical
semantics. A semantics represents an abstraction from the physical details, and
takes into account only aspects that are relevant for a given kind of analysis.
For example, if we are only interested in the functional analysis of a combina-
torial logic network, models based on Classical Logic are sufficient, while three
valued logic allows us to take into account unstable or unknown signals [2]. Mod-
els based on Intuitionistic Logic and on Lax Logic have been proposed in [7,8];
they support in a uniform way both functionality analysis and input-dependent
timing analysis with accurate gate models for combinatorial circuits.

In this paper we consider a modification of the approaches based on Intu-
itionistic and Lax logic. The main differences are in the adopted propositional
language and in the formalization of time bounds. We consider optimal (exact)
time bound evaluation for any kind of formulas, while the aforementioned ap-
proaches consider optimal bounds for restricted classes of formulas. Moreover,

A. Pettorossi (Ed.): LOPSTR 2001, LNCS 2372, pp. 245–265, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

246 M. Ferrari, C. Fiorentini, and M. Ornaghi

for suitable restrictions on waveforms, we have a completeness result for the logic
FCl, which is a maximal axiomatizable and decidable intermediate logic [10].

In Section 2 we introduce and briefly discuss waveforms, and we define our
propositional language and its waveform interpretation. In Section 3 we intro-
duce time bounds and a constructive semantics based on time bounds. A calculus
ND that is valid with respect to such a semantics is presented in Section 4. In
Subsection 4.1 we prove the main result to extract a function calculating exact
delays from proofs of ND and in Subsection 4.2 we apply it to an example;
we also show that proofs of Classical Logics are inadequate to accomplish such
an analysis. Finally, in Section 5 we briefly discuss the logical aspects of the
proposed semantics.

2 Waveforms and Circuits

In the logical approach to circuit analysis a semantics represents an abstraction
from the physical details and takes into account aspects that are relevant for
a given kind of analysis, disregarding other aspects. To give an example, let us
consider the gates INV and NAND of Figure 1; their behavior is specified by the
following formulas of Classical Logic

INV(x, y) ≡ (x→¬y) ∧ (¬x→y) (1)
NAND(x, y, z) ≡ (x ∧ y→¬z) ∧ (¬x ∨ ¬y→z) (2)

Indeed, the truth table of INV(x, y) represents the input/output behavior of
the INV gate assuming x as input and y as output. Analogously, NAND(x,y,z)
represents the NAND gate, where x and y are the inputs and z is the output.
Similarly, the classical behavior of the XOR circuit is specified by the formula

XOR(x, y, z) ≡ ((x ∧ ¬y) ∨ (¬x ∧ y)→z) ∧ ((x ∧ y) ∨ (¬x ∧ ¬y)→¬z) (3)

where x and y represent the inputs and z the output.
a

b

c

d

e

f

g 0 0 0
0 1 1
1 0 1
1 1 0

a b g
z

NAND

INV

x y z

0 0 1
0 1 1
1 0 1
1 1 0

x y

0 1
1 0

x

y

x y

Fig. 1. The XOR circuit and its components

Classical semantics allows us to study the input/output behavior of combi-
natorial circuits, but does not allow us to represent temporal information about
the stabilization properties of the circuits. Indeed, a more realistic description
of the XOR circuit of Figure 1 should consider the instant at which the signals
become stable and the delays in the propagation of signals; e.g., an “informal”
characterization of the behavior of the above circuit should be as follows:

Extracting Exact Time Bounds from Logical Proofs 247

(a stable to 1 at t1) and (b stable to 0 at t2)
or

(a stable to 0 at t1) and (b stable to 1 at t2)
⇒ (g stable to 1 at F (t1, t2))

(a stable to 1 at t1) and (b stable to 1 at t2)
or

(a stable to 0 at t1) and (b stable to 0 at t2)
⇒ (g stable to 0 at G(t1, t2))

where F and G are functions from N2 in N and N represents discrete time.
To formalize this, we need to introduce some notions. As in [8,9], a signal is

a discrete timed boolean function σ ∈ N → B. A circuit is characterized by a
set S of observables (the atomic formulas of our language) and a waveform is a
map V ∈ S → (N → B) associating with every observable a signal. A waveform
represents an observable property of a circuit C, and an observable behavior of
C is described by a set of waveforms.

As an example, to represent the XOR circuit of Figure 1, we need the set of
observables {a, b, c, d, e, f, g} representing the connections between the gates of
the circuit. A waveform represents a possible behavior of the circuit. For example
Figure 2 describes a waveform for the NAND circuit. It puts in evidence that
the output z rises to 1 at time t2 with a certain delay δ1 with respect to the
time t1 where the input x falls to 0. On the other hand, the output z falls to 0,
and stabilizes to 0, at time t6, with a certain delay δ2 with respect to the time
t5 where both the inputs are stable to 1. We remark that δ1 �= δ2; indeed, in a
realistic description the delays are input dependent.

y

z

x

S

0 t1 t2 t3 t4 t5 t6 N

1

1

1

0

0

0

Fig. 2. A waveform for NAND

Since we are interested in studying stabilization properties of a circuit, we
consider only waveforms that stabilize at some time. In particular, we introduce
the following notions of stabilization for a waveform:

1. V is stable iff, for every a ∈ S and for every t ∈ N, V (a)(t) = V (a)(0);
2. V is eventually stable iff, for every a ∈ S, there exists t ∈ N such that, for

every k ≥ t, V (a)(k) = V (a)(t).

We denote with Stable the set of all the stable waveforms and with EStable
the set of all the eventually stable waveforms.

248 M. Ferrari, C. Fiorentini, and M. Ornaghi

To express stabilization properties of waveforms and behaviors, we use a
propositional language LS based on a denumerable set of observables S =
{a, b, c1, c2, . . . }. Formulas of LS are inductively defined as follows: for every
a ∈ S, a is an atomic formula of LS; if A,B ∈ LS, then A ∧ B, A ∨ B, A→B,
¬A and ✷A belong to LS.

We say that a waveform V validates a stabilization property A at time t,
written t, V � A, if one of the following conditions holds:

t, V � a, where a ∈ S, iff V (a)(k) = 1 for all k ≥ t;
t, V � ✷B iff k, V � B for some k ≥ t;
t, V � B ∧ C iff t, V � B and t, V � C;
t, V � B ∨ C iff either t, V � B or t, V � C;
t, V � B→C iff, for every k ∈ N, k, V � B implies l, V � C for some l ≥ k;
t, V � ¬a, where a ∈ S, iff V (a)(k) = 0 for all k ≥ t;
t, V � ¬✷B iff k, V � ¬B for some k ≥ t;
t, V � ¬(B ∧ C) iff either t, V � ¬B or t, V � ¬C;
t, V � ¬(B ∨ C) iff t, V � ¬B and t, V � ¬C;
t, V � ¬(B→C) iff t, V � B and t, V � ¬C;
t, V � ¬¬B iff t, V � B.

It is easy to check that t, V � A implies h, V � A, for all h ≥ t. For a atomic, a
and ¬a denote the stability of the observable signal V (a) (at time t, with value
1 and 0 respectively). Indeed t, V � a (t, V � ¬a) iff the signal V (a) is stable to
1 (to 0 respectively) from t on.

Implication underlies a propagation delay, i.e., t, V � A → B means that,
whenever, at some t′, A “stabilizes” (t′, V � A) then, after a certain amount of
time s, B will “stabilize” (t′ + s, V � B). E.g., if V is the waveform of Figure 2,
we have 0, V � (x∧y)→¬z; indeed t, V � x∧y iff t ≥ t5 and t � ¬z for all t ≥ t6,
hence the stabilization delay is at most t6 − t5. We also remark that, differently
from the other connectives, the validity of an implication is independent of t,
indeed, t, V � (B→C) iff 0, V � (B→C). Intuitively this corresponds to the
fact that an implication does not represent a property observable at a given time,
but a global property expressing a behavior invariant with respect to time shift.
This is what has to be expected to express delay properties.

The unary modal operator ✷ means future stabilization; e.g., for the wave-
form of Figure 2, 0, V � ✷x since there is a moment in the future where x
stabilizes to 1, but 0, V ‖−/−x. Validation of ∧,∨ is defined as expected. As for
the negation, the above semantics defines it as a constructive negation and the
validity of ¬A is defined recursively on the structure of A (for a discussion on this
negation see [11,13]). We remark that such a constructive understanding of the
negation is essential in our approach where ¬a states the positive information
“a stabilizes to 0” and is different from the usual intuitionistic understanding of
negation as “a implies falsehood”.

A logical characterization of stable and eventually stable waveforms is the
following:

V ∈ Stable iff 0, V � A ∨ ¬A for every A ∈ LS

V ∈ EStable iff 0, V � ✷A ∨ ¬✷A for every A ∈ LS

Extracting Exact Time Bounds from Logical Proofs 249

Now, to represent the classical input/output behavior of a boolean function in
our semantics, we associate with an eventually stable waveform V the classical
interpretation V CL done as follows: for every a ∈ S,

V CL(a) =
{

0 if 0, V � ¬✷a
1 if 0, V � ✷a

Definition 1. Given a boolean function f : Bn → B, a formula F (a1, . . . , an, b)
of LS represents f iff, for every V ∈ EStable,

0, V � ✷F (a1, . . . , an, b) iff f(V CL(a1), . . . , V CL(an)) = V CL(b)

We remark that the above definition does not work if 0, V � ✷A ∨ ¬✷A does
not hold, that is if V is not eventually stable. Indeed, in our approach we do not
treat the case of oscillating signals; to treat such signals a different semantics
(e.g., a multi-valued semantics) should be considered.

The formal verification task of the circuit of Figure 1 consists in exhibiting
a formal proof (in the adequate logic) of the formula

INV(b, c) ∧ INV(a, d) ∧ NAND(a, c, e) ∧ NAND(b, d, f) ∧ NAND(e, f, g)→XOR(a, b, g)

If our aim is only to prove the correctness of the above circuit Classical Logic
is sufficient. But if we aim to extract information about the stabilization delays
of the circuit from the correctness proof, we need to introduce an intensional
semantics of formulas that takes into account temporal information.

3 Stabilization Bounds

The validation � provides an interpretation of formulas as stabilization prop-
erties, but the information about stabilization delays is not explicit. To extract
stabilization delays we need an analysis of all the waveforms of a behavior. To
deal with delays in our logic, we use the notion of stabilization bound introduced
in [7] and inspired by the evaluation forms of [11]. Evaluation forms correspond
to structural truth evaluations of formulas; stabilization bounds combine both
truth and timing analysis.

In [8] the information about delays is linked to the operator ✷ (indicated
by © in [8]). In contrast, we interpret ✷ as a “don’t care” operator and we do
not associate any time information with it (the only possible delay is 0), but we
associate a stabilization information with atomic formulas and with every logical
connective not in the scope of the ✷ operator. A stabilization bound for a and
¬a, with a ∈ S, fixes an upper bound for the stabilization of the signal V (a). The
stabilization bounds for ∧,→, ∨ are defined as in [8], while the interpretation of
¬ and ✷ is peculiar of our approach.

Formally, we assign to every formula A of LS a set of stabilization bounds
�A� and an equivalence relation ∼A between elements of �A�, inductively on the
structure of A:

250 M. Ferrari, C. Fiorentini, and M. Ornaghi

– If A = a or A = ¬a, with a ∈ S, then �A� = N, and t ∼A t′ for every
t, t′ ∈ �A�.

– If A = ✷B or A = ¬✷B then �A� = {0}, and 0 ∼A 0.
– �B ∧ C� = �B� × �C� and (β, γ) ∼B∧C (β′, γ′) iff β ∼B β′ and γ ∼C γ′.
– �A1∨A2� = �A1�⊕�A2� (where ⊕ denotes the disjoint sum, that is the set of

pairs (1, α) or (2, α′) with α ∈ �A1� and α′ ∈ �A2�) and (i, α) ∼A1∨A2 (j, α′)
iff i = j and α ∼Ai

α′.
– �B → C� = {f | f : �B� → �C� s.t. β ∼B β′ implies f(β) ∼C f(β′)}, and

f ∼B→C f ′ iff f(β) ∼C f ′(β) for every β ∈ �B�.
– �¬(A1 ∧ A2)� = �¬A1� ⊕ �¬A2� and (i, α) ∼¬(A1∧A2) (j, α′) iff i = j and

α ∼¬Ai
α′.

– �¬(B ∨ C)� = �¬B� × �¬C� and (β, γ) ∼¬(B∨C) (β′, γ′) iff β ∼¬B β′ and
γ ∼¬C γ′.

– �¬(B → C)� = �B� × �¬C� and (β, γ) ∼¬(B→C) (β′, γ′) iff β ∼B β′ and
γ ∼¬C γ′.

– �¬¬B� = �B� and β ∼¬¬B β′ iff β ∼B β′.

The equivalence relation ∼A is needed to cut undesired functions in the definition
of �B→C�. Intuitively, a stabilization bound α ∈ �A� intensionally represents a
set of waveforms V that validate A for the “same reasons” and with the “same
delay bounds”. Formally, let us denote with V t the waveform obtained by shifting
V of t, i.e.,

V t(a)(k) = V (a)(t + k) for all a ∈ S, k ∈ N

A waveform V validates A with stabilization bound α, and we write α, V |= A,
if one of the following conditions holds.
– t, V |= a, with a ∈ S, iff t, V � a;
– t, V |= ¬a, with a ∈ S, iff t, V � ¬a;
– 0, V |= ✷B iff t, V � B for some t ∈ N;
– (β, γ), V |= B ∧ C iff β, V |= B and γ, V |= C;
– (i, α), V |= A1 ∨A2 iff α, V |= Ai, where i ∈ {1, 2};
– f, V |= B→C iff, for every t ∈ N and β ∈ �B�, β, V t |= B implies f(β), V t |=

C;
– 0, V |= ¬✷B iff t, V � ¬B for some t ∈ N;
– (i, α), V |= ¬(A1 ∧A2) iff α, V |= ¬Ai, where i ∈ {1, 2};
– (β, γ), V |= ¬(B ∨ C) iff β, V |= ¬B and γ, V |= ¬C;
– (β, γ), V |= ¬(B→C) iff β, V |= B and γ, V |= ¬C;
– β, V |= ¬¬B iff β, V |= B.

To give an example, the INV and NAND gates of the previous section have
the following sets of stabilization bounds:

�INV(x, y)� = (N → N) × (N → N)
�NAND(x, y, z)� = (N×N → N) × (N⊕N → N)

A stabilization bound for INV(x, y) is, for example, the pair of identical functions
(fINV, fINV) where

fINV(t) = t + δI (4)

Extracting Exact Time Bounds from Logical Proofs 251

(fINV, fINV) provides an example of a data-independent stabilization bound for
the INV gate. It represents the set of valuations V such that V (y) stabilizes at
time t + δI if V (x) stabilizes at time t with constant delay δI . Indeed

(fINV, fINV), V � INV(x, y) iff
{
x stable to 1 at t ⇒ y stable to 0 at t + δI

x stable to 0 at t ⇒ y stable to 1 at t + δI

Analogously, the pair (f−
NAND, f

+
NAND) ∈ �NAND(x, y, z)�, with

f−
NAND((t1, t2)) = max{t1, t2} + δN and f+NAND((i, t)) = t + δN (5)

provides an example of a data-independent stabilization bound for the NAND
gate. Indeed in f−

NAND, δN is independent of t1 (the time at which x stabilizes to
1) and of t2 (the time at which y stabilizes to 1); in f+NAND, δN is independent
of the pair (i, t).

We point out that, in the general case, stabilization bounds represent data-
dependent information; e.g., a stabilization bound for NAND(x, y, z) may consist
of a pair of functions (η−, η+), where η− calculates the stabilization bound for
output stable to 0 and η+ for output stable to 1.

It is easy to prove that validity is preserved by time shifting, i.e., α, V |= A
implies α, V t |= A for every t ∈ N.

Moreover, it is easy to check the following result:

Proposition 1. Let T be the following time evaluation function:

- T (t) = t, for t ∈ N;
- T ((α, β)) = max{T (α), T (β)};
- T ((i, α)) = T (α), for i = 1, 2;
- T (f) = 0, with f any function.

Let V be a waveform and let A be a formula. For every t ∈ N, t, V � A if and
only if there is α ∈ �A� such that T (α) ≤ t and α, V |= A.

Proposition 1 links the intensional semantics based on stabilization bounds
and the extensional semantics of Section 2. Stabilization bounds convey a de-
tailed temporal information allowing us to model exact temporal bounds of the
kind considered in [8]. In our setting exact bounds are formalized as follows. Let
A be a formula, let α ∈ �A� and let V be a waveform; α is exact for V and A if
α, V |= A and one of the following conditions holds:

- A = ✷B or A = ¬✷B;
- A = a or A = ¬a, with a ∈ S, and, for all t ∈ N, t, V |= A implies α ≤ t;
- A = B ∧ C, α = (β, γ), β is exact for B and V , and γ is exact for C and V ;
- A = B1 ∨B2, α = (k, βk), with k ∈ {1, 2}, and βk is exact for V and Bk;
- A = B→C and, for all β ∈ �B�, if β is exact for V and B, then α(β) is exact

for V and C;
- A = ¬¬B and α is exact for V and B;
- A = ¬(B1 ∧B2), α = (k, βk), with k ∈ {1, 2}, and βk is exact for V and ¬Bk;
- A = ¬(B ∨C), α = (β, γ), β is exact for V and ¬B, γ is exact for V and ¬C;

252 M. Ferrari, C. Fiorentini, and M. Ornaghi

- A = ¬(B→C), α = (β, γ), β is exact for V and B, γ is exact for V and ¬C.

For instance, let A be the formula (x∧ y→¬z)∧ (¬x∨ y→z) describing the
NAND gate, and let V be the waveform of Figure 2. Let β = (β−, β+) where
β− : N2 → N and β+ : N ⊕N → N; β, V |= A iff β−((t4, t5)) = t with t ≥ t6.
An exact stabilization bound for V and A is given by t = t6, which is the “exact
instant” where z stabilizes to 0. We remark that such a detailed analysis cannot
be accomplished using the approach of [8,9].

4 Timing Analysis of a Circuit

Let us consider the problem to compute the stabilization delays of the XOR
circuit of Figure 1. Firstly we have to provide a complete description of the
components of the circuit. This means that, for every component of the circuit,
we have to provide a formula A representing the component and a time bound
α ∈ �A� which is exact for the set V of observed behaviors (the set of waveforms
resulting from an experimental analysis of the component).

In our example the description is given by the formulas:

– INV(b, c) and INV(a, d) obtained by instantiating the formula INV(x, y)
of (1);

– NAND(a, c, e), NAND(b, d, f) and NAND(e, f, g) obtained by instantiating
the formula NAND(x, y, z) of (2).

We remark that such formulas uniquely characterize the structure of the circuit
of Figure 1. Indeed, NAND(e, f, g) describes the NAND gate occurring in the
XOR circuit, having as inputs e and f and as output g; in turn, e is the output of
the NAND gate having as input a and c, described by the formula NAND(a, c, e),
and f is the output of the NAND gate having as input b and d, described by the
formula NAND(b, d, f) and so on. Hence

CXOR = {INV(a, d), INV(b, c), NAND(a, c, e), NAND(b, d, f), NAND(e, f, g)} (6)

is the description of the circuit of Figure 1.
As for the stabilization bounds, in our example we assume that:

– All the instances of the INV gate occurring in the circuit have the same
stabilization bound (fINV, fINV) described in (4);

– All the instances of the NAND gate occurring in the circuit have the same
stabilization bound (f−

NAND, f
+
NAND) described in (5).

Starting from this information we would like to compute an exact stabilization
bound for the whole circuit. In this section we prove that such a stabilization
bound can be extracted from a formal correctness proof of the circuit in a con-
structive calculus. Here, we use the natural deduction calculus ND described in
Table 1. ND is obtained by adding to the natural calculus for Intuitionistic Logic
(see [12]) the rules for constructive negation ¬, the rules for the modal operator
✷ and the rule KP✷. In Table 1 we put between square brackets the assumptions

Extracting Exact Time Bounds from Logical Proofs 253

Table 1. The calculus ND

A IAx
A B

I∧
A ∧ B

A1 ∧ A2
E∧i i∈{1,2}

Ai

Ai

I∨i i∈{1,2}
A1 ∨ A2

A ∨ B

[A]··· π1

C

[B]··· π2

C
E∨

C
[A]··· π

B
I→

A→B

A A→B
E→

B

A ¬A
Contr

where B = p or
B = ¬p with p ∈ S

B

¬Ai

I¬∧i i∈{1,2}
¬(A1 ∧ A2) ¬(A ∧ B)

[¬A]··· π1

C

[¬B]··· π2

C
E¬∧

C
A

I¬¬
¬¬A

¬¬A
E¬¬

A

¬A ¬B
I¬∨

¬(A ∨ B)

¬(A1 ∨ A2)
E¬∨i i∈{1,2}

¬Ai

A ¬B
I¬→

¬(A→B)

¬(A→B)
E¬→1

A

¬(A→B)
E¬→2¬B

[¬A]··· π1

B ∧ ¬B
I✷

✷A

[A]··· π1

B ∧ ¬B
I¬✷

¬✷A

[✷A]··· π1

B ∨ C
KP✷

(✷A→B) ∨ (✷A→C)

of the proof discharged by the application of the rule; π : {A1, . . . , An} � B de-
notes the fact that π is a proof with undischarged assumptions A1, . . . , An and
consequence B (for a detailed presentation of such notions see [12]).

It is easy to check that the calculus ND formalizes a fragment of Classical
Logic according to the following translation. Let H̃ be the formula obtained by
deleting from H ∈ LS all the occurrences of ✷. If {A1, . . . , An} � B is provable
in ND, then {Ã1, . . . , Ãn} � B̃ is provable in the natural deduction calculus
NDCl for Classical Logic.

Coming back to our example, if there exists a proof

Π : CXOR � XOR(a, b, g)

254 M. Ferrari, C. Fiorentini, and M. Ornaghi

in ND, then, since INV(x, y), NAND(x, y, z) and XOR(x, y, z) represent the
corresponding boolean functions inv, nand and xor according to Definition 1,
the input/output behavior of the XOR circuit of Figure 1 is proved to be correct.
Obviously, this holds also if Π is a proof of Classical Logic. But, how we are
going to show, from proofs of ND we can also extract information about the
stabilization delays. In the following subsection we present the main result about
the extraction of stabilization bounds form proofs of ND, and in Subsection 4.2
we apply such a result to compute the propagation delays of the XOR circuit;
finally, we also show that proofs of Classical Logics are inadequate to accomplish
such an analysis.

4.1 Computing Stabilization Delays

Here we describe how to associate with every proof π : {A1, . . . , An} � B of ND
a function Fπ : �A1� × · · · × �An�→�B�. Here we denote with α an element of
�A1�× · · · × �An�. The function is defined by induction on the structure of π as
follows.

Assumption Introduction:

π ≡ A

Fπ is the identity function
(7)

Conjunction Introduction: in this case π is the proof

A1, . . . , Ak··· π1

B

Ak+1, . . . , An··· π2

C
I∧

B ∧ C

Fπ(α) = (Fπ1(α1, . . . , αk), Fπ2(αk+1, . . . , αn))

(8)

The function Fπ is defined similarly for the cases corresponding to the rules I¬∨,
I¬→.

Conjunction Elimination: in this case π is the proof

A1, . . . , An··· π1

B1 ∧B2
E∧i

Bi

Fπ(α) = (Fπ1(α))i

(9)

The function Fπ is defined similarly for the cases corresponding to the rules
E¬∨, E¬→.

Extracting Exact Time Bounds from Logical Proofs 255

Disjunction Introduction: in this case π is the proof
A1, . . . , An··· π1

Bi
I∨i

B1 ∨B2

Fπ(α) = (i, Fπ1(α))

(10)

The function Fπ is defined similarly for the case corresponding to the rule I¬∧.

Disjunction Elimination: in this case π is the proof

A1, . . . , Ak··· π1

B ∨ C

Ak+1, . . . , Al, [B]··· π2

D

Al+1, . . . , An, [C]··· π3

D
∨E

D

Fπ(α) =

{
Fπ2(αk+1, . . . , αl, β) if Fπ1(α1, . . . , αk) = (1, β)

Fπ3(αl+1, . . . , αn, γ) if Fπ1(α1, . . . , αk) = (2, γ)

(11)

The function Fπ is defined similarly for the case corresponding to the rule E¬∧.

Implication Introduction: in this case π is the proof

A1, . . . , An, [B]··· π1

C
→I

B→C

Fπ(α) is the function f : �B�→�C� such that f(β) = Fπ1(α, β)

(12)

Implication Elimination: in this case π is the proof

A1, . . . , Ak··· π1

B

Ak+1, . . . , An··· π2

B→C
→E

C

Fπ(α) = Fπ2(αk+1, . . . , αn)(Fπ1(α1, . . . , αk))

(13)

Contr: in this case π is the proof
A1, . . . , An··· π1

B ∧ ¬B
Contr

C

Fπ(α) = γ where γ is any element in �C�

(14)

256 M. Ferrari, C. Fiorentini, and M. Ornaghi

¬¬-Introduction: in this case π is the proof

A1, . . . , An··· π1

B
I¬¬¬¬B

Fπ(α) = Fπ1(α)

(15)

The function Fπ is defined similarly for the case corresponding to the rule E¬¬.

✷-Introduction: in this case π is the proof

A1, . . . , An, [¬B]··· π1

C ∧ ¬C
✷I

✷B

Fπ(α) = 0.

(16)

The function Fπ is defined similarly for the case corresponding to the rule I¬✷.

Rule KP✷: in this case π is the proof

A1, . . . , An, [✷B]··· π1

C ∨D
KP✷

(✷B→C) ∨ (✷B→D)

Fπ1(α) =
{

(1, λx.β) if Fπ1(α, 0) = (1, β)
(2, λx.γ) if Fπ1(α, 0) = (2, γ)

(17)

The main properties of the function Fπ associated with a proof π ∈ ND are
given by the following result.

Theorem 1. Let π : {A1, . . . , An} � B be a proof of the calculus ND and let

Fπ : �A1� × · · · × �An�→�B�

be the function associated with π. For all α1 ∈ �A1�, . . . , αn ∈ �An�, and for
every eventually stable waveform V :

(i). α1, V |= A1, . . . , αn, V |= An implies Fπ(α1, . . . , αn), V |= B.
(ii). α′

1 ∼A1 α1, . . . , α′
n ∼An

αn implies Fπ(α′
1, . . . , α

′
n) ∼B Fπ(α1, . . . , αn).

(iii). α1 exact for V and A1, . . . , αn exact for V and An implies Fπ(α1, . . . , αn)
exact for V and B.

Extracting Exact Time Bounds from Logical Proofs 257

Proof. We prove the assertion by induction on the structure of the proof π.
If π only consists of an assumption introduction (the base case), then Fπ is
the identity on �A� and the assertions trivially follow. The induction step goes
by cases according to the last rule applied in π; here, we only consider some
representative cases.

∨-elimination. If the last rule applied in π is a ∨-elimination, π has the structure
described in Point (11).
(i). Let us suppose that α1, V |= A1, . . . , αn, V |= An. By induction hypothesis
on π1, Fπ1(α1, . . . , αk), V |= B∨C. Let us assume that Fπ1(α1, . . . , αk) = (1, β);
then β, V |= B. Now, let us consider the subproof π2 : {Ak+1, . . . , Al, B} � D of
π; by induction hypothesis, Fπ2(αk+1, . . . , αl, β), V |= D, from which (i) follows.
The case Fπ1(α1, . . . , αk) = (2, γ) is similar.
(ii). Suppose that α′

1 ∼A1 α1, . . . , α
′
n ∼An αn and Fπ1(α1, . . . , αk) = (1, β).

By induction hypothesis on π1, Fπ1(α′
1, . . . , α

′
k) = (1, β′) with β′ ∼B β. By

induction hypothesis on π2, Fπ2(α′
k+1, . . . , α

′
l, β

′) ∼D Fπ2(αk+1, . . . , αl, β), hence
Fπ(α′

1, . . . , α
′
n) ∼D Fπ(α1, . . . , αn).

(iii). Let α1 be exact for V and A1, . . . , let αn be exact for V and An. Let us
suppose that Fπ1(α1, . . . , αk) = (1, β); by induction hypothesis, (1, β) is exact for
V and B ∨C, therefore, by definition, β is exact for V and B. By the induction
hypothesis on π2, Fπ2(αk+1, . . . , αl, β) is exact for V and D, and this concludes
the proof.

→-introduction. In this case π has the structure described in Point (12). First of
all we must check that f is well-defined, i.e., that β ∼B β′ implies f(β) ∼C f(β′).
If β ∼B β′, by the induction hypothesis (ii) applied on π1, Fπ1(α1, . . . , αn, β) ∼C

Fπ1(α1, . . . , αn, β
′), which implies f(β) ∼C f(β′).

(i). Let us suppose that α1, V |= A1, . . . , αn, V |= An and let f =Fπ(α1, . . . , αn);
we prove that f, V |= B → C. Let us take β ∈ �B� and t ∈ N such that
β, V t |= B. We also have α1, V

t |= A1, . . . , αn, V
t |= An; since V t is eventually

stable, by induction hypothesis on π1 we can conclude that f(β), V t |= C.
(ii). Let α′

1 ∼A1 α1, . . . , α
′
n ∼An

αn, f = Fπ(α1, . . . , αn), f ′ = Fπ(α′
1, . . . , α

′
n).

Suppose β ∼B β′; by induction hypothesis f(β) ∼C f(β′), hence f ∼B→C f ′.
(iii). Let α1 be exact for V and A1, . . . , αn be exact for V and An; we prove
that f = Fπ(α1, . . . , αn) is exact for V and B → C. To this aim, let us take
β ∈ �B� such that β is exact for V and B. By induction hypothesis, it follows
that f(β) is exact for V and C, and this concludes the proof.

→-elimination. In this case π has the structure described in Point (13).
(i). Suppose that α1, V |= A1, . . . , αn, V |= An; let β = Fπ1(α1, . . . , αk) and
f = Fπ2(αk+1, . . . , αn). By induction hypothesis, we have both β, V |= B and
f, V |= B→C, hence f(β), V |= C and (i) is proved.
(ii). Let us suppose α′

1 ∼A1 α1, . . . , α
′
n ∼An αn and let β = Fπ1(α1, . . . , αk), β′ =

Fπ1(α′
1, . . . , α

′
k), f = Fπ2(αk+1, . . . , αn), f ′ = Fπ2(α′

k+1, . . . , α
′
n). By induction

hypothesis we have both β ∼B β′ and f ∼B→C f ′, and this implies that f(β) ∼C

f ′(β′).
(iii). Suppose α1 to be exact for V and A1, . . . , αn to be exact for V and An;

258 M. Ferrari, C. Fiorentini, and M. Ornaghi

let β = Fπ1(α1, . . . , αk) and f = Fπ2(αk+1, . . . , αn). By induction hypothesis, β
is exact for V and B, f is exact for V and B→C; this implies that f(β) is exact
for V and C.

✷-introduction. In this case π has the structure described in Point (16).
(i). Suppose α1, V |= A1, . . . , αn, V |= An. Since V is eventually stable, there
is t ∈ N such that either t, V � B or t, V � ¬B. Suppose that t, V � ¬B. By
Proposition 1, there is β ∈ �¬B� such that β, V |= ¬B; by induction hypothesis
on π1, Fπ1(α1, . . . , αn, β), V |= C ∧¬C, which implies (by Proposition 1) t′, V �
C ∧ ¬C, where t′ ∈ N, a contradiction. It follows that t, V � B, therefore
0, V |= ✷B.
The proof of Points (ii) and (iii) is trivial. ��
We remark that the assumption that V is eventually stable is essential to treat
the cases of ✷-introduction and ¬✷-introduction.

Summarizing, we have shown how to define, for every proof

π : {A1, . . . , An} � B

a function Fπ associating with V ∈ EStable and every n-upla of stabilization
bounds α1, . . . , αn for A1, . . . , An such that αi is exact for Ai and V , an exact
stabilization bound for B and V . We remark that the main advantage of our
approach is given by Point (iii) of Theorem 1; indeed the logical approaches to
timing analysis of [1,2,5,7,8] do not allow us to compute exact time bounds.

4.2 Application to the XOR Circuit

In this subsection we apply Theorem 1 to compute the exact stabilization bounds
for the XOR circuit of Figure 1. To this aim, firstly we describe the formal
correctness proof

Π : CXOR � XOR(a, b, g)

in the calculus ND, then we show how to construct the function FΠ .
The proof can be constructed as follows:

Π ≡

Γ3··· π3

(a ∧ ¬b) ∨ (¬a ∧ b)→g

Γ6··· π6

(a ∧ b) ∨ (¬a ∧ ¬b)→¬g
I∧

XOR(a, b, g)

where the structure of the proofs π3 and π6 is described below.

π3 ≡
[(a ∧ ¬b) ∨ (¬a ∧ b)]

[a ∧ ¬b], Γ1··· π1

¬e ∨ ¬f

[¬a ∧ b], Γ2··· π2

¬e ∨ ¬f
E∨

¬e ∨ ¬f

NAND(e, f, g)
E∧2¬e ∨ ¬f →g

E→
g

I→
(a ∧ ¬b) ∨ (¬a ∧ b)→g

Extracting Exact Time Bounds from Logical Proofs 259

where Γ3 = Γ1 ∪ Γ2 ∪ {NAND(e, f, g)}.

π6 ≡
[(a ∧ b) ∨ (¬a ∧ ¬b)]

[a ∧ b], Γ4··· π4

e ∧ f

[¬a ∧ ¬b], Γ5··· π5

e ∧ f
E∨

e ∧ f

NAND(e, f, g)
E∧1

e ∧ f →¬g
E→

¬g
I→

(a ∧ b) ∨ (¬a ∧ ¬b)→¬g

where Γ6 = Γ4 ∪ Γ5 ∪ {NAND(e, f, g)}.

π1 ≡

a ∧ ¬b
E∧1

a

a ∧ ¬b
E∧2¬b

INV(b, c)
E∧2¬b→c

E→
c

I∧
a ∧ c

NAND(a, c, e)
E∧1

a ∧ c→¬e
E→

¬e
I∨1¬e ∨ ¬f

where Γ1 = {INV(b, c),NAND(a, c, e)}.

π2 ≡

¬a ∧ b
E∧2

b

¬a ∧ b
E∧1¬a

INV(a, d)
E∧2¬a→d

E→
d

I∧
b ∧ d

NAND(b, d, f)
E∧1

b ∧ d→¬f
E→

¬f
I∨2¬e ∨ ¬f

where Γ2 = {INV(a, d),NAND(b, d, f)}.

π4 ≡

a ∧ b
E∧2

b

INV(b, c)
E∧1

b→¬c
E→

¬c
I∨2¬a ∨ ¬c

NAND(a, c, e)
E∧2¬a ∨ ¬c→e

E→
e

a ∧ b
E∧1

a

INV(a, d)
E∧1

a→¬d
E→

¬d
I∨2¬b ∨ ¬d

NAND(b, d, f)
E∧2¬b ∨ ¬d→f

E→
f

I∧
e ∧ f

260 M. Ferrari, C. Fiorentini, and M. Ornaghi

where Γ4 = {INV(a, d), INV(b, c),NAND(a, c, e),NAND(b, d, f)}.

π5 ≡

¬a ∧ ¬b
E∧1¬a
I∨1¬a ∨ ¬c

NAND(a, c, e)
E∧2¬a ∨ ¬c→e

E→
e

¬a ∧ ¬b
E∧2¬b
I∨1¬b ∨ ¬d

NAND(b, d, f)
E∧2¬b ∨ ¬d→f

E→
f

I∧
e ∧ f

where Γ5 = {NAND(a, c, e),NAND(b, d, f)}.
Now, by definition the function associated with Π has the following form:

FΠ : �INV(b, c)
×�INV(a, d)
×�NAND(a, c, e)
×�NAND(b, d, f)
×�NAND(e, f, g)

→ �XOR(a, b, g)

In general we can associate with every formula in CXOR a different stabilization
bound, however, we assume that:

– All the instances of the formula INV(x, y) have the same stabilization bound
ι = (ι−, ι+);

– All the instances of the formula NAND(x, y, z) have the same stabilization
bound η = (η−, η+).

With these assumptions, we can simply write FΠ(ι, η) instead of FΠ(ι, ι, η, η, η);
we do the same for the other functions defined hereafter.

To construct the function Fπ we have to consider the case of Conjunction
Introduction in Point (8). We get:

FΠ(ι, η) = (Fπ3(ι, η), Fπ6(ι, η))) ∈ (N2 ⊕N2 → N)2

where Fπ3 and Fπ6 are the functions associated with the subproofs π3 and π6.
The construction goes on as follows:

- Fπ3(ι, η) is a function f : N2 ⊕N2 → N such that:

f((1, (t1, t2))) = η+(Fπ1((t1, t2), ι, η))
f((2, (t1, t2))) = η+(Fπ2((t1, t2), ι, η))

- Fπ1((t1, t2), ι, η) = (1, η−((t1, ι+(t2)))) ∈ N⊕N.
- Fπ2((t1, t2), ι, η) = (2, η−((t2, ι+(t1)))) ∈ N⊕N.
- Fπ6(ι, η) is a function g : N2 ⊕N2 → N such that:

g((1, (t1, t2))) = η−(Fπ4((t1, t2), ι, η))
g((2, (t1, t2))) = η−(Fπ5((t1, t2), ι, η))

- Fπ4((t1, t2), ι, η) = (η+((2, ι−(t2))), η+((2, ι−(t1)))) ∈ N×N.
- Fπ5((t1, t2), ι, η) = (η+((1, t1)), η+((1, t2))) ∈ N×N.

Extracting Exact Time Bounds from Logical Proofs 261

Now, given a concrete stabilization bound for the INV and the NAND gates
we can compute the resulting stabilization bound for the XOR circuit. Here we
consider the stabilization bounds for INV and NAND given in Points (4) and
(5); hence ι = (fINV, fINV) and η = (f−

NAND, f
+
NAND) where

fINV(t) = t + δI

f−
NAND((t1, t2)) = max{t1, t2} + δN and f+NAND((i, t)) = t + δN

We get:

FΠ(ι, η) = (F1, F2)

F1((i, (t1, t2))) =
{

max{t1, t2 + δI} + 2δN if i = 1
max{t2, t1 + δI} + 2δN if i = 2

F2((i, (t1, t2))) =
{

max{t1, t2} + δI + 2δN if i = 1
max{t1, t2} + 2δN if i = 2

As an example, let us suppose that V (a) stabilizes to 1 at time 10 and V (b)
stabilizes to 0 at time 20 (see Figure 3). The formula (a ∧ ¬b) ∨ (¬a ∧ b) → g
states that V (g) must stabilize to 1, and the stabilization time is given by the
exact stabilization bound t for V and g. By Theorem 1, t corresponds to the value
of F1 on the exact stabilization bound (1, (10, 20)) for V and (a∧¬b)∨ (¬a∧ b);
therefore t = F1((1, (10, 20))) = 20 + δI + 2δN .

Fig. 3. A possible behavior of the XOR circuit

To conclude this section, we show that Theorem 1 essentially depends on
the calculus ND and does not hold for proofs of Classical Logic. Indeed, let us
consider the formulas XOR(x, y, z) of (3) and its disjunctive normal form

XOR′(x, y, z) = (¬x ∧ ¬y ∧ ¬z) ∨ (¬x ∧ y ∧ z) ∨ (x ∧ ¬y ∧ z) ∨ (x ∧ y ∧ ¬z)

Clearly, XOR′(x, y, z) is classically equivalent to XOR(x, y, z) and XOR′(x, y, z)
represents the boolean function xor : N2 → N. Moreover, it is easy to find a
proof

Π ′ : CXOR � XOR′(a, b, g)

262 M. Ferrari, C. Fiorentini, and M. Ornaghi

in the natural deduction calculus NDCl for Classical Logic (see [12] for the
description of such a calculus). On the other hand, as we show hereafter, there
is no γ ∈ �XOR′(x, y, z)� satisfying Point (i) of Theorem 1.

First of all, we remark that the set of stabilization bounds for XOR′(x, y, z)
is isomorphic to (N3 ⊕N3 ⊕N3 ⊕N3), hence a stabilization bound of this set
can be written as (i, (t1, t2, t3)) with i ∈ {1, . . . , 4} and t1, t2, t3 ∈ N . Now, let
us consider the following stabilization bounds for the formulas of CXOR:

– Let ι = (ι−, ι+) be the stabilization bound for all the instances of the formula
INV(x, y), where ι−(t) = ι+(t) = 0 for every t ∈ N;

– Let η = (η−, η+) be the stabilization bound for all the instances of the
formula NAND(x, y, z), where η−((t1, t2)) = 0 for every t1, t2 ∈ N and
η+((i, t)) = 0 for i = 1, 2 and for every t ∈ N.

Now, let us assume that FΠ′(ι, η) = (1, (c1, c2, c3)) for some c1, c2, c3 ∈ N. Let
us consider the stable waveform V such that V (a) = V (b) = V (e) = V (f) = 1
and V (c) = V (d) = V (g) = 0. It is easy to check that

ι, V |= INV(a, d) ι, V |= INV(b, c)
η, V |= NAND(a, c, e) η, V |= NAND(b, d, f) η, V |= NAND(e, f, g)

while

(1, (c1, c2, c3)), V �|= XOR′(a, b, g)

since (c1, c2, c3), V �|= ¬a ∧ ¬b ∧ ¬g. Similar conclusions can be obtained consid-
ering FΠ′(ι, η) = (j, (c1, c2, c3)) with j = 2, 3, 4 and c1, c2, c3 ∈ N. Hence, there
in no function FΠ′ satisfying Point (i) of Theorem 1. Finally, we point out that
there is no proof in ND of CXOR � XOR′(a, b, g).

5 The Logics LEf and FCl

In this section we briefly discuss the logical properties of our semantics. Let LEf
be the logic semantically defined as follows:

LEf = {A : ∃α ∈ �A� ∀V ∈ EStable α, V |= A }
where we recall that EStable is the set of all the eventually stable wave-
forms. It can be shown that LEf is a non-standard intermediate logic, that is
Int ⊆ LEf ⊆ Cl, where Int (Cl) denotes the set of the intuitionistically (classi-
cally) valid formulas of LS and LEf is closed under modus ponens. We empha-
size that, differently from standard intermediate logics, LEf is not closed under
arbitrary substitutions of propositional variables with formulas, but only under
substitutions associating a formula of the kind ✷A with every propositional vari-
able. Moreover, LEf has the disjunction property, that is A ∨ B ∈ LEf implies
A ∈ LEf or B ∈ LEf .

As a consequence of Theorem 1, every formula provable in the calculus ND
(of Table 1) belongs to LEf . This means that ND is a correct calculus for LEf ;

Extracting Exact Time Bounds from Logical Proofs 263

on the other hand we do not know if it is complete for LEf and, as far as we
know, no axiomatization for LEf is known.

Another logic that emerges from our semantical setting is FCl, a well-known
axiomatizable non-standard intermediate logic which has strong connections
with LEf . In [10,11] FCl has been characterized as the smallest set of formu-
las closed under modus ponens containing Int, all the instances of KP✷ and all
the instances of At✷, where:

– KP✷ = (✷A → B ∨ C) → (✷A → B) ∨ (✷A → C) is the axiom schema
obtained by translating the well-known Kreisel and Putnam Principle [3]
into the language LS, and corresponds to the rule KP✷ of Table 1;

– At✷ = ✷a→a with a ∈ S.

A valid and complete natural calculus for FCl is the calculus NDFCl obtained
by adding to ND the rule:

✷a
E✷AT with a ∈ S

a

In [10,11] it is proved that FCl is a non-standard intermediate logic with the dis-
junction property. Moreover, FCl meets some important proof-theoretical prop-
erties; indeed it is interpolable and enjoys a Normal Form Theorem that can be
used to reduce provability in FCl to provability in Classical Logic. In the above
quoted papers it is also illustrated the relationship between FCl and Medvedev
Logic of Finite Problems [6,10].

To characterize FCl in our semantical setting, let

StableAtt = {V | V is a waveform such that V t is stable}
It can be shown that

FCl = {A : ∃α ∈ �A� ∀V ∈ StableAtt α, V |= A }
From the above semantical characterization it is immediate to check that LEf ⊆
FCl; on the other hand, LEf �= FCl since At✷ does not hold in LEf .

Also from proofs of NDFCl we can extract exact stabilization bounds. Here
we describe how to associate with every proof π : {A1, . . . , An} � B of NDFCl a
function F τ

π : �A1� × · · · × �An�→�B� where τ is a parameter in N needed to
treat the rule E✷AT. The function is defined by induction on the structure of π.
For the rules occurring in ND, the function is defined according to Points (7)-
(17) (the parameter τ plays no role), while the rule E✷AT is treated as follows:

Rule E✷AT: in this case π is the proof

A1, . . . , An··· π1

✷a
E✷AT

a

Fπ(α) = τ

(18)

264 M. Ferrari, C. Fiorentini, and M. Ornaghi

The main properties of the function F t
π associated with a proof π ∈ NDFCl

and with t ∈ N are given by the following result.

Theorem 2. Let π : {A1, . . . , An} � B be a proof of the calculus NDFCl , let
t ∈ N and let

F t
π : �A1� × · · · × �An�→�B�

be the function associated with π and t. For all α1 ∈ �A1�, . . . , αn ∈ �An�, and
for every waveform V ∈ StableAtt:

(i). α1, V |= A1, . . . , αn, V |= An implies F t
π(α1, . . . , αn), V |= B.

(ii). α′
1 ∼A1 α1, . . . , α′

n ∼An
αn implies F t

π(α′
1, . . . , α

′
n) ∼B F t

π(α1, . . . , αn).
(iii). α1 exact for V and A1, . . . , αn exact for V and An implies F t

π(α1, . . . , αn)
exact for V and B.

6 Conclusion

In this paper we have shown how we can get a timing analysis with data-
dependent valuation of exact delays by a specialization of evaluation forms se-
mantics [11]. There are several interesting aspects we aim to investigate in our
future work.

As for the semantics here considered, we want to examine thoroughly the
kind of delay information related to different formulas representing the same
boolean function. As an example we remark that the ✷ operator can be used to
avoid the timing analysis of the subformulas to which it applies. It is easy to see
that there exists a proof

Π ′ : CXOR � ✷XOR(a, b, g)

in ND, and this proof guarantees (according to Definition 1) the correctness of
the input/output behavior of the XOR circuit of Figure 1. On the other hand
the stabilization bounds for ✷-formulas give no information about the delays.
At the same way, using ✷ in front of a formula representing a component of the
circuit, we can abstract from the temporal behavior of such a component.

As for the expressiveness of our language, we observe that the nand function,
we described by means of the formula NAND(x, y, z) of Point (2), can also be
represented by different formulas, e.g.,

NAND′(x, y, z) ≡ (x ∧ y→¬z) ∧ (¬x→z) ∧ (¬y→z)

Actually, �NAND(x, y, z)� �= �NAND′(x, y, z)�, however accomplishing the anal-
ysis of the XOR circuit using NAND′(x, y, z) we obtain essentially the same
results, e.g., also in this case we obtain the diagram of Figure 3.

Another aspect we aim to investigate is the extension of our language by
other modal operators as the Lax operator of [8].

Finally, we remark that the semantical setting of evaluation forms supports
a variety of specializations that preserve the Soundness Theorem, that is the

Extracting Exact Time Bounds from Logical Proofs 265

fundamental result to compute stabilization bounds with proofs. In this paper we
have studied a specialization of evaluation forms semantics directly inspired by
[7,8]; our aim is to investigate other specializations of evaluation forms semantics
and their relation with timing analysis models.

References

1. D.A. Basin and N. Klarlund. Automata based symbolic reasoning in hardware
verification. Formal Methods in Systems Design, 13(3):255–288, 1998.

2. J. Brzozowski and M. Yoeli. Ternary simulation of binary gate networks. In J. M.
Dunn and G. Epstein, editors, Modern Uses of Multiple-Valued Logic, pages 41–50.
D. Reidel, 1977.

3. A. Chagrov and M. Zakharyaschev. Modal Logic. Oxford University Press, 1997.
4. C.T. Gray, W. Liu, R.K. Cavin III, and H.-Y. Hsieh. Circuit delay calculation

considering data dependent delays. INTEGRATION, The VLSI Journal, 17:1–23,
1994.

5. S. Malik. Analysis of Cyclic Combinational Circuits. In IEEE /ACM International
Conference on CAD, pages 618–627. ACM/IEEE, IEEE Computer Society Press,
1993.

6. Ju.T. Medvedev. Interpretation of logical formulas by means of finite problems
and its relation to the realizability theory. Soviet Mathematics Doklady, 4:180–
183, 1963.

7. M. Mendler. A timing refinement of intuitionistic proofs and its application to the
timing analysis of combinational circuits. In P. Miglioli, U. Moscato, D. Mundici,
and M. Ornaghi, editors, Proceedings of the 5th International Workshop on Theo-
rem Proving with Analytic Tableaux and Related Methods, pages 261–277. Springer,
LNAI 1071, 1996.

8. M. Mendler. Characterising combinational timing analyses in intuitionistic modal
logic. Logic Journal of the IGPL, 8(6):821–852, 2000.

9. M. Mendler. Timing analysis of combinational circuits in intuitionistic proposi-
tional logic. Formal Methods in System Design, 17(1):5–37, 2000.

10. P. Miglioli, U. Moscato, M. Ornaghi, S. Quazza, and G. Usberti. Some results on
intermediate constructive logics. Notre Dame Journal of Formal Logic, 30(4):543–
562, 1989.

11. P. Miglioli, U. Moscato, M. Ornaghi, and G. Usberti. A constructivism based on
classical truth. Notre Dame Journal of Formal Logic, 30(1):67–90, 1989.

12. D. Prawitz. Natural Deduction. Almquist and Winksell, 1965.
13. R.H. Thomason. A semantical study of constructible falsity. Zeitschrift für Math-

ematische Logik und Grundlagen der Mathematik, 15:247–257, 1969.

	Introduction
	Waveforms and Circuits
	Stabilization Bounds
	Timing Analysis of a Circuit
	Computing Stabilization Delays
	Application to the XOR Circuit

	The Logics $@mathbf {L_{rm Ef}}$ and $@mathbf {F_{rm Cl}}$
	Conclusion

