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Abstract. Linear numerical constraints and their first-order theory,
whether defined over the reals or the integers, are basic tools that
appear in many areas of Computer Science. This paper overviews a set of
techniques based on finite automata that lead to decision procedures and
other useful algorithms, as well as to a normal form, for the first-order
linear theory of the integers, of the reals, and of the integers and reals
combined. This approach has led to an implemented tool, which has the
so far unique capability of handling the linear first-order theory of the
integers and reals combined.

1 Introduction

Linear numerical constraints, i.e. constraints involving only addition or multi-
plication by constants, are a basic tool used in many areas of Computer Science
and other disciplines. There is thus an abundance of algorithms and tools dealing
with linear constraints, which mostly are geared to efficiently solving consistency
and optimization problems. The power of linear constraints can be significantly
enhanced if they are incorporated in a first-order theory allowing Boolean oper-
ations and quantification. But, this comes at the price of higher complexity, and
tools handling the full first-order theory are less common, especially when the
constraints are defined over the integers, the latter case corresponding to Pres-
burger arithmetic, a decidable but two exponential-space complete theory. This
limited number of tools was, until the approach described in this paper, even
a complete absence when moving to the first-order theory of linear constraints
over the reals and integers combined, i.e. involving both variables ranging over
the reals and variables ranging over the integers.

The work overviewed here was motivated by problems related to the symbolic
exploration of infinite state spaces [WB98], for which handling nonconvex and
periodic constraints over the integers was essential. A general Presburger tool
? This work was partially funded by a grant of the “Communauté française de Belgique
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(for instance [Pug92]) was in principle sufficient for the task. However, the need
to very frequently check implication of formulas, as well as the success of Binary
Decision Diagrams (BDDs) [Bry86] for similarly dealing with Boolean formulas
in the symbolic exploration of finite state spaces [BCM+90], prompted us to
search for a related representation of arithmetic formulas. The long known fact
that by encoding integers as binary (or in general r-ary) strings, Presburger
arithmetic can be handled by finite automata [Büc60], naturally pointed to finite
automata as a tool for dealing with arithmetic, and to minimized finite automata
as a normal form akin to BDDs. From a theoretical point of view this was all
pretty obvious, what still needed to be done was to turn this idea into a working
technology. The first step towards this was a careful choice of the coding of
numbers by strings, for instance using r’s complement for negative numbers
and sequentializing the bits of vectors (see Section 3). Second, the development
of specific algorithms, e.g. for generating automata directly from equations
and inequations [BC96,WB00] was very helpful. Finally, an efficient package
for dealing with finite automata, the LASH tool [LAS] was developed. Besides
providing a Presburger tool, LASH also included some specific components to
deal with state-space exploration, for instance an algorithm for computing (when
possible) the effect of iterating a linear transformation [Boi98].

If automata on finite words can handle integer arithmetic, it follows almost
immediately that automata on infinite words [Tho90] can handle real arithmetic.
This has also been long known, but turning this attractive idea into a technology
was substantially more difficult since manipulating automata on infinite words
requires less efficient and harder to implement algorithms than for automata
on finite words. However, it turns out that handling real linear arithmetic
with automata does not require the full power of infinite-word automata,
but can be done with a very restrictive class, namely deterministic weak
automata [Sta83,MSS86,MS97]. This was shown using topological arguments
in [BJW01] with two important consequences: algorithms very similar to those
used for finite-word automata can be used for manipulating this class, and it
admits a easily computable reduced normal form [Löd01]. Now, since it is very
easy to express that a number is an integer with an automaton (its fractional
part is 0), the automata-theoretic approach to handling real arithmetic can
also cope with the theory in which both real and integer variables are allowed.
This makes it for example possible to represent an infinite periodic set of dense
intervals, something that is beyond the linear first-order theory of the reals alone.
Potential applications include, for instance, the analysis of some classes of hybrid
systems [BBR97].

The goal of this paper is to present an overview of the theory and pragmatics
of handling integer and real arithmetic with automata. Since the case of pure
integer arithmetic is simply the restriction of the real case to finite words,
only the more general latter case is presented, simplifications that occur in
the pure integer case being mentioned. After a section recalling the necessary
definitions about automata on infinite words, the encoding scheme by which a
set of real vectors can be represented by a finite automaton accepting a set of



infinite words is presented. We then give the algorithms for directly constructing
automata from linear equations and inequations. Next, the automata-theoretic
operations corresponding to the first-order logical constructs are reviewed and
the corresponding algorithms are described. Finally, a series of experimental
results obtained with the LASH tool are presented and some conclusions are
given.

2 Logical and Automata-Theoretic Background

In this section we recall some logical and automata-theoretic concepts that are
used in the paper.

2.1 Theories of the Integers and Reals

The main theory we will consider in this paper is the first-order theory of the
structure 〈R,Z,+,≤〉, where + represents the predicate x + y = z. Since any
linear equality or order constraint can be encoded into this theory, we refer to it
as additive or linear arithmetic over the reals and integers. We will often refer to
its restriction to integer variables as Presburger arithmetic, though the theory
originally defined by Presburger was defined over the natural numbers.

2.2 Automata on Infinite Words

An infinite word (or ω-word) w over an alphabet Σ is a mapping w : N→ Σ from
the natural numbers to Σ. A Büchi automaton on infinite words is a five-tuple
A = (Q,Σ, δ,Q0, F ), where

– Q is a finite set of states;
– Σ is the input alphabet;
– δ is the transition function and is of the form δ : Q×Σ → 2Q if the automaton

is nondeterministic and of the form δ : Q × Σ → Q if the automaton is
deterministic;

– Q0 ⊆ Q is a set of initial states (a singleton for deterministic automata);
– F is a set of accepting states.

A run π of a Büchi automaton A = (Q,Σ, δ, q0, F ) on an ω-word w is a
mapping π : N→ Q that satisfies the following conditions:

– π(0) ∈ Q0, i.e. the run starts in an initial state;
– For all i ≥ 0, π(i + 1) ∈ δ(π(i), w(i)) (nondeterministic automata) or
π(i + 1) = δ(π(i), w(i)) (deterministic automata), i.e. the run respects the
transition function.

Let inf (π) be the set of states that occur infinitely often in a run π. A run
π is said to be accepting if inf (π)∩F 6= ∅. An ω-word w is accepted by a Büchi
automaton if that automaton has some accepting run on w. The language Lω(A)
of infinite words defined by a Büchi automaton A is the set of ω-words it accepts.



A co-Büchi automaton is defined exactly as a Büchi automaton except that
its accepting runs are those for which inf (π) ∩ F = ∅.

We will also use the notion of weak automata [MSS86]. For a Büchi automaton
A = (Q,Σ, δ,Q0, F ) to be weak, there has to be a partition of its state set Q
into disjoint subsets Q1, . . . , Qm such that

– for each of the Qi either Qi ⊆ F or Qi ∩ F = ∅; and
– there is a partial order ≤ on the sets Q1, . . . , Qm such that for every q ∈ Qi

and q′ ∈ Qj for which, for some a ∈ Σ, q′ ∈ δ(q, a) (q′ = δ(q, a) in the
deterministic case), Qj ≤ Qi.
For more details, a survey of automata on infinite words can be found in

[Tho90].

3 Representing Sets of Integers and Reals with Finite
Automata

In order to use a finite automaton for recognizing numbers, one needs to establish
a mapping between these and words. Our encoding scheme corresponds to the
usual notation for reals and relies on an arbitrary integer base r > 1. We encode
a number x in base r, most significant digit first, by words of the form wI ? wF ,
where wI encodes the integer part xI of x as a finite word over {0, . . . , r − 1},
the special symbol “?” is a separator, and wF encodes the fractional part xF
of x as an infinite word over {0, . . . , r − 1}. Negative numbers are represented
by their r’s complement. In this notation, a number dkdk−1 . . . d1d0 ? d−1d−2 . . .
written in base r and of integer length k + 1 is positive if it starts with 0 and
negative if it starts with r−1, in which case its value is −rk+1 +

∑
−∞<i≤k dir

i.
Since we are dealing with encodings of variable length, we need to make sure
that the number of digits used for the integer part is sufficient for the leading
digit always to be 0 for positive numbers and r−1 for negative numbers. This is
done by requiring that the number of digits k+1 of the integer part of a number
x be such that −rk ≤ x < rk (−rk ≤ x ≤ rk if the encoding of the fractional
part of x is an infinite sequence of digits r− 1). Note that repeating the leading
digit has no impact on the value of the number since it is 0 for positive numbers
and since, for negative numbers, we have that −rk + (r − 1)rk−1 = −rk−1.

According to this scheme, each number has an infinite number of encodings,
given that the integer-part length can be increased unboundedly. In addition, the
rational numbers whose denominator has only prime factors that are also factors
of r have two distinct encodings with the same integer-part length. For example,
in base 10, the number 11/2 has the encodings 005 ? 5(0)ω and 005 ? 4(9)ω, “ ω”
denoting infinite repetition.

To encode a vector of real numbers, we represent each of its components
by words of identical integer-part length. This length can be chosen arbitrarily,
provided that it is sufficient for encoding the vector component with the highest
magnitude. An encoding of a vector x ∈ R

n can indifferently be viewed
either as a n-tuple of words of identical integer-part length over the alphabet
{0, . . . , r − 1, ?}, or as a single word w over the alphabet {0, . . . , r − 1}n ∪ {?}.



Example 1. In base 2, the vector (−2, 12.3) can be encoded as

(11110 ? 0ω, 01100 ? 01[1001]ω)

or as the word

(1, 0)(1, 1)(1, 1)(1, 0)(0, 0) ? (0, 0)(0, 1)[(0, 1)(0, 0)(0, 0)(0, 1)]ω.

Using an alphabet of size rn is clearly going to be problematic as soon as n
starts to grow. The solution is to read the digits of the various components of
the vector serially, in a round robin way, thus reducing the alphabet size to the
perfectly manageable r. We will refer to this scheme as the serial encoding as
opposed to the simultaneous encoding in which the alphabet consists of tuples
of digits.

Example 2. Using the serial encoding, the vector (−2, 12.3) can be encoded in
base 2 as

1011111000 ? 0001[01000001]ω.

Real vectors being encoded by infinite words, a set of vectors can be rep-
resented by an infinite-word automaton accepting the corresponding encodings.
However, since a real vector has an infinite number of possible encodings, we
have to choose which of these the automata will recognize. A natural choice is
to accept all encodings. This leads to the following definition.

Definition 1. Let n > 0 and r > 1 be integers. A base-r n-dimension serial Real
Vector Automaton (RVA) is a Büchi automaton A = (Q,Σ, δ,Q0, F ) automaton
over the alphabet Σ = {0, . . . , r − 1} ∪ {?}, such that

– Every word accepted by A is a serial encoding in base r of a vector in Rn,
and

– For every vector x ∈ Rn, A accepts either all the encodings of x in base r,
or none of them.

An RVA is said to represent the set of vectors encoded by the words that
belong to its accepted language.

From a theoretical point of view, there is no difference between the serial
and simultaneous encodings, and it is easy to move from one to the other.
From an implementation point of view, using the serial encoding is clearly
preferable. Notice also, that in the context of minimized deterministic automata,
the serial encoding is essentially equivalent to using the simultaneous scheme,
while representing the transitions from a state to another by a BDD (an r-ary
Decision Diagram for bases r other than 2). The expressive power of RVAs has
been studied in [BRW98] and corresponds exactly to linear arithmetic over the
reals and integers, extended with a special base-dependent predicate that can
check the value of the digit appearing in a given position. If this special predicate
is not used, RVAs can always be constructed to be weak automata [BJW01],
which we will always assume to be the case in what follows.



4 Constructing Automata from Linear Relations

To construct automata corresponding to the formulas of linear arithmetic,
we start with automata corresponding to linear equalities and inequalities as
basic building blocks. It would of course also be possible to start just with
automata for addition and order comparison, but there are simple and easy to
implement constructions [BC96,BRW98,WB00] that directly produce close to
optimal deterministic automata for linear relations, which explains our choice.
This section describes these constructions in the case of real variables and the
serial encoding of vectors. If both integer and real variables are involved in a
relation, integerhood can be imposed by forcing the fractional part of the integer
variables to be either 0ω or (r − 1)ω. This can be done by a simple adaptation
of the constructions below, or by imposing integerhood as a separate constraint
for which a specific automaton is constructed.

4.1 Linear Equations

The problem addressed consists of constructing an RVA that represents the set
S of all the solutions x ∈ Rn of an equation of the form a.x = b, given n ≥ 0,
a ∈ Zn and b ∈ Z.

A Decomposition of the Problem The basic idea is to build the automaton
corresponding to a linear equation in two parts : one that accepts the integer
part of solutions of the equation and one that accepts the part of the solution
that belongs to [0, 1]n. For convenience, in what follows the n-dimension real
vector represented by a word w interpreted as a serial encoding in base r is
denoted [w]nr .

More precisely, let x ∈ S, and let wI ? wF be a serial encoding of x in a
base r > 1, with wI ∈ Σ+, wF ∈ Σω, and Σ = {0, . . . , r − 1}. The vectors xI
and xF , respectively encoded by the words wI ? 0ω and 0n ? wF , are such that
xI ∈ Zn, xF ∈ [0, 1]n, and x = xI+xF . Since a.x = b, we have a.xI+a.xF = b.
Moreover, writing a as (a1, . . . , an), we have α ≤ a.xF ≤ α′, where α =

∑
ai<0 ai

and α′ =
∑
ai>0 ai, which implies b − α′ ≤ a.xI ≤ b − α. Another immediate

property of interest is that a.xI is divisible by gcd(a1, . . . , an).
From those results, we obtain that the language L of the encodings of all the

elements of S satisfies

L =
⋃
ϕ(β)

{wI ∈ Σ+ | a.[wI ?0ω]nr = β} · {?} · {wF ∈ Σω | a.[0n ?wF ]nr = b−β},

where “·” denotes concatenation and ϕ(β) stands for b−α′ ≤ β ≤ b−α ∧ (∃m ∈
Z)(β = m gcd(a1, . . . , an)).

This decomposition of L reduces the computation of an RVA representing S
to the following problems:

– building an automaton on finite words accepting all the words wI ∈ Σ+ such
that [wI ? 0ω]nr is a solution of a given linear equation;



– building a Büchi automaton accepting all the words wF ∈ Σω such that
[0n ? wF ]nr is a solution of a given linear equation.

These problems are addressed in the two following sections.

Recognizing Integer Solutions Our goal is, given an equation a.x = b where
a = (a1, . . . , an) ∈ Zn and b ∈ Z, to construct a finite automaton Aa,b that
accepts all the finite words serially encoding in a given base r the integer solutions
of that equation.

The construction proceeds as follows. Except for the unique initial state s0

and the states reached from there while reading the first n digits of the vector
encoding (the sign digits), the states s of Aa,b are in one-to-one correspondence
with a pair (γ, i), where γ is an integer and 0 ≤ i ≤ n− 1 denotes a position in
the serial reading of the vector digits. A state s of the form (γ, 0), corresponding
to the situation in which the number of digits read is the same for each vector
component, has the property that the vectors x ∈ Zn accepted by the paths
leading from s0 to s are exactly the solutions of the equation a.x = γ. The only
accepting state sF of Aa,b is (b, 0).

The next step is to define the transitions of Aa,b. Consider first moving
from a state s of the form (γ, 0). The next n digits d1, . . . , dn that will be read
lengthen the encoding of each component of the vector by 1 and hence, if x is
the value of the vector read before inputing the digits d1, . . . , dn, then its value
x′ after reading these digits is x′ = rx + (d1, . . . , dn). If only the first i < n
of the digits d1, . . . , dn have been read, the value of the vector will be taken to
be x′ = rx+ (d1, . . . , di, 0, . . . , 0). Therefore, for a state s of the form (γ, i), an
outgoing transition labeled d must lead to a state s′ = (γ′, (i + 1) mod n) such
that γ′ = rγ + a1d if i = 0 and γ′ = γ + ai+1d if i > 0.

For transitions from the single initial state s0, one has to take into account
the fact the the first n digits read are the sign bits of the vector components.
Thus a digit r − 1 should be interpreted as −1, no other digit except 0 being
allowed. The states other than s0 reached during the reading of the sign digits
will be characterized, as all other states, by a value and a position in the serial
reading of digits, but this position will be represented as a negative number
−(n − 1) ≤ i ≤ −1 in order to distinguish these states from the states reached
after the sign digits have been read. Thus a transition labeled d ∈ {0, r − 1}
from s0 leads to the state s′ = (−a1,−1) if d = r − 1, and s′ = (0,−1) if d = 0.
Similarly, a transition labeled d ∈ {0, r−1}, from a state s = (γ,−i) leads to the
state s′ = (γ−ai+1,−((i+1) mod n)) if d = r−1, and s′ = (γ,−((i+1) mod n))
if d = 0.

Notice that the transition relation we have defined is deterministic and that
only a finite number of states are needed. Indeed, from a state s = (γ, 0) such
that |γ| > (r − 1)

∑n
i=1 |ai|, one can only reach states s′ such that |γ′| > |γ|,

hence all states s = (γ, 0) such that |γ| > (r − 1)
∑n
i=1 |ai| and |γ| > |b|, as well

as their successors, can be pruned. If all unnecessary states (those from which
the accepting state cannot be reached) are pruned, the automaton obtained is,
within a small exception, a minimal deterministic automaton. Indeed, if it was



possible to merge two states s = (γ, i) and s′ = (γ′, i) with γ′ 6= γ, then different
right-hand sides for the equation a.x = β would yield identical solutions, a
contradiction. However, absolute minimality is not guaranteed since it could
still be possible to merge a state (γ, i) with the state (γ,−i) without changing
the accepted language.

In practice, to avoid the pruning of unnecessary states, it is convenient
to compute the automaton Aa,b backwards, starting from the accepting state
sF = (b, 0). Computing the backwards transitions is quite straightforward.
Indeed, an incoming d-labeled transitions to a state s = (γ, i) with 1 < i ≤ n−1
has to originate from the state s′ = (γ − aid, i − 1). If i = 0, the origin
state is s′ = (γ − and, n − 1), and, if i = 1 it is s′ = ((γ − a1d)/r, 0). If
(γ − a1d)/r is not an integer or is not divisible by gcd(a1, . . . , an), the state
s′ should not be created, and the states only reachable from it should be
pruned. Finally, from a state s of the form (γ, 0), one should also consider
the possibility that the digits read to reach it are the sign digits. This is only
possible if ∃σ ⊆ {a1, . . . , an} γ = −

∑
ai∈σ ai, in which case one should also

move backwards from the state (γ, 0) to (γ+an,−(n−1)), or (γ,−(n−1)), and
so on for all possibilities that finally go back to the unique initial state s0.

If one wishes to construct k automataAa,b1 ,Aa,b2 , . . . ,Aa,bk with b1, . . . , bk ∈
Z (for instance, as an application of the method presented in Section 4.1, in
which the bi are all the integers satisfying ϕ), then a technique more effi-
cient than repeating the construction k times consists of starting from the set
{(b1, 0), . . . , (bk, 0)}, rather than from a set containing a single state. The states
and transitions computed during the construction will then be shared between
the different Aa,bi , and each (bi, 0) will be the only accepting state of the corre-
sponding Aa,bi .

As is shown in [BRW98], the number of states of the automaton constructed
for an equation a.x = b is logarithmic in the value of b and linear in the absolute
value of the elements of a. Finally, note that for any equation and base there is a
unique minimal deterministic automaton accepting the solutions of the equation.
It can always be obtained by applying standard minimization techniques [Hop71]
to the automaton obtained from the construction described above or, as a matter
of fact, to any automaton accepting the same language.

Recognizing Fractional Solutions We now address the computation of a
Büchi automaton A′a,b that accepts all the infinite words w ∈ Σω such that
0n ? w encodes a solution x ∈ [0, 1]n of the equation a.x = b.

The construction is similar to the one of the previous section, except that we
are now dealing with the expansion of fractional numbers. The states s of A′a,b
are in a one-to-one correspondence with a pair (γ, i), where γ is an integer and
0 ≤ i ≤ n − 1 denotes a position in the serial reading of the vector digits. A
state s of the form (γ, 0), corresponding to the situation in which the number
of digits read is the same for each vector component, has the property that the
vectors x ∈ [0, 1]n accepted by the infinite paths starting from s are exactly the



solutions of the equation a.x = γ. The set of initial states contains only the pair
(b, 0). All the states are accepting.

The transitions of A′a,b are defined as follows. Consider first moving from a
state s of the form (γ, 0). The next n digits d1, . . . , dn that will be read lengthen
the encoding of each component of the vector by 1. This amounts to prefixing
the digits d1, . . . , dn to the word that will be read from next state s′ of the
form (γ′, 0) that will be reached. The value x of the word read from s is thus
related to the value x′ of the word read from s′ by x = (1/r)(x′+ (d1, . . . , dn)),
which can be rewritten as x′ = rx − (d1, . . . , dn). If only the first i < n of
the digits d1, . . . , dn have been read, the value of the vector will be taken to be
x′ = rx + (d1, . . . , di, 0, . . . , 0). Therefore, for a state s of the form (γ, i), an
outgoing transition labeled d must lead to a state s′ = (γ′, (i + 1) mod n) such
that γ′ = rγ − a1d if i = 0 and γ′ = γ − ai+1d if i > 0.

Note that for states of the form (γ, 0), γ must belong to the interval [α, α′],
where α and α′ are as defined in Section 4.1, otherwise there would be no solution
in [0, 1]n to a.x = γ. Only a finite number of states are thus necessary.

The automaton A′a,b can be constructed by starting from the state s = (b, 0),
and then repeatedly computing the outgoing transitions from the current states
until stabilization occurs. Like in Section 4.1, the construction of k automata
A′a,b1 ,A

′
a,b2

, . . . ,A′a,bk , with b1, . . . , bk ∈ Z (for instance, as an application of
the method presented in Section 4.1) can simply be done by starting from the
set {(b1, 0), . . . , (bk, 0)}, rather than from a set containing a single state. The
computation terminates, since for every state of the form s = (γ, 0), the integer
γ belongs to the bounded interval [α, α′]. Once dead-end states are pruned, the
automaton obtained is deterministic. Notice also that it is weak since all its states
are accepting and can be minimized by the procedure sketched in Section 5.4.
Interestingly, because we are dealing with automata on infinite words, states
(γ, i) and (γ, j) with i 6= j can occasionally be merged, which precludes the
construction above from always producing a minimal automaton.

4.2 Linear Inequations

The method presented for equations can be easily adapted to linear inequations.
The problem consists of computing an RVA representing the set of all the
solutions x ∈ Rn of an inequation of the form a.x ≤ b, given n ≥ 0, a ∈ Zn and
b ∈ Z.

The decomposition of the problem into the computation of representations
of the sets of integer solutions and of solutions in [0, 1]n of linear inequations is
identical to the one proposed for equations in Section 4.1.

Given an inequation of the form a.x ≤ b, where a ∈ Zn and b ∈ Z, the
definition of an automaton Aa,b that accepts all the finite words w ∈ Σ∗ such
that w ? 0ω encodes an integer solution of a.x ≤ b is very similar to the one
given for equations in Section 4.1. Indeed, it is sufficient to now consider all states
s = (γ, 0) with γ ≤ b as accepting. Furthermore, noticing that all states s = (γ, 0)
such that γ < 0, |γ| > (r − 1)

∑n
i=1 |ai| and |γ| > |b| can only lead to accepting

states, and that all states s = (γ, 0) such that γ > 0, |γ| > (r− 1)
∑n
i=1 |ai| and



|γ| > |b| can only lead to nonaccepting states, these can be respectively collapsed
into single accepting and nonaccepting states. The automaton thus only has a
bounded number of states.

The backward construction can also be adapted in the following way: the
states s for which the computed γ is not an integer or is not divisible by
gcd(a1, . . . , an) are not discarded, but their value is rounded to the nearest lower
integer γ′ that is divisible by gcd(a1, . . . , an). This operation is correct since the
sets of integer solutions of a.x ≤ γ and of a.x ≤ γ′ are in this case identical.
The resulting automaton is however no longer deterministic, but as was shown
in [WB00], it can be determinized efficiently.

The construction of an automaton Aa,b that accepts all the infinite words
w ∈ Σω such that 0 ? w encodes a solution of a.x ≤ b that belongs to [0, 1]n

is again very similar to the one developed for equations in Section 4.1. The
difference with the case of equations, in that we do not discard here the states
s = (γ, 0) for which the computed γ is greater than α′. Instead, we simply
replace the value of γ by α′, since the sets of solutions in [0, 1]n of a.x ≤ γ and
of a.x ≤ α′ are in this case identical. On the other hand, we still discard the
states s = (γ, 0) for which the computed γ is lower than α, since this implies
that the inequation a.x ≤ γ has no solution in [0, 1]n. Notice again that this will
produce a weak automaton that can be determinized and minimized.

5 Manipulating Sets of Integer and Real Vectors

Most applications of linear constraints require the possibility of transforming,
combining, and checking represented sets according to various operators. For
instance, deciding whether a formula φ of 〈R,Z,+,≤〉 is satisfiable can be done
by first building the representations of the atoms of φ, which are equations and
inequations (see Section 4), then applying the connectors and the quantifiers that
appear in ϕ to these representations, and finally checking whether the resulting
automaton (which recognizes exactly all solutions of φ) represents a non-empty
set. The last step simply amounts to check that the language accepted by the
finite-state representation is not empty. In this section, we give algorithms for
applying Boolean connectors, quantifiers, and other specific operators to the
finite-state representations of arithmetic sets.

5.1 Computing Boolean Combinations of Sets

Let A1,A2, . . . ,Ak be automata representing in a base r > 1 (respectively) the
sets S1, S2, . . . Sk ⊆ R

n. For each i ∈ {1, . . . , k}, let Ai = (Qi, Σ, δ,Q0,i, Fi),
with Σ = {0, 1, . . . , r − 1, ?}, and let Li denote the language accepted by Ai.
We assume that each Ai is weak, deterministic, and complete (meaning that for
every state q ∈ Qi and symbol a ∈ Σ, there exists an outgoing transition from
q labeled by a).

Let S ⊆ Rn be a Boolean combination B(S1, S2, . . . , Sk) of the sets Si, i.e.,
a set obtained by applying the operators ∪ (union), ∩ (intersection) and ¬
(complement) to the Si.



In order to compute a finite-state representation of S, one first builds an
automaton A that accepts the language L = B(L1, L2, . . . , Lk). This consists
of simulating the concurrent operation of the Ai, accepting a word w whenever
B(w ∈ L1, w ∈ L2, . . . , w ∈ Lk) holds. Formally, we have A = (Q,Σ, δ,Q0, F ),
with

– Q = Q1 ×Q2 × · · · ×Qk;
– δ : Q×Σ → Q : ((q1, . . . , qk), a) 7→ (δ1(q1, a), . . . , δk(qk, a));
– Q0 = Q0,1 × · · · ×Q0,k;
– F = {(q1, . . . , qk) ∈ Q | B(q1 ∈ F1, . . . , qk ∈ Fk)}.

(It is worth mentioning that this construction is valid only because the Ai
are deterministic and weak. Every word corresponds to exactly one run for each
Ai, which ends up visiting only a group of states with the same accepting or
nonaccepting status.)

The automaton A accepts an encoding w of a vector x ∈ Rn if and only
if w ∈ B(L1, L2, . . . , Lk), i.e., if and only if x ∈ S. This does not imply
however that A forms a valid representation of S, since it may accept words
that are not vector encodings. A suitable representation of S can therefore be
obtained by intersectingA with an automaton accepting the set of all valid vector
encodings, in other words, an automaton representing the set Rn. Note that this
intersection operation is only needed when L is not a subset of L1∪· · ·∪Lk, i.e.,
if b1 ∨ b2 ∨ . . . ∨ bk does not imply B(b1, . . . , bk) for all Booleans bi. Whenever
required, the additional intersection operation can conveniently be performed as
a part of the product construction described above. This construction preserves
the determinism and weak nature of the automata.

5.2 Constructing Cartesian Products

LetA1 = (Q1, Σ, δ1, Q0,1, F1) andA2 = (Q2, Σ, δ2, Q0,2, F2) be weak determinis-
tic finite-state representations of (respectively) the sets S1 ⊆ Rn1 and S2 ⊆ Rn2 ,
with n1 > 0 and n2 > 0. A representationA of the Cartesian product S = S1×S2

is a finite-state machine that simulates repeatedly the operations of A1 for n1

input symbols, and then those of A2 for the next n2 symbols. The transitions
labeled by the separator “?” are handled in a special way by ensuring that they
are followed at the same time in both automata. Let n = n1 + n2. Formally, we
have A = (Q,Σ, δ,Q0, F ), where

– Q = Q1 ×Q2 × {0, 1, . . . , n− 1};
– Σ = {0, 1, . . . , r − 1, ?};

– δ : ((q1, q2, i), a) 7→

 (δ1(q1, a), q2, i+ 1) if i < n1 and a 6= ?,
(q1, δ2(q2, a), (i+ 1) modn) if i ≥ n1 and a 6= ?;
(δ1(q1, a), δ2(q2, a), 0) if a = ?.

– Q0 = Q0,1 ×Q0,2 × {0};
– F = F1 × F2 × {0, 1, . . . , n− 1}.

This construction preserves the determinism and the weak nature of the
automata.



5.3 Applying Quantifiers

Let A = (Q,Σ, δ,Q0, F ) be a finite-state representation of a set S ⊆ Rn, with
n > 1, and let i ∈ {1, . . . , n} be the index of a vector component. Quantifying
existentially S with respect to the i-th vector component over the real domain
amounts to projecting out this component, which yields the set

S′ = ∃Ri S = {(x1, . . . , xi−1, xi+1, . . . , xn) ∈ Rn−1 | (∃xi ∈ R)((x1, . . . , xn) ∈ S)}.

In order to compute a representation of S′, one needs to remove from A the
transition labels corresponding to the i-th vector component. This is done by
constructing a nondeterministic automaton A′ = (Q′, Σ, δ′, Q′0, F

′), such that

– Q′ = Q× {0, 1, . . . n− 2};
– Σ = {0, 1, . . . , r − 1, ?};

– δ′ : ((q, k), a) 7→


{(δ(q, a), (k + 1) mod(n− 1))} if k + 1 6= i and a 6= ?,⋃
a′∈{0,...,r−1}{(δ(δ(q, a′), a), (k + 1) mod(n− 1))}

if k + 1 = i and a 6= ?,
{(δ(q, a), 0)} if a = ?;

– Q′0 =
{
Q0 × {0} if i 6= 1,⋃
a∈{0,r−1},q0∈Q0

{(δ(q0, a), 0)} if i = 1;
– F ′ = F × {0}.

This approach introduces two problems. First, the resulting automaton A′
is nondeterministic, which prevents its further manipulation by the algorithm
outlined in Section 5.1 (especially when the set needs to be complemented).
Second, although the language accepted by A′ contains only valid encodings
of vectors in ∃iS, it may not accept all of them. (For instance, removing from
a binary representation of the set {(10, 2)} the transitions related to the first
vector component would produce an automaton recognizing only the encodings
of 2 that contain more than four digits in their integer part.) We address these
two problems separately.

In order to determinize A′, we exploit an interesting property of weak
automata, which can directly be turned into co-Büchi automata: a weak
Büchi automaton (Q,Σ, δ,Q0, F ) accepts the same language as the co-Büchi
automaton (Q,Σ, δ,Q0, Q \ F ). As a consequence, weak automata can be
determinized using the simple breakpoint construction [MH84,KV97] developed
for co-Büchi automata. This construction proceeds as follows.

Let A′ = (Q′, Σ, δ′, Q′0, F
′) be a weak non-deterministic co-Büchi automaton.

The co-Büchi automaton A′ = (Q′′, Σ, δ′′, Q′′0 , F
′′) defined as follows accepts the

same language.

– Q′′ = 2Q
′ × 2Q

′
, the states of A′′ are pairs of sets of states of A′;

– Q′′0 = {(Q′0, ∅)};
– For (S,R) ∈ Q′′ and a ∈ Σ, the transition function is defined by
• if R = ∅, then δ′′((S,R), a) = (T, T \ F ′) where T = {q | ∃p ∈ S and q ∈
δ′(p, a)}, T is obtained from S as in the classical subset construction,
and the second component of the pair of sets of states is obtained from
T by eliminating states in F ′;



• if R 6= ∅, then δ′′((S,R), a) = (T,U \F ′) where T = {q | ∃p ∈ S and q ∈
δ′(p, a)}, and U = {q | ∃p ∈ R and q ∈ δ′(p, a)}, the subset construction
set is now applied to both S and R and states in F ′ are removed from
U ;

– F ′ = 2Q
′ × {∅}.

When the automaton A′′ is in a state (S,R), R represents the states of A′ that
can be reached by a run that has not gone through a state in F ′ since that last
“breakpoint”, i.e. state of the form (S, ∅). So, for a given word, A has a run that
does not go infinitely often through a state in F ′ if and only if A′′ has a run
that does not go infinitely often through a state in F ′′. Notice that the difficulty
that exists for determinizing Büchi automata, which is to make sure that the
same run repeatedly reaches an accepting state disappears since, for co-Büchi
automata, we are just looking for a run that eventually avoids accepting states.

It is interesting to notice that the construction implies that all reachable
states (S,R) of A′′ satisfy R ⊆ S. The breakpoint construction can thus be
implemented as a subset construction in which the states in R are simply tagged.
Experimental results (see Section 6) have shown that its practical efficiency is
similar to that of the traditional subset construction for finite-word automata.

In general, determinizing a co-Büchi automaton does not produce a weak
automaton. This problem can be alleviated, provided that the set of vectors
undergoing the quantification operation (and thus the set obtained as a result)
is definable in the theory 〈R,Z,+,≤〉. Indeed, it has been shown using topological
arguments [BJW01] that any deterministic Büchi automaton recognizing such
sets can easily be turned into a weak one by a simple operation. This operation
actually consists of turning all the states belonging to the same strongly
connected component of the automaton into accepting or non-accepting ones,
depending on whether this component contains or not at least one accepting
state.

We now address the problem of turning an automaton accepting some
encodings of the vectors in a set into one that recognizes all of them. More
precisely, in the present case, one needs to make sure that whenever the
automaton accepts an encoding uk ·w, where u ∈ {0, r−1}n is the sign prefix, it
also accepts the words uj ·w for all j such that 1 < j < k. In [Boi98], this problem
is solved by computing for each possible sign prefix u ∈ {0, r − 1}n the set of
automaton states reachable after reading any word in u∗. These states are then
made reachable from the initial state after reading any number of occurrences
of u, thanks to a simple construction, and the process is repeated for other u.

The drawback of this approach is its systematic cost in O(2n), which
limits is applicability to problems with a very small vector dimension. An
improved algorithm has been developed [BL01], in which subsets of sign headers
that are not distinguished by the automaton (in the sense that their reading
always lead to the same automaton states) are handled collectively rather than
separately. This algorithm has been implemented in the LASH tool [LAS], and
experimental results have shown it to be of moderate practical cost even for
large vector dimensions. Note that this automaton transformation may produce



non-determinism, and has thus to be performed prior to the determinization
procedure discussed in this section.

We have only considered so far existential quantification over the reals.
This generalizes naturally to universal quantification thanks to the complement
operation described (as a particular instance of Boolean combination) in
Section 5.1. In order to decide 〈R,Z,+,≤〉, one also needs to be able to quantify
sets with respect to the integer domain, i.e., given a set S ⊆ Rn and a vector
component index i ∈ {1, . . . , n}, compute the sets

∃Zi S = {(x1, . . . , xi−1, xi+1, . . . , xn) ∈ Rn−1 | (∃xi ∈ Z)((x1, . . . , xn) ∈ S)}, and
∀Zi S = {(x1, . . . , xi−1, xi+1, . . . , xn) ∈ Rn−1 | (∀xi ∈ Z)((x1, . . . , xn) ∈ S)}.

These operations are easily reduced to applying quantifiers over the reals and
performing Boolean combinations, thanks to the following rules :

∃Zi S = ∃Ri (S ∩ {(x1, . . . , xn) ∈ Rn | xi ∈ Z});
∀Zi S = ∀Ri (S ∪ {(x1, . . . , xn) ∈ Rn | xi 6∈ Z}).

Applying these rules requires an automaton that recognizes all vectors in which
the i-th component is an integer (see Section 4).

5.4 Minimizing Finite-State Representations of Sets

Although the operations described in Sections 5.1 to 5.3 produce weak and
deterministic automata, these can be unnecessarily large because of redundancies
in their transition graph. In a recent paper [Löd01], it has been shown that
weak deterministic automata admit a minimal form, unique up to isomorphism,
which can be computed with O(n log n) cost. Sketchily, in order to minimize a
weak deterministic automaton, one first locates the trivial strongly connected
component in its transition graph (i.e., the components that do not contain
cycles). Then, one modifies the accepting of non-accepting status of the states
in these components (which does not affect the language accepted by the
automaton) according to some specific rules. The result is then fed to the
classical Hopcroft’s algorithm [Hop71] for minimizing finite-state machines on
finite words.

5.5 Other Operations

In verification applications, in order to explore infinite state-spaces, one needs
to be able to compute infinite sets of reachable states in finite time. The concept
of meta-transition has been introduced for this purpose in [BW94]. Intuitively,
a meta-transition is associated to a cycle in the control graph of the analyzed
system, and following it once leads to all the configurations that could be reached
after following repeatedly that cycle any number of times.



If the program undergoing the analysis is based on integer and real variables,
RVAs can be used as symbolic representations of its sets of configurations.
If the operations performed by the program are definable in 〈R,Z,+,≤〉, the
computation of pre or post-images of such a set of configurations with respect
to a given operation follows from the algorithms given in Sections 4 to 5.

In [Boi98], is has been shown that the effect of meta-transitions based on
linear transformations and guards can be expressed in the theory 〈Z,+,≤〉 (i.e.,
in Presburger arithmetic), under some hypotheses. We summarize this result
below.

Let A ∈ Zn×n, b ∈ Zn, P ∈ Zm×n and q ∈ Zm, and let θ be the operation
Px ≤ q → x := Ax+ b, i.e., θ : Rn → R

n : v 7→ Av + b if Pv ≤ q.

Theorem 1. If there exists p ≥ 1 such that

– The matrix Ap is diagonalizable, and
– Its eigenvalues belong to {0, 1},

then the closure θ∗ = id ∪ θ ∪ θ2 ∪ · · · of θ is definable in Presburger arithmetic.

The hypotheses of this theorem can be checked algorithmically, using only
simple integer arithmetic [Boi98]. Its proof is constructive and turns into an
algorithm for computing, for any set S in 〈Z,+,≤〉 the set θ∗(S) in terms of an
expression defining S. Since 〈Z,+,≤〉 is a subtheory of 〈R,Z,+,≤〉, the same
construction can also be carried out with RVAs.

The last operation considered in this study is the time-elapse transformation
needed for the analysis of timed systems. Let x ∈ Rn be a vector of clocks, the
value of which evolves at the rate ẋ under the condition a ≤ ẋ ≤ b (in which
a, b ∈ Zn are constant vectors). Given a initial set S ⊆ Rn of clock values, the
values reached after letting time elapse for an arbitrarily long period form the
set

S′ = {x′ ∈ Rn | (∃x ∈ S, t ∈ R, δ ∈ Rn)(t ≥ 0 ∧ ta ≤ δ ≤ tb ∧ x′ = x+ δ)}.

Since this transformation is expressed in 〈R,Z,+,≤〉, a RVA representing S′ can
easily be constructed from one representing S.

6 Examples and Experimental Results

As explained earlier, RVA have the interesting property of being able to represent
both discrete and continuous features. As an example, consider the set

{(x1, x2) ∈ R2 | (∃x3, x4 ∈ R)(∃x5, x6 ∈ Z)(x1 = x3 + 2x5

∧ x2 = x4 + 2x6 ∧ 0 ≤ x3 ≤ x4 ≤ 1)}.

As illustrated in Figure 1, this set combines linear constraints and discrete
periodicities. The minimal and deterministic RVA representing this set in base
2 is given in Figure 2, in its simultaneous form.
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Fig. 1. A set with both continuous and discrete features.
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Fig. 2. RVA representing the set in Fig. 1.



It has been mentioned in Section 5 that the cost of determinizing an
RVA following a projection operation appears considerably smaller in practical
applications than suggested by the worst-case complexity of the “breakpoint”
construction. This observation is illustrated in Figure 3, in which the size
of finite-state representations of sets of values obtained by combining linear
constraints with arbitrary coefficients is given before and after undergoing
the projection and determinization operations. The figure also compares the
behaviors with respect to these operations of sets of real vectors represented
by RVAs, and sets of integer solutions represented by automata on finite words
(Number Decision Diagrams, NDDs [WB95]). As also substantiated by other
experiments, RVAs seem just as usable in practice as NDDs.
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Fig. 3. Projecting and Determinizing Finite-State Representations.

7 Conclusions

This paper has overviewed automata-based techniques for handling linear
constraints defined over the reals and integers. Though early experimental results
are quite encouraging, there is little hope that these techniques will consistently
outperform more traditional approaches when these can be applied. The reason



for this is that the automaton one computed for a formula contains a lot of
explicit information that might not be needed, for instance when just checking
satisfiability. Computing this unneeded information comes at a cost that can be
avoided by other approaches.

On the other hand, while the information made explicit by the automaton can
be used repeatedly, there can be a substantial advantage to having it available:
though the initial computation of the automaton will be costly it will speed
up subsequent computations. This can for instance be the case in the symbolic
verification of infinite-state systems [WB98].

A major advantage of the automaton-based approach is that it handles
traditionally harder to deal with cases, such as nonconvex sets, just as simply
as the more usual convex sets. Furthermore, it provides a normal form for
represented sets in all cases, the absence of which in other approaches is a
recurrent problem, for example in the case of nonconvex sets. Finally, the fact
that it can handle constraints defined over the integers and reals combined is
a significant new capability. An application that has already been considered is
the verification of hybrid systems [BBR97], but there are probably also many
others.
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[BRW98] Bernard Boigelot, Stéphane Rassart, and Pierre Wolper. On the expres-
siveness of real and integer arithmetic automata. In Proc. 25th Colloq. on
Automata, Programming, and Languages (ICALP), volume 1443 of Lecture
Notes in Computer Science, pages 152–163. Springer-Verlag, July 1998.

[Bry86] R. E. Bryant. Graph based algorithms for boolean function manipulation.
IEEE Transactions on Computers, 35(8):677–691, 1986.
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