
On Combining Functional Verification and
Performance Evaluation Using CADP

Hubert Garavel1 and Holger Hermanns2

1 INRIA Rhône-Alpes / VASY, 655, avenue de l’Europe
F-38330 Montbonnot Saint-Martin, France

2 Formal Methods and Tools Group, University of Twente,
P.O. Box 217, NL-7500 AE Enschede, The Netherlands

Abstract. Considering functional correctness and performance evalua-
tion in a common framework is desirable, both for scientific and economic
reasons. In this paper, we describe how the Cadp toolbox, originally de-
signed for verifying the functional correctness of Lotos specifications,
can also be used for performance evaluation. We illustrate the proposed
approach by the performance study of the Scsi-2 bus arbitration proto-
col.

1 Introduction

The design of models suited for performance and reliability analysis of systems is
difficult because of their increase in size and complexity, in particular for systems
with a high degree of irregularity. Traditional performance models like Markov
chains and queueing networks are not easy to apply in these areas, mainly be-
cause they lack hierarchical composition and abstraction means. Therefore, if
attempts are nowadays made to assess performance of complex designs, they
are most often isolated from the system design cycle. This insularity problem of
performance evaluation [10] is undesirable.

On the other hand, to describe and analyse the functional properties of de-
signs, various specification formalisms exist, which enable systems to be modelled
in a compositional, hierarchical manner. A prominent example of such speci-
fication formalisms is the class of process algebras, which provide abstraction
mechanisms to treat system components as black boxes, making their internal
implementation details invisible.

Among the many process algebras proposed in the literature, Lotos [27,7,35]
has received much attention, due to its technical merits and its status of Iso/Iec
International Standard. Cadp (Caesar/Aldebaran Development Package) [17] is
a widespread tool set for the design and verification of complex systems. Cadp
supports the process algebra Lotos for specification, and offers various tools for
simulation and formal verification, including equivalence checkers (bisimulations)
and model checkers (temporal logics and modal µ-calculus).

Facing these advanced means to construct correct models of complex systems,
it appears most interesting to investigate how performance evaluation can be
carried out on the basis of such models, and this is what the present paper is

L.-H. Eriksson and P. Lindsay (Eds.): FME 2002, LNCS 2391, pp. 410–429, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

On Combining Functional Verification and Performance Evaluation 411

about. Functional correctness and performance evaluation being two facets of
the same problem, which is the proper functioning of a system, it is desirable to
address them together, both for scientific and economic reasons. This requires
(i) a common theoretical framework, (ii) a common language for modelling both
functional and performance aspects, (iii) a common methodology for combining
both aspects, and (iv) software tools implementing the appropriate algorithms.

To arrive at this joint consideration of functionality and performance, we
follow the approach advocated in [23]. We start from a functionally verified
Lotos specification, in which we introduce timing related information, which
expresses that certain events are delayed by a random time (governed by an
exponential distribution or, more generally, a phase-type distribution).

To support this methodology, we use the existing software components of
Cadp, as well as a novel tool named Bcg Min, which we developed for min-
imising stochastic models. We illustrate the approach with an industrial case
study: the bus arbitration protocol used in the Scsi-2 [2] standard.

We are not the first to advocate a joint consideration of functional verifi-
cation and performance evaluation. This idea has driven the development of
stochastic Petri nets [1], stochastic process algebras [24,29,26,4,20], as well as
other approaches, e.g., [6]. Our proposal can be considered as a pragmatic out-
come of research on stochastic algebras, other tools in this context being the
Pepa-workbench [14], TwoTowers [3], and the TippTool [21]. Although on
a superficial level all these tools implement an approach similar to ours, only
TwoTowers provides support for both functional verification as well as per-
formance evaluation. Moreover, we are not aware of any publication considering
both functional correctness and performance properties for industrial scale ap-
plications, with the exception of [23], where a verified Lotos specification of a
telephone system is studied with respect to performance properties. One conclu-
sion of [23] was a lack of tool support for doing industrial strength case studies,
a problem that we address here explicitly.

This paper is organised as follows. Section 2 explains how the process algebra
Lotos can be used for modelling Markovian aspects, and describes extensions
of Cadp to support performance evaluation. The functional part of the Scsi-2
case study is introduced in Section 3, while Section 4 covers the performance-
related modelling and analysis aspects for the Scsi protocol. Finally, Section 5
concludes the paper.

2 The Proposed Approach

Our approach to combining functional verification and performance evaluation
is pragmatic in the sense that, instead of developing new models, new languages
and new tools, it is, to a large extent, based on prior work for ‘classical’ (i.e.,
non-stochastic) process algebras, and especially the Cadp tools. However, to
address performance aspects, the Cadp tools (originally designed for functional
verification only) must be extended and combined with performance tools. To
do so, several challenging issues must be addressed. In this section, we present
the principles of our approach and their practical implementation.

412 H. Garavel and H. Hermanns

2.1 Interactive Markov Chains

To define the operational semantics of process algebras, the usual model is that
of labelled transition systems (Lts for short). An Lts is a directed graph whose
vertices denote the global states of the system and whose edges correspond to
the transitions permitted by the system. Each transition is labelled by an action,
and there is one distinguished state considered as the initial state.

As regards functional verification, many verification techniques (such as those
implemented in Cadp) are based on the Lts model.

As regards performance evaluation, many stochastic models derived from
state-transition diagrams have been proposed. Our approach is based on the
Interactive Markov Chains model [19] (Imc for short), which is well-adapted
to process algebras. An Imc is simply an Lts whose transitions can be either
labelled with an action (as in an ‘ordinary’ Lts) or with special labels of the form
“rate λ”, where λ belongs to the set of positive reals. A transition “rate λ”
going out of some state S is called a delay transition and expresses an internal
delay in state S. More precisely, it indicates that the time t spent in S follows
a so-called negative exponential distribution function Prob{t ≤ x} = 1 − e−λx,
to be read as: the probability that state S is exited at time x the latest equals
1− e−λx. The parameter λ of the distribution is called a Markov delay ; it is also
referred to as the rate of the distribution (the rate being the reciprocal value
of the mean duration of an exponentially distributed delay). The Imc model is
very general in several respects:

– It contains, as two particular cases, the Lts model (which is obtained when
there is no delay transition) and the well-known Continuous Time Markov
Chain model (which is obtained when there are only delay transitions). The
latter model (Ctmc for short) has been extensively studied in the literature
and is equipped with various efficient evaluation strategies (see, e.g. [34]).

– The Imc model allows nondeterminism in states, i.e., two identical action
transitions leaving the same state. Nondeterminism is an important feature if
the Imc model is to be generated automatically from higher-level languages
such as process algebra.

– Unlike some stochastic models (e.g. [26,4]), the Imc model does not require
a strict alternation between actions and delays. It is therefore permitted to
have several successive actions not separated by a delay in between. It is also
permitted to have several delays interspersed between actions. This is prac-
tically useful: by combining several exponential distributions one can define
a more general class of distributions, so-called phase-type distributions. Con-
cretely, each Ctmc fragment with an absorbing state (i.e., a state without
rate-successors) can be used to represent a phase-type distribution, which
describes the time needed to reach the absorbing state from the initial state.
For instance, the following example:

. . . ◦ A−−→◦ rate 10−−−−−−−→◦ rate 10−−−−−−−→◦ rate 10−−−−−−−→◦ B−−→◦. . .
expresses that the occurrence of action B after witnessing action A is delayed
by an Erlang-3 distribution. This is an important feature, as phase-type
distributions can approximate arbitrary distributions arbitrarily close [32].

On Combining Functional Verification and Performance Evaluation 413

There is a subtle, but important difference between the Lts and Imc models.
In the Lts model, given an action A and two states S1 and S2, there is at
most one transition labelled by A going from S1 to S2. It is not possible to
have several identical transitions between the same states, because transitions
are usually defined by a relation over States × Actions × States. Technically,
it would be easy to allow identical transitions by using a multirelation over
States ×Actions × States instead. But this is not the standard approach, as the
usual means of observing Ltss (bisimulations, µ-calculus, Sos rules that define
the semantics of process algebraic operators used to compose Ltss) only check
for the existence of transitions and, thus, would not make any difference between
one and several identical transitions.

The situation is different in the stochastic setting. Multiplicity of identical
transitions is making a difference in the case of delay transitions. Given a rate λ
and two states S1 and S2, the co-existence of two transitions labelled “rate λ”
expresses that there are two competing ways to reach S2. According to this
so-called race interpretation, which is widely used to explain the behaviour of
Markov chains over time, these two delay transitions could be merged into a
unique transition “rate 2λ” that cumulates their rates.

Concretely, in our approach, Ltss and Imcs are encoded in the Bcg (Bi-
nary Coded Graphs) file format. Bcg is a compact format for storing very large
Ltss. It plays a pivotal role in the Cadp tool set, which provides programming
interfaces and a comprehensive collection of software tools to handle Bcg files.
The Bcg format can handle identical transitions according to the multirelation
semantics because, for time efficiency reasons, transitions are stored inside the
Bcg format as a list-like data structure, without checking for duplicates.

2.2 Using LOTOS to Express Interactive Markov Chains

Although it is possible to specify performance aspects directly at the Imc level,
this is not always suitable for complex systems, which are more easily described
using higher level languages. Our approach is based on the Lotos process alge-
bra, which we briefly present hereafter.

Lotos is a formal description technique for specifying communication pro-
tocols and distributed systems at a high abstraction level and with a strong
mathematical basis. Its definition [27] features two parts.

The data part is based on the theory of algebraic data types. It allows the
definition of data structures described by sorts, which represent value domains,
and operations, which are mathematical functions defined on these domains us-
ing algebraic equations. Sorts, operations, and equations are grouped in modules
called types, which can be combined together using importation, renaming, pa-
rameterisation, and actualisation. The underlying semantics is that of initial
algebras.

The behaviour part combines the best features of the pioneering process
algebras, notably Milner’s Ccs and Hoare’s Csp. It is used to describe con-
current processes that synchronise and communicate by rendezvous message-
passing. Lotos has a small set of basic operators (sequential composition, non-
deterministic choice, guard, parallel composition, etc.), which can be combined

414 H. Garavel and H. Hermanns

together to express complex behaviours. The semantics of Lotos is defined op-
erationally in terms of (finite or infinite) Ltss. We refer to [7,35] for further
reading.

As Lotos is mainly intended for functional aspects (data and behaviours),
it provides no built-in support for quantitative time nor performance modelling.
It is worth noticing that the recent E-Lotos standard [28], which introduces
quantitative time, still lacks support for performance aspects. In particular, a
concept like randomness or probability has not been included.

At this point, we are confronted to a crucial choice: either designing a new
process algebra containing stochastic extensions (as done with Tipp [15], Pepa
[26], or Empa [4]), or taking Lotos as is and extend it orthogonally with stochas-
tic features. The former approach requires to develop a whole set of new tools,
which we want to avoid for time/cost reasons. We therefore chose the latter ap-
proach, so as to reuse existing tools already available for Lotos, in particular
the Cæsar.adt [11] and Cæsar [13] tools of Cadp.

Cæsar.adt and Cæsar are two complementary Lotos to C compilers, the
former for the data part, the latter for the behaviour part of Lotos. The C code
generated by these compilers is then used by other Cadp tools for various pur-
poses: simulation, random execution, on the fly verification, test generation, etc.
Additionally, Cæsar can generate the Lts corresponding to a Lotos specifica-
tion, if of finite size. This Lts is encoded in the Bcg format and can be verified
using bisimulations and/or model-checking of µ-calculus or temporal logic for-
mulas.

Extending Lotos with stochastic constructs would imply deep changes in
the existing compilers in order to cope with delay transitions. Still guided by
pragmatism, we found a lighter approach, which does not modify the syntax of
Lotos and requires no change in the Cæsar.adt and Cæsar compilers. The
principle is the following. Starting from a Lotos specification whose functional
correctness has been already verified, the user should, at every place in the
Lotos specification where a Markov delay λi should occur, insert an action Λi,
where Λi is a new Lotos gate (i.e., action name) expressing a communication
with the external environment. The user should declare as many new gates Λi

as there exists different rates λi. It is also possible to declare a single new gate
Λ to which different parameter values will be associated (e.g., “Λ !i”).

To ensure that introducing Markov delays does not corrupt the functional
behaviour of the original specification, one can check that the Lotos specifi-
cation obtained after hiding the Λi gates (i.e., renaming these gates to τ) is
equivalent to the original Lotos specification modulo a weak equivalence (e.g.,
branching equivalence), or that both satisfy the same set of properties expressed
in temporal logic or µ-calculus.

After the special gates Λi have been inserted in the Lotos specification,
Cæsar and Cæsar.adt are invoked as usual to generate the corresponding
Lts. This Lts is then turned into an Imc (still encoded in the Bcg format)
by replacing all its action transitions Λi with delay transitions “rate λi”. This
is done using the Bcg Labels tool of Cadp, which performs hiding and/or
renaming on the labels attached to the transitions of a Bcg file, according to a
set of regular expression and substitution patterns specified by the user.

On Combining Functional Verification and Performance Evaluation 415

Our approach operates in two successive steps, first generating an Lts pa-
rameterised with action names Λi, then instantiating the Λi parameter with
actual Markov delays. This is practically useful, as one often needs to try several
values for each rate parameters when evaluating the performance of a system.
With our approach, the highest cost (generating the parameterised Lts) occurs
only once, while the instantiation costs are negligible in comparison.

One might wonder whether this two step approach is theoretically sound.
For most Lotos operators (sequential composition, non-deterministic choice,
process instantiation, etc.), there is no problem because the Imc model has been
designed as an orthogonal extension of standard process algebra [19,23,20]. Yet,
two points must be clarified:

– As regards parallel composition, there are various possible semantics for
the synchronisation on a common action [25,20]. To avoid any ambiguity,
we do not allow synchronisation on the special gates Λi. It is the user’s
responsibility not to synchronise these gates. For the same reason, the Lotos
parallel operator “||”, which forces synchronisation for all visible gates,
should be avoided as well.

– With respect to the above discussion on multirelation semantics for transi-
tions, it is true that the standard semantics of Lotos [27] is defined in terms
of Ltss, contrary to stochastic process algebras, which rely (explicitly or im-
plicitly) on multirelation semantics. However, Lotos could equally well be
equipped with a multirelation semantics without disturbing its sound alge-
braic theory, given that both standard and multirelation semantics cannot
be distinguished by strong bisimulation.
Concretely, if a Lotos specification contains identical transitions (e.g.,
“Λ; stop [] Λ; stop”), a Lotos compiler such as Cæsar can generate an
Lts with one or two Λ-transitions, both solutions being equivalent modulo
strong bisimulation; the number of Λ-transitions will mainly depend on the
degree of optimisations done by the compiler internally. The user can safely
avoid this issue by using, instead of Λ, two different gate names Λ1 and Λ2,
which will be later instantiated with the same Markov delay.

There is another approach to extend a Lotos specification with stochastic
timing information, besides the direct insertion of Markov delays in the specifi-
cation text. This alternative approach is based on the use of specification styles
[36] for Lotos, and especially the constraint-oriented style, which allows to re-
fine the behaviour of an existing Lotos process by synchronising it with one (or
several) concurrent process(es) expressing a set of temporal constraints on the or-
dering of actions. It has been suggested in [23] that the constraint-oriented style
can be used to incorporate Markov delays (or even more complex phase-type
distributions) between the actions of a Lotos specification, without modifying
the specification text itself; see also [6] for a similar suggestion. Following this
idea, a general operator for expressing time constraints compositionally has been
proposed in [19, Section 5.5]. In this paper, we will illustrate both approaches,
i.e., both the direct insertion of Markov delays in the Lotos text (see Section 3)
and the superposition of time constraints specified externally (see Section 4).

416 H. Garavel and H. Hermanns

2.3 Minimisation of Interactive Markov Chains

After generating an Lts from a Lotos specification and converting this Lts to
an Imc by instantiating Markov delays with their actual values, the next step
of our methodology consists in minimising this Imc, i.e., aggregating its state
space. This minimisation is based on the (closely related) notions of bisimulation
(on Lts) and lumpability (on Ctmcs), and is of interest for at least three reasons:

– It brings the Imc to a minimal number of states, still retaining its essen-
tial properties; this improves the efficiency of performance evaluation tools
applied later to the minimised Imc;

– It replaces all delay transitions between a given pair of states by a single tran-
sition that cumulates the rates of these transitions; in particular, it removes
identical transitions, so that multirelation semantics is no longer needed after
minimisation.

– It may reduce (or even eliminate) nondeterminism, a concept not supported
by performance evaluation algorithms; however, nondeterminism is not guar-
anteed to vanish after minimisation.

Although minimisation is practically useful, a lack of tool support to minimise
large Imcs or Ctmcs has been identified (e.g., in [23] where the minimisation tool
used could not handle more than 4, 000 states). To account for this, we developed
a software tool called Bcg Min (3, 000 lines of C code) for minimising Ltss and
Imcs encoded in the Bcg format:

– As regards Ltss, Bcg Min performs efficient minimisation with respect to
either strong or branching bisimulation. According to independent experts,
Bcg Min is “the best implementation of the standard [i.e., Groote & Vaan-
drager] algorithm for branching bisimulation” [18]. Using Bcg Min we have
been able to minimise an Lts with 8 million states and 43 million transitions
on a standard Pc.

– As regards Imcs, Bcg Min implements both stochastic strong bisimula-
tion and stochastic branching bisimulation. In a nutshell, stochastic strong
(resp. branching) bisimulation combines lumpability on the delay transitions
with strong (resp. branching) bisimulation on the action transitions. Con-
sequently, Bcg Min can be used to minimise Ctmcs modulo lumpability.
A formal definition of stochastic strong bisimulation and stochastic weak
bisimulation (a variant of stochastic branching bisimulation) can be found
in [19].

Apart from Ltss, Ctmcs, and Imcs, Bcg Min can handle a wide range of
other models, including (i) stochastic models containing transitions labelled by
(action, rate) pairs, which allows to minimise Tipp [15], Pepa [26], and Empa [4]
models modulo strong equivalence and Markovian bisimulation, (ii) probabilistic
systems containing transitions labelled by action, probabilities, and/or (action,
probability) pairs, which allows to minimise discrete time Markov chains (and
various probabilistic transition systems) modulo lumpability (respectively prob-

On Combining Functional Verification and Performance Evaluation 417

abilistic bisimulation), and (iii) Markov decision processes [33], which can be
minimised modulo lumpability. We refer to the Bcg Min manual page1 for a
detailed description of the features of Bcg Min.

2.4 Compositional Generation of Interactive Markov Chains

Both functional verification and performance evaluation are confronted to the
well-known state explosion problem, which occurs when state spaces or Markov
chains become too large for being generated exhaustively. As regards functional
verification, the Cadp tool set provides various strategies to address the state
explosion problem, one of these being compositional generation (also known as
compositional minimisation), see e.g. [16]. This approach consists in dividing the
system into a set of concurrent processes, then generating the Ltss corresponding
to these processes, minimising these Ltss using an equivalence relation (such as
strong or branching bisimulation), and finally combining the minimised Ltss in
parallel so as to generate the Lts of the whole system.

Compositional generation has been adapted to performance evaluation, both
in the context of Ctmcs, where bisimulation is known to agree with the notion
of lumpability [26], and in the context of Lotos and Imcs [23]. Compared to
[23], our approach is novel in several respects:

– Using the Bcg Min tool, which did not exist at the time of [23], we are now
able to minimise Imcs effectively.

– To compute the Imc corresponding to a set of Imcs combined together us-
ing Lotos parallel composition operators (without synchronisation on delay
transitions as mentioned above), we resort to the Exp.Open tool2 developed
by Laurent Mounier. The Exp.Open tool is also used to combine a Lotos
specification with a set of Imcs expressing delays to be incorporated in a
constraint-oriented style.

– Finally, we take advantage of Svl [12,31], a new scripting language for com-
positional and on-the-fly verification. Svl provides a high-level interface to
all Cadp tools (including Cæsar, Cæsar.adt, Bcg Labels, Bcg Min,
Exp.Open, etc.), thus enabling an easy description and execution of com-
plex performance studies.

2.5 Numerical Analysis of Interactive Markov Chains

After constructing a minimised Imc, the last step of our methodology consists
in applying performance evaluation analysis algorithms, so as to compute inter-
esting performance metrics out of the model. To analyse the Imc models, one
can use either model checking algorithms, such as those implemented in Etmcc
[22] or Prism [30]3, or more standard analysis algorithms for Ctmcs, such as
1 http://www.inrialpes.fr/vasy/cadp/man/bcg min.html
2 http://www.inrialpes.fr/vasy/cadp/man/exp.open.html
3 Imc models containing nondeterminism require rather involved algorithms as de-
scribed in [33,9]

418 H. Garavel and H. Hermanns

those available in the TippTool [21] developed at the University of Erlangen-
Nuremberg. Note however that in general the Imc models contain nondetermin-
ism, and thus one needs rather involved algorithms as described in [33,9].

We decided to stick to standard Ctmc analysis algorithms. A connection of
the TippTool analysis engine to the Bcg format was developed, which enables
the use of the TippTool to carry out analysis of (moderate size) Imcs generated
using Cadp. This connection allows to study the time dependent (transient)
behaviour, as well as the long run average (steady-state) behaviour of a model.
Transient analysis uses a numerical algorithm known as uniformisation, while
steady-state analysis is carried out using either the power, Gauss-Seidel or SOR
method; see [34] for a thorough introduction to these algorithms.

3 The SCSI-2 Bus Arbitration Protocol

To illustrate our approach, we consider an industrial case-study brought to our
attention by Massimo Zendri while he was working in the Vasy team. This case-
study is about a storage system developed by Bull in the early 90’s. This system
consists of at most 8 devices (7 hard disks and one disk controller) connected
by a bus implementing the Scsi-2 (Small Computer System Interface) standard
[2]. Each device is assigned a unique Scsi number between 0 and 7.

During the testing phase, Bull engineers discovered potential starvation prob-
lems for disks having Scsi numbers smaller than the Scsi number of the disk
controller. Practically, this problem was solved by instructing system manufac-
turers to install the controller with the Scsi number 0 systematically. In parallel,
research was initiated to understand the issue. This problem was first modelled
by Massimo Zendri, who developed a Markovian queueing model to study per-
formance issues [37]. Later, the functional aspects of the Scsi-2 bus arbitration
protocol were formalised in Lotos by Hubert Garavel, with an emphasis on
modelling arbitration concisely using Lotos multiway rendezvous. This Lotos
specification4 served as a basis for model-checking verification by Radu Mateescu
(thus, enabling to discover the starvation problem mechanically) and automated
test generation by Solofo Ramangalahy. See also [5] for a discussion of fairness
issues in the Scsi-3 bus arbitration protocol. In the present paper, we comple-
ment these functional verification efforts by enhancing the Lotos model so as
to study performance issues.

In the Scsi-2 system, the controller can send randomly to the disk n a mes-
sage “CMD !n” (command) indicating a transfer request (read/write a block of
data from/to the disk). After processing this command, the disk sends back to
the controller a message “REC !n” (reconnect). We do not model the detailed
contents (e.g., type or data) of these messages. The CMD and REC messages are
stored in eight-place Fifo queues (see Figure 1). Since we abstract from the
message contents, it is sufficient to model these queues as simple counters.

Arbitration mechanism. The CMD and REC messages circulate on the Scsi bus,
which is shared by all devices. To avoid access conflicts, the Scsi-2 standard
4 See http://www.inrialpes.fr/vasy/verdon for details

On Combining Functional Verification and Performance Evaluation 419

DISKDISK

REC
ARB
CMD

...

DISK

CONTROLLER

CMD
ARB
REC

Fig. 1. Architecture of the Scsi-2 system.

defines a bus arbitration policy ensuring that at any time at most one device
is allowed to access the bus. Before sending a message over the bus, each de-
vice must first request and obtain exclusive bus access. Arbitration is based
on fixed priorities: if several devices want to access the bus simultaneously, the
device with the highest Scsi number is granted access. Arbitration is also decen-
tralised: contrary to other bus protocols (e.g., Pci) there is no centralised arbiter
responsible for granting bus access. To ensure exclusive access in a distributed
way, the arbitration mechanism is physically implemented by eight electrical
wires, the voltage level of which (high or low) can be consulted by all devices.
Each wire is owned by a particular device, and is set to high voltage when this
device requests bus access. Before using the bus, each device examines the eight
wires’ voltage level during a certain amount of time (the arbitration period) to
ensure that no other device with a higher Scsi number has its wire set to high
voltage.

Modelling the Scsi-2 arbitration policy in a precise, concise, yet understand-
able way is a challenge, especially for languages providing binary communication
paradigms only (such as Fifo queues, remote procedure calls, or binary synchro-
nisations).

Yet, this problem can be solved elegantly using the advanced features of
Lotos (namely, multiway rendezvous with value negotiation based on pattern-
matching). Assuming that the arbitration period is short enough, arbitration can
be modelled by a single, eight-party rendezvous between all devices on a gate
named ARB. During every arbitration period, all devices must synchronise to indi-
cate whether they request bus access or not. Syntactically, each device must pro-
pose an action of the form “ARB ?W:WIRE [Cn(W, n)]”, where n is the Scsi num-
ber of the device, where variable W of type WIRE is an eight-tuple (w0, w1, . . . , w7)
of booleans corresponding to the voltage levels on the wires5, and where predi-
5 The boolean values false and true correspond to low and high voltage, respectively.

420 H. Garavel and H. Hermanns

cate Cn(W, n) belongs to a set of three possible constraints relating W and n. These
three constraints are: (i) the constraint C PASS(W, n) := ¬wn is true iff device n

does not request the bus; (ii) the constraint C WIN(W, n) := wn ∧ ¬∨i=7
i=n+1 wi

is true iff device n requests the bus and succeeds to be the highest priority com-
petitor; (iii) the constraint C LOSS(W, n) := wn ∧ ∨i=7

i=n+1 wi is true iff device
n requests the bus but fails to gain access. When the eight devices synchronise
together on gate ARB, their individual, distributed constraints are combined into
a logical conjunction

∧i=7
i=0 Ci(W, i), which determines a unique solution W agreed

by all the devices unanimously.

Disk devices. Each disk is described as an instance of a generic Lotos process
(noted DISK) parameterised by the Scsi number N, the number L of CMDmessages
waiting to be processed in the disk’s input Fifo queue (initially, L = 0), and
by a boolean variable READY which is true iff the device has processed a CMD
message and is ready to send the result back to the controller (initially, READY =
false). The behaviour of the DISK process is a nondeterministic selection between
five branches: (i) the disk may receive a CMD message and increment L (a flow
control mechanism implemented in the controller avoids overflows in the disks’
input queues); (ii) if the disk is not ready, it may take part in the arbitration
mechanism without requesting the bus, which enables lower priority devices to
access the bus; (iii) if the disk is not ready and if its input queue is not empty,
it may process a command stored in the queue (which takes a Markov delay
noted “MU !N”), then decrement L and become ready; (iv) and (v) if the disk is
ready, it requests the bus repeatedly until it is granted; once successful, it sends
a corresponding REC message and returns to its non-ready state.

process DISK [ARB, CMD, REC, MU] (N:NUM, L:NAT, READY:BOOL):noexit :=
CMD !N;

DISK [ARB, CMD, REC, MU] (N, L+1, READY)
[]
ARB ?W:WIRE [not (READY) and C_PASS (W, N)];

DISK [ARB, CMD, REC, MU] (N, L, READY)
[]
[not (READY) and (L > 0)] ->

MU !N; (* Markov delay inserted here *)
DISK [ARB, CMD, REC, MU] (N, L-1, true)

[]
ARB ?W:WIRE [READY and C_LOSS (W, N)];

DISK [ARB, CMD, REC, MU] (N, L, READY)
[]
ARB ?W:WIRE [READY and C_WIN (W, N)];

REC !N;
DISK [ARB, CMD, REC, MU] (N, L, false)

endproc

Controller device. The controller is described by a Lotos process (noted
CONTROLLER) parameterised by the Scsi number NC of the controller and by
two variables PENDING and T. PENDING contains the Scsi number of the disk to

On Combining Functional Verification and Performance Evaluation 421

which the controller has to send a CMD message (initially, PENDING = NC, which
means that the controller is idle). T is a table (i.e., an array) used for flow con-
trol, so as to avoid overflow of the disks’ input queues. The n-th element of
T (noted “VAL (T, n)’’, where n is a Scsi number different from NC) stores
the number of commands waiting to be processed by disk n, i.e., the difference
between the number of “CMD !n” messages sent and the number of “REC !n”
messages received by the controller. ZERO denotes the initial value of the table,
with all elements equal to 0. INCR (T, n) and DECR (T, n) denote the table
T in which the n-th element is incremented or decremented, respectively.

As with the disk, the behaviour of the CONTROLLER process is a selection
between five branches: (i) if the controller is idle, it may take part in the arbi-
tration mechanism without requesting the bus; (ii) if the controller is idle, it may
also select (nondeterministically) some disk N with less than eight unprocessed
commands and assign N to PENDING; in practice, this selection is triggered by a
transfer request sent to the controller by its external environment; we introduce
a Markov delay noted “LAMBDA !N” in order to model the load stress imposed
on the controller; (iii) and (iv) if the controller is not idle, it requests the bus
repeatedly until it is granted; once successful, it sends a CMD message to the
disk indicated by PENDING, then increments T accordingly and returns to its idle
state; (v) the controller may receive REC messages and decrement T accordingly.

process CONTROLLER [ARB, CMD, REC, LAMBDA] (NC:NUM, PENDING:NUM,
T:TABLE) : noexit :=

ARB ?W:WIRE [(PENDING == NC) and C_PASS (W, NC)];
CONTROLLER [ARB, CMD, REC, LAMBDA] (NC, PENDING, T)

[]
(
choice N:NUM []

[(PENDING == NC) and (N <> NC)] ->
[VAL (T, N) < 8] ->

LAMBDA !N; (* Markov delay inserted here *)
CONTROLLER [ARB, CMD, REC, LAMBDA] (NC, N, T)

)
[]
ARB ?W:WIRE [(PENDING <> NC) and C_LOSS (W, NC)];

CONTROLLER [ARB, CMD, REC, LAMBDA] (NC, PENDING, T)
[]
ARB ?W:WIRE [(PENDING <> NC) and C_WIN (W, NC)];

CMD !PENDING;
CONTROLLER [ARB, CMD, REC, LAMBDA] (NC, NC, INCR (T, PENDING))

[]
REC ?N:NUM [N <> NC];

CONTROLLER [ARB, CMD, REC, LAMBDA] (NC, PENDING, DECR (T, N))
endproc

System architecture. The architecture of the Scsi-2 system is described by com-
posing in parallel the seven disk processes and the controller process. All these
processes synchronise together using an eight-way rendezvous on the ARB gate.
The disks communicate with the controller using binary rendezvous on gates CMD

422 H. Garavel and H. Hermanns

and REC. Although the seven disks are competing with each other for achieving
a rendezvous on gates CMD and REC with the controller, the “!n” parameters
associated to these gates allow to identify the corresponding disk. Finally, as
explained in Section 2.2, the MU and LAMBDA gates must not be synchronised.

(
DISK [ARB, CMD, REC, MU] (0, 0, false)
|[ARB]|
DISK [ARB, CMD, REC, MU] (1, 0, false)
|[ARB]|
...

|[ARB]|
DISK [ARB, CMD, REC, MU] (6, 0, false)
)
|[ARB, CMD, REC]|
CONTROLLER [ARB, CMD, REC, LAMBDA] (7, 7, ZERO)

4 Performance Model Aspects

The Scsi-2 specification as introduced above incorporates already some timing
parameters, namely the Markov delays LAMBDA and MU. This section motivates
the timing characteristics of the model. It further discusses the approach followed
to generate and analyse the model numerically, together with some interesting
performance figures we obtained.

4.1 SCSI-2 Timing Parameters

Based on the timing parameters given in definition of the Scsi-2 architecture,
we identified three parameters as most relevant for a performance study.

– The Markov delay LAMBDA put in the controller models the load (transfer
requests issued by the controller) that stimulates the whole Scsi-2 system.
It is the main parameter we vary in our experiments.

– The Markov delay MU put in the disk corresponds to the disk servicing time,
i.e., the time needed by an individual disk to fetch or store the requested
data. The mean servicing time depends on the size of the data blocks to be
transferred, and also varies from one disk manufacturer to another. Its value
ranges from 1500 µs to about 4500 µs [37].

– Finally, the bus inter-arbitration time (or bus delay, for short) determines
the delay between two consecutive bus arbitration periods. This delay is
minimally 2.5 µs and depends on the amount of data transmitted on the bus
after an arbitration.

To incorporate the bus delay into the Scsi specification, we use the
constraint-oriented style mentioned earlier. As the bus delay elapses between
any two consecutive ARB actions, it will be incorporated by running the Scsi
system in parallel with an additional, very simple process BUS, which forces any
two consecutive ARB actions to be separated by a Markov delay NU:

On Combining Functional Verification and Performance Evaluation 423

process BUS [ARB, NU]:noexit :=
ARB; NU; BUS [ARB, NU]

endproc

Both the Scsi system and the BUS process are synchronised on gate ARB. Note
that this approach allows one to experiment with different, phase-type dis-
tributed delays in a flexible way, such as with an Erlang-5 distributed delay:

process BUS_5 [ARB, NU]:noexit :=
ARB; NU; NU; NU; NU; NU; BUS_5 [ARB, NU]

endproc

We carried out several experiments with such delays, and found that as long as
the mean value of the distributions used stays unchanged, the influence of the
distributions on the numerical results is marginal. As regards the LAMBDA and MU
delays, experimenting with other distributions is not so straightforward, because
any change in the distribution implies a change in the Lotos specification, and
hence a proof obligation that the functional behaviour is still as intended. The
constraint-oriented style reliefs this burden, since it preserves the functional
behaviour: the resulting Lts obtained after parallel composition is branching
bisimilar to the original one provided that the Markov delays are hidden (i.e.,
renamed to τ) [19].

4.2 Performance Results

Among the studies we performed, we here focus on the behaviour of a Scsi-2
system under heavy load, since the system exhibits some interesting aspects of
unfairness in extreme situations. Note that due to the distributed priority mech-
anism governing the bus arbitration protocol, the system can not be expected
to behave perfectly fair under all circumstances.

We study a system with 3 disks. The load imposed on the system varies
between 10 and 800 requests per seconds and per disk. Unless otherwise stated,
we assume the average servicing time of the disks to be 2,500 µs, and the bus
delay to range between 2.5 µs and 2,500 µs.

First, we study a system in which the controller is assigned the Scsi number 7,
and observe the throughput of each disk under increasing load. The resulting
throughputs are plotted in Figure 2, for four different bus delay parameters. The
left plot shows the high priority disk 2, and the right one shows the low priority
disk 0. We observe that the bus bandwidth is shared in a load dependent way,
and we further observe that the higher the bus delay, the lower the throughputs
of the disks. Interestingly, the lower disks’ throughputs may collapse if the bus
delay is very long and load is heavy. The high priority disk does not exhibit such
a phenomenon. This reveals the unfairness of the arbitration mechanism.

To study this phenomenon further, we analyse the effect of the controller Scsi
number on the throughputs of the high and low priority disk. Figure 3 plots the
throughputs of the low and high priority disks under extreme bus delays. If the
controller is in the highest position (Scsi number 7), we find back one of the
scenarios studied in Figure 2: the high priority disk dominates the low priority
disk, and makes the throughput of the latter collapse. If on the other hand, the

424 H. Garavel and H. Hermanns

high priority disk

2,500

250

25

2.5

throughput

lambda

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

220.00

240.00

260.00

280.00

300.00

320.00

340.00

360.00

380.00

400.00

0.00 100.00 200.00 300.00 400.00 500.00 600.00 700.00

low priority disk

2,500

2500

25

2.5

throughput

lambda

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

220.00

240.00

260.00

280.00

300.00

320.00

340.00

360.00

380.00

400.00

0.00 100.00 200.00 300.00 400.00 500.00 600.00 700.00

Fig. 2. Throughput of disk 2 (left) and disk 0 (right) under increasing load with bus
delay ranging from 2.5 µs (dashed) to 2.5 ms (solid), and controller having number 7.

high priority disk

num. 0

num. 1

num. 7

throughput

lambda

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

110.00

120.00

130.00

140.00

150.00

0.00 100.00 200.00 300.00 400.00 500.00 600.00 700.00

low priority disk

num. 0

num. 1

num. 7

throughput

lambda

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

110.00

120.00

130.00

140.00

150.00

0.00 100.00 200.00 300.00 400.00 500.00 600.00 700.00

Fig. 3. Throughput of high priority disk (left) and low priority disk (right) under
increasing load with bus delay 2.5 ms, and controller having lowest (solid), middle, and
highest (dashed) number.

controller is in the lowest position (Scsi number 0), the achieved throughputs of
high and low priority disk are rather balanced, and in particular the low priority
throughput does not degrade nor collapse.

This study allows us to draw the conclusion that assigning Scsi number 0 to
the controller makes the system balanced. Otherwise, disks in a position lower
than the controller are disfavoured. This conclusion is in line with the experimen-
tal observations made by the Bull engineers; our studies allow a quantification
of the influence of the disk position on the throughput.

On Combining Functional Verification and Performance Evaluation 425

4.3 An SVL Session with CADP

This section discusses how the Markov chains under study are generated from
the Lotos specification using the Cadp toolbox. To explain how we proceed,
we list below the main fragment of the Svl-script used to distill the lumped
Markov chain used for the plots in Figure 2.

"scsi.bcg" = branching reduction of (1)
total rename "ARB !.*" -> ARB in

hide CMD, REC in
"scsi.lotos";

"model.bcg" = hide all but LAMBDA, MU, NU in (2)
("scsi.bcg" |[ARB]| "erlang.lotos":BUS [ARB, NU]);

% for SPEED in .4 2 4 40 400 (3)
% do

% for LOAD in .01 .03 .06 .1 .15 .2 .25 .3 .35 \
% .4 .45 .5 .55 .6 .65 .7 .75 .8
% do

% BCG_MIN_OPTIONS="-rate"
"res-$SPEED.bcg" = branching reduction with bcg_min of (4)

total rename "NU" -> "rate $SPEED",
"MU !0" -> "DISK_L; rate .4",
"MU !1" -> "DISK_M; rate .4",
"MU !2" -> "DISK_H; rate .4",
"LAMBDA !.*" -> "rate $LOAD" in

"model.bcg";
% seidel -v $LOAD "res-$SPEED.bcg" (5)

% done
% done

During step (1) the transition system of the Scsi specification is generated,
the CMD and REC gates are hidden as they are not needed in subsequent pro-
cessing, and the arbitration events are uniformly renamed into a new action
named ARB. Then, the resulting state space is minimised according to branching
bisimulation, and stored in a file named “scsi.bcg”.

Step (2) incorporates the bus delay via the process BUS [ARB, NU] taken
from file “erlang.lotos”. Afterwards, all gates are hidden, except those corre-
sponding to Markov delays (i.e., LAMBDA, MU, and NU). The result is stored in file
“model.bcg”.

Step (3) initiates two nested loops that compute a two-dimensional matrix
of performance results. The outer loop varies the SPEED parameter, which is
the inverse of the bus delay expressed in milliseconds, ranging from 1/2.5 µs to
1/2.5 ms. The inner loop varies the LOAD parameter, imposing between 0.01 and
0.8 requests per millisecond on each disk.

Step (4) instantiates, for each pair (SPEED, LOAD), the Markov delays LAMBDA,
MU, and NU present in file “model.bcg” with concrete values. The resulting Imc is

426 H. Garavel and H. Hermanns

then minimised using Bcg Min according to stochastic branching bisimulation,
which eliminates nondeterminism. This results in a Markov chain stored in file
“res-$SPEED.bcg”.

Step (5) calls the TippTool solver seidel, a numerical solution engine im-
plementing the Gauss-Seidel linear equation solver for Markov chains. It com-
putes the equilibrium (steady-state) probabilities for the states of the Markov
chain. From these probabilities, seidel calculates the transition throughputs for
each Markov delay marked with a distinguished label. These labels have been in-
corporated into the transition system in step (4); they indicate a high (DISK H),
medium (DISK M), or low (DISK L) priority disk being active.

The largest state space produced during the execution of the Svl script is
the Lts generated from “scsi.lotos”, which has 56,169 states and 154,752
transitions. The size of the Markov chains solved (i.e., files “res-*.bcg”) ranges
from 10,666 to 17,852 states.

5 Concluding Remarks

This paper has presented a practical methodology for studying the performance
of a concurrent system, starting from an already verified functional specification
of this system. Compared to prior works on stochastic Petri nets and stochastic
process algebras, our approach is original in several respects:

– We have chosen not to design a new formalism to model stochastic systems,
because the effort required to develop appropriate software tools would have
been very high. Instead, we reuse a non-stochastic process algebra (Lotos),
which we adapt to the stochastic framework by introducing a few additional
operators (such as relabelling, restriction, time constraints, and minimisa-
tion). This approach provides the user with a high-level language (Lotos)
to describe both control and data aspects (contrary to, e.g., the TippTool,
which only supports a subset of Lotos without data structures). Further-
more, existing Lotos tools can be used to perform functional verification
before undertaking performance analysis.

– To translate Lotos specifications into labelled transition systems, we use
the Cæsar.adt and Cæsar compilers of the Cadp tool set. To perform
relabelling, we also reuse an existing Cadp tool, Bcg Labels. Our ma-
jor development effort is Bcg Min, an efficient tool implementing several
minimisation algorithms for ordinary, stochastic, and probabilistic transi-
tion systems. Bcg Min plays a central role in connecting the Cadp tools to
the stochastic setting, and supports the compositional approach proposed in
[23], in which concurrent processes are generated, then minimised separately
so as to handle large state spaces.

– In order to automate the performance studies, in which stochastic param-
eters are varied in multiple dimensions, we take advantage of the scripting
language Svl. Originally developed for compositional verification of non-
stochastic systems, Svl is also useful in the stochastic settings, and provides
convenient means to integrate the various tools transparently.

On Combining Functional Verification and Performance Evaluation 427

We have presented an application of these principles to an industrial problem:
the Scsi-2 bus arbitration protocol, which we managed to model elegantly using
the expressiveness of Lotos multiway negotiated rendezvous. After verifying
the functional correctness of the Lotos specification using the Cadp tools, we
turned this specification into a performance model, which we analysed automat-
ically by combining the Cadp tools and the solution engine of the TippTool.
This performance study allowed us to quantify the unfairness of the Scsi-2 bus
arbitration protocol, and to show how the respective disk thoughputs depend on
the Scsi number assigned to the controller. These results are in line with the
experimental observations on the real Scsi-2 disk system.

As regards future work, more efforts are foreseen on the model solution side.
So far, we are resorting to the TippTool, but in a near future we shall in-
vestigate model checking approaches to Markov models, notably by linking the
Etmcc Markov chain model checker [22] to Cadp. Also,Mtbdd- or Kronecker-
based Markov chain representations [30,8] are promising directions to enable the
analysis of even larger models, in combination with our compositional approach.

Acknowledgements. We are grateful to Massimo Zendri for bringing the Scsi-
2 example to our attention, and to Moëz Cherif (formerly at Inria/Vasy) for
helping us to develop the Bcg Min tool. We are also grateful to Frédéric Lang
(Inria/Vasy) and the anonymous referees for their remarks about this paper.

References

1. A. Marsan, G. Balbo, and G. Conte. A Class of Generalized Stochastic Petri Nets
for the Performance Evaluation of Multiprocessor Systems. ACM Trans. on Comp.
Sys., 2(2), 1984.

2. ANSI. Small Computer System Interface-2. Standard X3.131-1994, American
National Standards Institute, 1994.

3. M. Bernardo, W.R. Cleaveland, S.T. Sims, and W.J. Stewart. TwoTowers: A Tool
Integrating Functional and Performance Analysis of Concurrent Systems. In Proc.
FORTE’98, IFIP, North-Holland, 1998.

4. M. Bernardo and R. Gorrieri. A Tutorial on EMPA: A Theory of Concurrent
Processes with Nondeterminism, Priorities, Probabilities and Time. Th. Comp.
Sci., 202:1–54, 1998.

5. D. Bert. Preuve de propriétés d’équité en B : Preuve de l’algorithme d’arbitrage
du bus SCSI-3. In Proc. AFADL’2001 (Nancy, France), pages 221–241, June 2001.

6. L. Blair, G. Blair, and A. Andersen. Separating Functional Behaviour and Perfor-
mance Constraints: Aspect-Oriented Specification. Technical Report MPG-98-07,
Computing Department, Lancaster University, 1998.

7. T. Bolognesi and E. Brinksma. Introduction to the ISO Specification Language
LOTOS. Comp. Netw. and ISDN Sys., 14(1):25–59, 1988.

8. P. Buchholz, G. Ciardo, S. Donatelli, and P. Kemper. Complexity of memory-
efficient Kronecker operations with applications to the solution of Markov models.
INFORMS J. on Comp., 13(3):203–222, 2000.

9. L. de Alfaro. How to specify and verify the long-run average behavior of proba-
bilistic systems. In Proc. Symp. on Logic in Computer Science, 1998.

428 H. Garavel and H. Hermanns

10. D. Ferrari. Considerations on the Insularity of Performance Evaluation. IEEE
Trans. on Softw. Eng., SE–12(6):678–683, June 1986.

11. H. Garavel. Compilation of LOTOS abstract data types. In Proc. FORTE’89,
pages 147–162. IFIP, North-Holland, 1989.

12. H. Garavel and F. Lang. SVL: A Scripting Language for Compositional Verifica-
tion. In Proc. FORTE’2001, pages 377–392. IFIP, Kluwer Academic, 2001. Full
version available as INRIA Research Report RR-4223.

13. H. Garavel and J. Sifakis. Compilation and verification of LOTOS specifications.
In Proc. PSTV’90, pages 379–394. IFIP, North-Holland, 1990.

14. S. Gilmore and J. Hillston. The PEPA Workbench: A Tool to Support a Process
Algebra-Based Approach to Performance Modelling. In Proc. TOOLS’94, 1994.

15. N. Götz, U. Herzog, and M. Rettelbach. Multiprocessor and distributed system
design: The integration of functional specification and performance analysis using
stochastic process algebras. In Tutorial Proc. PERFORMANCE ’93. Springer,
LNCS 729, 1993.

16. S. Graf, B. Steffen, and G. Luettgen. Compositional Minimization of Finite State
Systems. Formal Asp. of Comp., 8(5):607–616, 1996.

17. H. Garavel, F. Lang, and R. Mateescu. An Overview of CADP 2001. INRIA
Technical Report RT-254, December 2001.

18. J.F. Groote and J. van de Pol. State space reduction using partial τ -confluence.
In Proc. MFCS’2000, pages 383–393. Springer, LNCS 1893, 2000.

19. H. Hermanns. Interactive Markov Chains. PhD thesis, Universität Erlangen-
Nürnberg, 1998. revised version to appear as Springer LNCS monograph.

20. H. Hermanns, U. Herzog, and J.-P. Katoen. Process algebra for performance eval-
uation. Th. Comp. Sci., 274(1-2):43–87, 2002.

21. H. Hermanns, U. Herzog, U. Klehmet, V. Mertsiotakis, and M. Siegle. Com-
positional performance modelling with the TIPPtool. Perf. Eval., 39(1-4):5–35,
January 2000.

22. H. Hermanns, J.-P. Katoen, J. Meyer-Kayser, and M. Siegle. A Markov Chain
Model Checker. In Proc. TACAS’2000, pages 347–362, Springer, LNCS 1785, 2000.

23. H. Hermanns and J.P. Katoen. Automated compositional Markov chain generation
for a plain-old telephony system. Sci. of Comp. Prog., 36(1):97–127, 2000.

24. O. Hjiej, A. Benzekri, and A. Valderruten. From Annotated LOTOS specifications
to Queueing Networks: Automating Performance Models Derivation. Decentralized
and Distributed Systems (North Holland), 1993.

25. J. Hillston. The Nature of Synchronisation. In Proc. PAPM’94, Arbeitsberichte
des IMMD, Universität Erlangen-Nürnberg. pages 51–70, 1994.

26. J. Hillston. A Compositional Approach to Performance Modelling. Cambridge
University Press, 1996.

27. ISO/IEC. LOTOS — A Formal Description Technique based on the Temporal Or-
dering of Observational Behaviour. International Standard 8807, ISO - Information
Processing Systems - Open Systems Interconnection, 1988.

28. ISO/IEC. Enhancements to LOTOS (E-LOTOS). International Standard
15437:2001, ISO - Information Technology, 2001.

29. A. Marsan, A. Bianco, L. Ciminiera, R. Sisto, and A. Valenzano. A LOTOS Ex-
tension for the Performance Analysis of Distributed Systems. IEEE/ACM Trans.
on Networking, 2(2), 151–164, 1994.

30. M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic Symbolic Model Check-
ing with PRISM: A Hybrid Approach. In Proc. TACAS’2002, pages 52–66, 2002,
Springer LNCS 2280.

On Combining Functional Verification and Performance Evaluation 429

31. F. Lang. Compositional Verification using SVL Scripts. In Proc. TACAS’2002,
pages 465–469, 2002, Springer LNCS 2280.

32. M.F. Neuts. Matrix-geometric Solutions in Stochastic Models–An Algorithmic Ap-
proach. The Johns Hopkins University Press, 1981.

33. M.L. Puterman. Markov Decision Processes. John Wiley, 1994.
34. W.J. Stewart. Introduction to the numerical solution of Markov chains. Princeton

University Press, 1994.
35. K. J. Turner, editor. Using Formal Description Techniques – An Introduction to

ESTELLE, LOTOS, and SDL. John Wiley, 1993.
36. C. Vissers, G. Scollo, M. van Sinderen, and E. Brinksma. Specification styles in

distributed systems design and verification. Th. Comp. Sci., 89(1):179–206, 1991.
37. M. Zendri. Studio ed implementazione di un modello del bus SCSI. Laurea thesis,

Politecnico di Milano, Facoltà di Ingegneria, Dip. di Elettronica, 1992.

	Introduction
	The Proposed Approach
	Interactive Markov Chains
	Using LOTOS to Express Interactive Markov Chains
	Minimisation of Interactive Markov Chains
	Compositional Generation of Interactive Markov Chains
	Numerical Analysis of Interactive Markov Chains

	The SCSI-2 Bus Arbitration Protocol
	Performance Model Aspects
	SCSI-2 Timing Parameters
	Performance Results
	An SVL Session with CADP

	Concluding Remarks
	References

