
ar
X

iv
:c

s/
02

05
01

3v
1

 [
cs

.L
O

]
 1

1
M

ay
 2

00
2

Computing stable models: worst-case

performance estimates

Zbigniew Lonc1 and Miros law Truszczyński2

1 Faculty of Mathematics and Information Science, Warsaw University of Technology,
00-661 Warsaw, Poland

2 Department of Computer Science, University of Kentucky, Lexington,
KY 40506-0046, USA

Abstract. We study algorithms for computing stable models of propo-
sitional logic programs and derive estimates on their worst-case perfor-
mance that are asymptotically better than the trivial bound of O(m2n),
where m is the size of an input program and n is the number of its
atoms. For instance, for programs, whose clauses consist of at most two
literals (counting the head) we design an algorithm to compute stable
models that works in time O(m × 1.44225n). We present similar results
for several broader classes of programs, as well.

1 Introduction

The stable-model semantics was introduced by Gelfond and Lifschitz [GL88] to
provide an interpretation for the negation operator in logic programming. In
this paper, we study algorithms to compute stable models of propositional logic
programs. Our goal is to design algorithms for which one can derive non-trivial
worst-case performance bounds.

Computing stable models is important. It allows us to use logic programming
with the stable-model semantics as a computational knowledge representation
tool and as a declarative programming system. In most cases, when designing
algorithms for computing stable models we restrict the syntax to that of DAT-
ALOG with negation (DATALOG¬), by eliminating function symbols from the
language. When function symbols are allowed, models can be infinite and highly
complex, and the general problem of existence of a stable model of a finite logic
program is not even semi-decidable [MNR94]. However, when function symbols
are not used, stable models are guaranteed to be finite and can be computed.

To compute stable models of finite DATALOG¬ programs we usually proceed
in two steps. In the first step, we ground an input program P and produce a
finite propositional program with the same stable models as P (finiteness of the
resulting ground program is ensured by finiteness of P and absence of function
symbols). In the second step, we compute stable models of the ground program
by applying search. This general approach is used in smodels [NS00] and dlv
[EFLP00], two most advanced systems to process DATALOG¬ programs.

It is this second step, computing stable models of propositional logic pro-
grams (in particular, programs obtained by grounding DATALOG¬ programs),

http://arxiv.org/abs/cs/0205013v1

that is of interest to us in the present paper. Stable models of a propositional
logic program P can be computed by a trivial brute-force algorithm that gener-
ates all subsets of the set of atoms of P and, for each of these subsets, checks the
stability condition. This algorithm can be implemented to run in time O(m2n),
where m is the size of P and n is the number of atoms in P (we will use m and
n in this meaning throughout the paper). The algorithms used in smodels and
dlv refine this brute-force algorithm by employing effective search-space pruning
techniques. Experiments show that their performance is much better than that
of the brute-force algorithm. However, at present, no non-trivial upper bound
on their worst-case running time is known. In fact, no algorithms for computing
stable models are known whose worst-case performance is provably better than
that of the brute-force algorithm. Our main goal is to design such algorithms.

To this end, we propose a general template for an algorithm to compute stable
models of propositional programs. The template involves an auxiliary procedure
whose particular instantiation determines the specific algorithm and its running
time. We propose concrete implementations of this procedure and show that
the resulting algorithms for computing stable models are asymptotically better
than the straightforward algorithm described above. The performance analysis
of our algorithms is closely related to the question of how many stable models
logic programs may have. We derive bounds on the maximum number of stable
models in a program with n atoms and use them to establish lower and upper
estimates on the performance of algorithms for computing all stable models.

Our main results concern propositional logic programs, called t-programs, in
which the number of literals in rules, including the head, is bounded by a constant
t. Despite their restricted syntax t-programs are of interest. Many logic programs
that were proposed as encodings of problems in planning, model checking and
combinatorics become propositional 2- or 3-programs after grounding. In general,
programs obtained by grounding finite DATALOG¬ programs are t-programs,
for some fixed, and usually small, t.

In the paper, for every t ≥ 2, we construct an algorithm that computes all
stable models of a t-program P in time O(mαn

t), where αt is a constant such
that αt < 2− 1/2t. For 2-programs we obtain stronger results. We construct an
algorithm that computes all stable models of a 2-program in time O(m3n/3) =
O(m × 1.44225n). We note that 1.44225 < α2 ≈ 1.61803. Thus, this algorithm
is indeed a significant improvement over the algorithm following from general
considerations discussed above. We obtain similar results for a subclass of 2-
programs consisting of programs that are purely negative and do not contain dual
clauses. We also get significant improvements in the case when t = 3. Namely,
we describe an algorithm that computes all stable models of a 3-program P in
time O(m × 1.70711n). In contrast, since α3 ≈ 1.83931, the algorithm implied
by the general considerations runs in time O(m × 1.83931n).

In the paper we also consider a general case where no bounds on the length
of a clause are imposed. We describe an algorithm to compute all stable models
of such programs. Its worst-case complexity is slightly lower than that of the
brute-force algorithm.

It is well known that, by introducing new atoms, every logic program P can
be transformed in polynomial time into a 3-program P ′ that is, essentially, equiv-
alent to P : every stable model of P is of the form M ′∩At, for some stable model
M ′ of P ′ and, for every stable model M ′ of P ′, the set M ′∩At is a stable model
of P . This observation might suggest that in order to design fast algorithms to
compute stable models, it is enough to focus on the class of 3-programs. It is not
the case. In the worst case, the number of new atoms that need to be introduced
is of the order of the size of the original program P . Consequently, an algorithm
to compute stable models that can be obtained by combining the reduction de-
scribed above with an algorithm to compute stable models of 3-programs runs
in time O(m2m) and is asymptotically slower than the brute-force approach
outlined earlier. Thus, it is necessary to study algorithms for computing stable
models designed explicitly for particular classes of programs.

2 Preliminaries

For a detailed account of logic programming and stable model semantics we refer
the reader to [GL88,Apt90,MT93]. In the paper, we consider only the proposi-
tional case. For a logic program P , by At(P) we denote the set of all atoms
appearing in P . We define Lit(P) = At(P) ∪ {not(a): a ∈ At(P)} and call ele-
ments of this set literals. Literals b and not(b), where b is an atom, are dual to
each other. For a literal β, we denote its dual by not(β).

A clause is an expression c of the form p ← B or ← B, where p is an atom
and B is a set of literals (no literals in B are repeated). The clause of the first
type is called definite. The clause of the second type is called a constraint. The
atom p is the head of c and is denoted by h(c). The set of atoms appearing in
literals of B is called the body of c. The set of all positive literals (atoms) in B is
the positive body of c, b+(c), in symbols. The set of atoms appearing in negated
literals of B is the negative body of c, b−(c), in symbols.

A logic program is a collection of clauses. If every clause of P is definite, P is
a definite logic program. If every clause in P has an empty positive body, that is,
is purely negative, P is a purely negative program. Finally, a logic program P is
a t-program if every clause in P has no more than t literals (counting the head).

A clause c is a tautology if it is definite and h(c) ∈ b+(c), or if b+(c)∩b−(c) 6= ∅.
A clause c is a virtual constraint if it is definite and h(c) ∈ b−(c). We have the
following result [Dix95].

Proposition 1. Let P be a logic program and let P ′ be the subprogram of P
obtained by removing from P all tautologies, constraints and virtual constraints.
If M is a stable model of P then it is a stable model of P ′.

Thanks to this proposition, when designing algorithms for computing stable
models we may restrict attention to definite programs without tautologies and
virtual constraints.

For a set of literals L ⊆ Lit(P), we define:

L+ = {a ∈ At(P): a ∈ L} and L− = {a ∈ At(P):not(a) ∈ L}.

We also define L0 = L+ ∪ L−. A set of literals L is consistent if L+ ∩ L− = ∅.
A set of atoms M ⊆ At(P) is consistent with a set of literals L ⊆ Lit(P), if
L+ ⊆M and L− ∩M = ∅.

To characterize stable models of a program P that are consistent with a set
of literals L ⊆ Lit(P), we introduce a simplification of P with respect to L. By
[P]L we denote the program obtained by removing from P

1. every clause c such that b+(c) ∩ L− 6= ∅
2. every clause c such that b−(c) ∩ L+ 6= ∅
3. every clause c such that h(c) ∈ L0

4. every occurrence of a literal in L from the bodies of the remaining clauses.

The simplified program [P]L contains all information necessary to reconstruct
stable models of P that are consistent with L. The following result was obtained
in [Dix95] (we refer also to [SNV95,CT99]).

Proposition 2. Let P be a logic program and L be a set of literals of P . If M
is a stable model of P consistent with L, then M \L+ is a stable model of [P]L.

Thus, to compute all stable models of P that are consistent with L, one can
first check if L is consistent. If not, there are no stable models consistent with
L. Otherwise, one can compute all stable models of [P]L, for each such model
M ′ check whether M = M ′ ∪ L+ is a stable model of P and, if so, output M .
This approach is the basis of the algorithm to compute stable models that we
present in the following section.

3 A high-level view of stable model computation

We will now describe an algorithm stable(P,L) that, given a definite program P
and a set of literals L, outputs all stable models of P that are consistent with
L. The key concept we need is that of a complete collection. Let P be a logic
program. A nonempty collection A of nonempty subsets of Lit(P) is complete for
P if every stable model of P is consistent with at least one set A ∈ A. Clearly,
the collection A = {{a}, {not(a)}}, where a is an atom of P , is an example
of a complete collection for P . In the description given below, we assume that
complete(P) is a procedure that, for a program P , computes a collection of sets
of literals that is complete for P .

stable(P,L)
(0) if L is consistent then

(1) if [P]L = ∅ then
(2) check whether L+ is a stable model of P and, if so, output it
(3) else

(4) A := complete([P]L);
(5) for every A ∈ A do

(6) stable(P,L ∪ A)
(7) end of stable.

Proposition 3. Let P be a definite finite propositional logic program. For every
L ⊆ Lit(P), stable(P,L) returns all stable models of P consistent with L.

Proof: We proceed by induction on |At([P]L)|. To start, let us consider a call
to stable(P,L) in the case when |At([P]L)| = 0 and let M be a set returned
by stable(P,L). It follows that L is consistent and that M is a stable model of
P . Moreover, since M = L+, M is consistent with L. Conversely, let M be a
stable model of P that is consistent with L. By Proposition 2, M \L+ is a stable
model of [P]L. Since L is consistent (as M is consistent with L) and [P]L = ∅,
M \ L+ = ∅. Since M is consistent with L, M = L+. Thus, M is returned by
stable(P,L).

For the inductive step, let us consider a call to stable(P,L), where |At([P]L)| >
0. Let M be a set returned by this call. Then M is returned by a call to
stable(P,L ∪ A), for some A ∈ A, where A is a complete family for [P]L. Since
elements of a complete family are nonempty and consist of literals actually oc-
curring in [P]L, |At([P]L∪A)| < |At([P]L)|. By the induction hypothesis it follows
that M is a stable model of P consistent with L∪A and, consequently, with L.

Let us now assume that M is a stable model of P consistent with L. Then, by
Proposition 2, M \L+ is a stable model of [P]L. Since A (computed in line (4)) is
a complete collection for [P]L, there is A ∈ A such that M \L+ is consistent with
A. Since A∩L = ∅ (as A ⊆ At([P]L)), M is a stable model of P consistent with
L ∪ A. Since |At([P]L∪A)| < |At([P]L)|, by the induction hypothesis it follows
that M is output during the recursive call to stable(P,L ∪ A). ✷

We will now study the performance of the algorithm stable. In our discussion
we follow the notation used to describe it. Let P be a definite logic program and
let L ⊆ Lit(P). Let us consider the following recurrence relation:

s(P,L) =

{

1 if [P]L = ∅ or L is not consistent
∑

A∈A s(P,L ∪A) otherwise.

As a corollary to Proposition 3 we obtain the following result.

Corollary 1. Let P be a finite definite logic program and let L ⊆ Lit(P). Then,
P has at most s(P,L) stable models consistent with L. In particular, P has at
most s(P, ∅) stable models.

We will use the function s(P,L) to estimate not only the number of stable
models in definite logic programs but also the running time of the algorithm
stable. Indeed, let us observe that the total number of times we make a call to
the algorithm stable when executing stable(P,L) (including the ”top-level” call
to stable(P,L)) is given by s(P,L). We associate each execution of the instruc-
tion (i), where 0 ≤ i ≤ 5, with the call in which the instruction is executed.
Consequently, each of these instructions is executed no more than s(P,L) times
during the execution of stable(P,L).

Let m be the size of a program P . There are linear-time algorithms to check
whether a set of atoms is a stable model of a program P . Thus, we obtain the
following result concerned with the performance of the algorithm stable.

Theorem 1. If the procedure complete runs in time O(t(m)), where m is the size
of an input program P , then executing the call stable(P,L), where L ⊆ Lit(P),
requires O(s(P,L)(t(m) + m)) steps in the worst case.

The specific bound depends on the procedure complete, as it determines the
recurrence for s(P,L). It also depends on the implementation of the procedure
complete, as the implementation determines the second factor in the running-
time formula derived above.

Throughout the paper (except for Section 7, where a different approach is
used), we specify algorithms to compute stable models by describing particular
versions of the procedure complete. We obtain estimates on the running time of
these algorithms by analyzing the recurrence for s(P,L) implied by the procedure
complete. As a byproduct to these considerations, we obtain bounds on the
maximum number of stable models of a logic program with n atoms.

4 t-programs

In this section we will instantiate the general algorithm to compute stable models
to the case of t-programs, for t ≥ 2. To this end, we will describe a procedure
that, given a definite t-program P , returns a complete collection for P .

Let P be a definite t-program and let x ← β1, . . . , βk, where βi are literals
and k ≤ t− 1, be a clause in P . For every i = 1, . . . , k, let us define

Ai = {not(x), β1, . . . , βi−1,not(βi)}

It is easy to see that the family A = {{x}, A1, . . . , Ak} is complete for P . We will
assume that this complete collection is computed and returned by the procedure
complete. Clearly, computing A can be implemented to run in time O(m).

To analyze the resulting algorithm stable, we use our general results from the
previous section. Let us define

cn =

{

Kt if 0 ≤ n < t
cn−1 + . . . + cn−t otherwise,

where Kt is the maximum possible value of s(P,L) for a t-program P and a set
of literals L ⊆ Lit(P) such that |At(P)| − |L| ≤ t. We will prove that if P is a
t-program, L ⊆ Lit(P), and |At(P)|− |L| ≤ n, then s(P,L) ≤ cn. We proceed by
induction on n. If n < t, then the assertion follows by the definition of Kt. So,
let us assume that n ≥ t. If L is not consistent or [P]L = ∅, s(P,L) = 1 ≤ cn.
Otherwise,

s(P,L) =
∑

A∈A

s(P,L ∪ A) ≤ cn−1 + cn−2 + . . . + cn−t = cn.

The inequality follows by the induction hypothesis, the definition of A, and the
monotonicity of cn. The last equality follows by the definition of cn. Thus, the
induction step is complete.

The characteristic equation of the recurrence cn is xt = xt−1 + . . . + x + 1.
Let αt be the largest real root of this equation. One can show that for t ≥ 2,
1 < αt < 2− 1/2t. In particular, α2 ≈ 1.61803, α3 ≈ 1.83931, α4 ≈ 1.92757 and
α5 ≈ 1.96595. The discussion in Section 3 implies the following two theorems.

Theorem 2. Let t be an integer, t ≥ 2. There is an algorithm to compute stable
models of t-programs that runs in time O(mαn

t), where n is the number of atoms
and m is the size of the input program.

Theorem 3. Let t be an integer, t ≥ 2. There is a constant Ct such that every
t-program P has at most Ctα

n
t stable models, where n = |At(P)|.

Since for every t, αt < 2, we indeed obtain an improvement over the straight-
forward approach. However, the scale of the improvement diminishes as t grows.

To establish lower bounds on the number of stable models and on the worst-
case performance of algorithms to compute them, we define P (n, t) to be a logic
program such that |At(P)| = n and P consists of all clauses of the form

x← not(b1), . . . ,not(bt),

where x ∈ At(P) and {b1, . . . , bt} ⊆ At(P) \ {x} are different atoms. It is easy
to see that P (n, t) is a (t + 1)-program with n atoms and that stable models
of P (n, t) are precisely those subsets of At(P) that have n − t elements. Thus,
P (n, t) has exactly

(

n
t

)

stable models.
Clearly, the program P (2t − 1, t − 1) is a t-program over the set of 2t − 1

atoms. Moreover, it has
(

2t−1
t

)

stable models. Let kP (2t− 1, t− 1) be the logic
program formed by the disjoint union of k copies of P (2t − 1, t − 1) (sets of
atoms of different copies of P (2t − 1, t − 1) are disjoint). It is easy to see that

kP (2t−1, t−1) has
(

2t−1
t

)k
stable models. As an easy corollary of this observation

we obtain the following result.

Theorem 4. Let t be an integer, t ≥ 2. There is a constant Dt such that for

every n there is a t-program P with at least Dt ×
(

2t−1
t

)n/2t−1
stable models.

This result implies that every algorithm for computing all stable models

of a t-program in the worst-case requires Ω(
(

2t−1
t

)n/2t−1
) steps, as there are

programs for which at least that many stable models need to be output. These
lower bounds specialize to approximately Ω(1.44224n), Ω(1.58489n), Ω(1.6618n)
and Ω(1.71149n), for t = 2, 3, 4, 5, respectively.

5 2-programs

Stronger results can be derived for more restricted classes of programs. We will
now study the case of 2-programs and prove the following two theorems.

Theorem 5. There is an algorithm to compute stable models of 2-programs that
runs in time O(m3n/3) = O(m× 1.44225n), where n is the number of atoms in
P and m is the size of P .

Theorem 6. There is a constant C such that every 2-program P with n atoms,
has at most C × 3n/3 (≈ C × 1.44225n) stable models.

By Proposition 1, to prove these theorems it suffices to limit attention to
the case of definite programs not containing tautologies and virtual constraints.
We will adopt this assumption and derive both theorems from general results
presented in Section 3.

Let P be a definite 2-program. We say that an atom b ∈ At(P) is a neighbor
of an atom a ∈ At(P) if P contains a clause containing both a and b (one of
them as the head, the other one appearing positively or negatively in the body).
By n(a) we will denote the number of neighbors of an atom a. Since we assume
that our programs contain neither tautologies nor virtual constraints, no atom
a is its own neighbor.

We will now describe the procedure complete. The complete family returned
by the call to complete(P) depends on the program P . We list below several cases
that cover all definite 2-programs without tautologies and virtual constraints.
In each of these cases, we specify a complete collection to be returned by the
procedure complete.
Case 1. There is an atom, say x, such that P contains a clause with the head x
and with the empty body (in other words, x is a fact of P). We define A = {{x}}.
Clearly, every stable model of P contains x. Thus, A is complete.
Case 2. There is an atom, say x, that does not appear in the head of any clause
in P . We define A = {{not(x)}}. It is well known that x does not belong to any
stable model of P . Thus, A is complete for P .
Case 3. There are atoms x and y, x 6= y, such that x ← y and at least one of
x ← not(y) and y ← not(x) are in P . In this case, we set A = {{x}}. Let M
be a stable model of P . If y ∈ M , then x ∈ M (due to the fact that the clause
x← y is in P). Otherwise, y /∈M . Since M satisfies x← not(y) or y ← not(x),
it again follows that x ∈M . Thus, A is complete.
Case 4. There are atoms x and y such that x ← y and y ← x are both in P .
We define

A = {{x, y}, {not(x),not(y)}}.
If M is a stable model of P then, clearly, x ∈M if and only if y ∈M . It follows
that either {x, y} ⊆M or {x, y}∩M = ∅. Thus, A is complete for P . Moreover,
since x 6= y (P does not contain clauses of the form w ← w), each set in A has
at least two elements.
Case 5. None of the Cases 1-4 holds and there is an atom, say x, with exactly
one neighbor, y. Since P does not contain clauses of the form w ← w and
w ← not(w), we have x 6= y. Moreover, x must be the head of at least one
clause (since we assume here that Case 2 does not hold).
Subcase 5a. P contains the clause x← y. We define

A = {{x, y}, {not(x),not(y)}}.

Let M be a stable model of P . If y ∈M then, clearly, x ∈M . Since we assume
that Case 3 does not hold, the clause x ← y is the only clause in P with x as
the head. Thus, if y /∈M , then we also have that x /∈M . Hence, A is complete.
Subcase 5b. P does not contain the clause x← y. We define

A = {{x,not(y)}, {not(x), y}}.

Let M be a stable model of P . Since x is the head of at least one clause in P , it
follows that the clause x ← not(y) belongs to P . Thus, if y /∈ M then x ∈ M .
If y ∈ M then, since x ← not(y) is the only clause in P with x as the head,
x /∈M . Hence, A is complete.
Case 6. None of the Cases 1-5 holds. Let w ∈ At(P) be an atom. By x1, . . . , xp

we denote all atoms x in P such that w ← not(x) or x ← not(w) is a clause
in P . Similarly, by y1, . . . , yq we denote all atoms y in P such that y ← w is a
clause of P . Finally, by z1, . . . , zr we denote all atoms z of P such that w ← z
is a clause of P . By our earlier discussion it follows that the sets {x1, . . . , xp},
{y1, . . . , yq} and {z1, . . . , zr}, are pairwise disjoint and cover all neighbors of w.
That is, the number of neighbors of w is given by p + q + r. Since we exclude
Case 5 here, p+q+r ≥ 2. Further, since w is the head of at least one edge (Case
2 does not hold), it follows that p + r ≥ 1
Subcase 6a. For some atom w, q ≥ 1 or p + q + r ≥ 3. Then, we define

A = {{w, y1, . . . , yq}, {not(w), x1, . . . , xp,not(z1), . . . ,not(zr)}}.

It is easy to see that A is complete for P . Moreover, if q ≥ 1 then, since p+r ≥ 1,
each of the two sets in A has at least two elements. If p + q + r ≥ 3, then either
each set in A has at least two elements, or one of them has one element and the
other one at least four elements.
Subcase 6b. Every atom w has exactly two neighbors, and does not appear
in the body of any Horn clause of P . It follows that all clauses in P are purely
negative. Let w be an arbitrary atom in P . Let u and v be the two neighbors of
w. The atoms u and v also have two neighbors each, one of them being w. Let
u′ and v′ be the neighbors of u and v, respectively, that are different from w.
We define

A = {{not(w), u, v}, {not(u), w, u′}, {not(v), w, v′}}.

Let M be a stable model of P . Let us assume that w /∈ M . Since w and u are
neighbors, there is a clause in P built of w and u. This clause is purely negative
and it is satisfied by M . It follows that u ∈ M . A similar argument shows that
v ∈ M , as well. If w ∈ M then, since M is a stable model of P , there is a
2-clause C in P with the head w and with the body satisfied by M . Since P
consists of purely negative clauses, and since u and v are the only neighbors
of w, C = w ← not(u) or C = w ← not(v). Let us assume the former. It is
clear that u /∈ M (since M satisfies the body of C). Let us recall that u′ is a
neighbor of u. Consequently, u and u′ form a purely negative clause of P . This
clause is satisfied by M . Thus, u′ ∈M and M is consistent with {not(u), w, u′}.

In the other case, when C = w ← not(v), a similar argument shows that M is
consistent with {not(v), w, v′}. Thus, every stable model of P is consistent with
one of the three sets in A. In other words, A is complete.

Clearly, given a 2-program P , deciding which of the cases described above
holds for P can be implemented to run in linear time. Once that is done, the
output collection can be constructed and returned in linear time, too.

This specification of the procedure complete yields a particular algorithm to
compute stable models of definite 2-programs without tautologies and virtual
constraints. To estimate its performance and obtain the bound on the number
of stable models, we define

cn =

{

K if 0 ≤ n < 4
max{cn−1, 2cn−2, cn−1 + cn−4, 3cn−3} otherwise,

where K is the maximum possible value of s(P,L), when P is a definite finite
propositional logic program, L ⊆ Lit(P) and |At(P)| − |L| ≤ 3. It is easy to see
that K is a constant that depends neither on P nor on L. We will prove that
s(P,L) ≤ cn, where n = |At(P)|− |L|. If n ≤ 3, then the assertion follows by the
definition of K. So, let us assume that n ≥ 4. If L is not consistent or [P]L = ∅,
s(P,L) = 1 ≤ cn. Otherwise,

s(P,L) =
∑

A∈A

s(P,L ∪ A) ≤ max{cn−1, 2cn−2, cn−1 + cn−4, 3cn−3} = cn.

The inequality follows by the induction hypothesis, the properties of the complete
families returned by complete (the cardinalities of sets forming these complete
families) and the monotonicity of cn.

Using well-known properties of linear recurrence relations, it is easy to see
that cn = O(3n/3) = O(1.44225n). Thus, Theorems 5 and 6 follow.

As concerns bounds on the number of stable models of a 2-program, a
stronger (exact) result can be derived. Let

gn =

3n/3 if n = 0 (mod 3)
4× 3(n−4)/3 if n = 1 (mod 3), and n > 1

2× 3(n−2)/3 if n = 2 (mod 3)
1 if n = 1

Exploiting connections between stable models of purely negative definite 2-
programs and maximal independent sets in graphs, and using some classic results
from graph theory [MM65] one can prove the following result.

Corollary 2. Let P be a 2-program with n atoms. Then P has no more than
gn stable models.

The bound of Corollary 2 cannot be improved as there are logic programs
that achieve it. Let P (p1, . . . , pk), where for every i, pi ≥ 2, be a disjoint union
of programs P (p1, 1), . . . , P (pk, 1) (we discussed these programs in Section 2).
Each program P (pi, 1) has pi stable models. Thus, the number of stable models

of P (p1, . . . , pk) is p1p2 . . . pk. Let P be a logic program with n ≥ 2 atoms and
of the form P (3, . . . , 3), P (2, 3, . . . , 3) or P (4, 3, . . . , 3), depending on n(mod 3).
It is easy to see that P has gn stable models. In particular, it follows that our
algorithm to compute all stable models of 2-programs is must execute at least
Ω(3n/3) steps in the worst case.

Narrowing the class of programs leads to still better bounds and faster al-
gorithms. We will discuss one specific subclass of the class of 2-programs here.
Namely, we will consider definite purely negative 2-programs with no dual clauses
(two clauses are called dual if they are of the form a← not(b) and b← not(a)).
We denote the class of these programs by Pn

2 . Using the same approach as in
the case of arbitrary 2-programs, we can prove the following two theorems.

Theorem 7. There is an algorithm to compute stable models of 2-programs in
the class Pn

2 that runs in time O(m×1.23651n), where n is the number of atoms
and m is the size of an input program.

Theorem 8. There is a constant C such that every 2-program P ∈ Pn
2 has at

most C × 1.23651n stable models.

Theorem 8 gives an upper bound on the number of stable models of a program
in the class Pn

2 . To establish a lower bound, we define S6 to be a program over
the set of atoms a1, . . . , a6 and containing the rules (the arithmetic of indices
is performed modulo 6): ai+1 ← not(ai) and ai+2 ← not(ai), i = 0, 1, 2, 3, 4, 5.
The program S6 has three stable models: {a0, a1, a3, a4}, {a1, a2, a4, a5} and
{a2, a3, a5, a0}.

Let P be the program consisting of k copies of S6, with mutually disjoint sets
of atoms. Clearly, P has 3k stable models. Thus, there is a constant D such that
for every n ≥ 1 there is a program P with n atoms and with at least D × 3n/6

(≈ D × 1.20094n) stable models.

6 3-programs

We will now present our results for the class of 3-programs. Using similar tech-
niques as those presented in the previous section, we prove the following two
theorems.

Theorem 9. There is an algorithm to compute stable models of 3-programs that
runs in time O(m× 1.70711n), where m is the size of the input.

Theorem 10. There is a constant C such that every 3-program P has at most
C × 1.70711n stable models.

The algorithm whose existence is claimed in Theorem 9 is obtained from
the general template described in Section 3 by a proper instantiation of the
procedure complete (in a similar way to that presented in detail in the previous
section for the case of 2-programs).

The lower bound in this case follows from an observation made in Section
4 that there is a constant D3 such that for every n there is a 3-program P
such that P has at least D3 × 1.58489n) stable models (cf. Theorem 4). Thus,
every algorithm for computing all stable models of 3-programs must take at least
Ω(1.58489n) steps in the worst case.

7 The general case

In this section we present an algorithm that computes all stable models of arbi-
trary propositional logic programs. It runs in time O(m2n/

√
n) and so, provides

an improvement over the trivial bound O(m2n). However, our approach is quite
different from that used in the preceding sections. The key component of the
algorithm is an auxiliary procedure stable aux(P, π). Let P be a logic program
and let At(P) = {x1, x2, . . . , xn}. Given P and a permutation π of {1, 2, . . . , n},
the procedure stable aux(P, π) looks for an index j, 1 ≤ j ≤ n, such that the set
{xπ(j), . . . , xπ(n)} is a stable model of P . Since no stable model of P is a proper
subset of another stable model of P , for any permutation π there is at most one
such index j. If such j exists, the procedure outputs the set {xπ(j), . . . , xπ(n)}.

In the description of the algorithm stable aux, we use the following notation.
For every atom a, by pos(a) we denote the list of all clauses which contain a
(as a non-negated atom) in their bodies, and by neg(a) a list of all clauses that
contain not(a) in their bodies. Given a standard linked-list representation of
logic programs, all these lists can be computed in time linear in m.

Further, for each clause C, we introduce counters p(C) and n(C). We initialize
p(C) to be the number of positive literals (atoms) in the body of C. Similarly,
we initialize n(C) to be the number of negative literals in the body of C. These
counters are used to decide whether a clause belongs to the reduct of the program
and whether it “fires” when computing the least model of the reduct.

stable aux(P, π)
(1) M = At(P);
(2) Q := set of clauses C such that p(C) = n(C) = 0;
(3) lm := ∅;
(4) for j = 1 to n do

(5) while Q 6= ∅ do
(6) C0 := any clause in Q;
(7) mark C0 as used and remove it from Q;
(8) if h(C0) /∈ lm then

(9) lm := lm ∪ {h(C0)};
(10) for C ∈ pos(h(C0)) do

(11) p(C) := p(C)− 1;
(12) if p(C) = 0 & n(C) = 0 & C not used then add C to Q;
(13) if lm = M then output M and stop;
(14) M := M \ {xπ(j)};
(15) for C ∈ neg(xπ(j)) do

(16) n(C) := n(C)− 1;

(17) if n(C) = 0 & p(C) = 0 & C not used then add C to Q.

Let us define Mj = {xπ(j), . . . , xπ(n)}. Intuitively, the algorithm stable aux
works as follows. In the iteration j of the for loop it computes the least model
of the reduct PMj (lines (5)-(12)). Then it tests whether Mj = lm(PMj) (line
(13)). If so, it outputs Mj (it is a stable model of P) and terminates. Otherwise,
it computes the reduct PMj+1 . In fact the reduct is not explicitly computed.
Rather, the number of negated literals in the body of each rule is updated to
reflect the fact that we shift attention from the set Mj to the set Mj+1 (lines
(14)-(17)). The key to the algorithm is the fact that it computes reducts PMj

and least models lm(PMj) in an incremental way and, so, tests n candidates Mj

for stability in time O(m) (where m is the size of the program).

Proposition 4. Let P be a logic program and let At(P) = {x1, . . . , xn}. For
every permutation π of {1, . . . , n}, if M = {xπ(j), . . . , xπ(n)} then the procedure
stable aux(P, π) outputs M if and only if M is a stable model of P . Moreover,
the procedure stable aux runs in O(m) steps, where m is the size of P .

We will now describe how to use the procedure stable aux in an algorithm
to compute stable models of a logic program. A collection S of permutations of
{1, 2, . . . , n} is full if every subset S of {1, 2, . . . , n} is a final segment (suffix) of
a permutation in S or, more precisely, if for every subset S of {1, 2, . . . , n} there
is a permutation π ∈ S such that S = {π(n− |S|+ 1), . . . , π(n)}.

If S1 and S2 are of the same cardinality then they cannot occur as suffixes
of the same permutation. Since there are

(

n
⌊n/2⌋

)

subsets of {1, 2, . . . , n} of car-

dinality ⌊n/2⌋, every full family of permutations must contain at least
(

n
⌊n/2⌋

)

elements. An important property is that for every n ≥ 0 there is a full family
of permutations of cardinality

(

n
⌊n/2⌋

)

. An algorithm to compute such a minimal

full set of permutations, say Smin, is described in [Knu98] (Vol. 3, pages 579 and
743-744). We refer to this algorithm as perm(n). The algorithm perm(n) enu-
merates all permutations in Smin by generating each next permutation entirely
on the basis of the previous one. The algorithm perm(n) takes O(n) steps to
generate a permutation and each permutation is generated only once.

We modify the algorithm perm(n) to obtain an algorithm to compute all
stable models of a logic program P . Namely, each time a new permutation, say
π, is generated, we make a call to stable aux(P, π). We call this algorithm stablep.
Since

(

n
⌊n/2⌋

)

= Θ(2n/
√
n) we have the following result.

Proposition 5. The algorithm stablep is correct and runs in time O(m2n/
√
n).

Since the program P (n, ⌊n/2⌋) has exactly
(

n
⌊n/2⌋

)

stable models, every al-

gorithm to compute all stable models of a logic program must take at least
Ω(2n/

√
n) steps.

8 Discussion and conclusions

We presented algorithms for computing stable models of logic programs with
worst-case performance bounds asymptotically better than the trivial bound of
O(m2n). These are first results of that type in the literature. In the general
case, we proposed an algorithm that runs in time O(m2n/

√
n) improving the

performance over the brute-force approach by the factor of
√
n. Most of our

work, however, was concerned with algorithms for computing stable models of t-
programs. We proposed an algorithm that computes stable models of t-programs
in time O(mαn

t), where αt < 2− 1/2t. We strengthened these results in the case
of 2- and 3-programs. In the first case, we presented an algorithm that runs in
time O(m3n/3) (≈ O(m× 1.44225n)). For the case of 3-programs, we presented
an algorithm running in the worst case in time O(m× 1.70711n).

In addition to these contributions, our work leads to several interesting ques-
tions. A foremost among them is whether our results can be further improved.
First, we observe that in the case when the task is to compute all stable models,
we already have proved optimality (up to a polynomial factor) of the algorithms
developed for the class of all programs and the class of all 2-programs. However,
in all other cases there is still room for improvement — our lower and upper
bounds do not coincide.

The situation gets even more interesting when we want to compute one stable
model (if stable models exist) rather than all of them. Algorithms we presented
here can, of course, be adapted to this case (by terminating them as soon as
the first model is found). Thus, the upper bounds derived in this paper remain
valid. But the lower bounds, which we derive on the basis of the number of
stable models input programs may have, do not. In particular, it is no longer
clear whether the algorithm we developed for the case of 2-programs remains
optimal. One cannot exclude existence of pruning techniques that, in the case
when the input program has stable models, would on occasion eliminate from
considerations parts of the search space possibly containing some stable models,
recognizing that the remaining portion of the search space still contains some.

Such search space pruning techniques are possible in the case of satisfiability
testing. For instance, the pure literal rule, sometimes used by implementations
of the Davis-Putnam procedure, eliminates from considerations parts of search
space that may contain stable models [MS85,Kul99]. However, the part that
remains is guaranteed to contain a model as long as the input theory has one.
No examples of analogous search space pruning methods are known in the case
of stable model computation. We feel that nonmonotonicity of the stable model
semantics is the reason for that but a formal account of this issue remains an
open problem.

Finally, we note that many algorithms to compute stable models can be cast
as instantiations of the general template introduced in Section 3. For instance, it
is the case with the algorithm used in smodels. To view smodels in this way, we
define the procedure complete as (1) picking (based on full lookahead) an atom x
on which the search will split; (2) computing the set of literals A(x) by assuming
that x holds and by applying the unit propagation procedure of smodels (based,

we recall on the ideas behind the well-founded semantics); (3) computing in the
same way the set A(not(x)) by assuming that not(x) holds; and (4) returning
the family A = {A(x), A(not(x))}. This family is clearly complete.

While different in some implementation details, the algorithm obtained from
our general template by using this particular version of the procedure complete
is essentially equivalent to that of smodels. By modifying our analysis in Section
5, one can show that on 2-programs smodels runs in time O(m× 1.46558n) and
on purely negative programs without dual clauses in time O(m× 1.32472n). To
the best of our knowledge these are first non-trivial estimates of the worst-case
performance of smodels. These bounds are worse from those obtained from the
algorithms we proposed here, as the techniques we developed were not designed
with the analysis of smodels in mind. However, they demonstrate that the worst-
case analysis of algorithms such as smodels, which is an important open problem,
may be possible.

Acknowledgments

This material is based upon work supported by the National Science Foundation
under Grant No. 0097278.

References

Apt90. K. Apt. Logic programming. In J. van Leeuven, editor, Handbook of theo-

retical computer science, pages 493–574. Elsevier, Amsterdam, 1990.
BE96. P.A. Bonatti and T. Eiter. Querying Disjunctive Databases Through Non-

monotonic Logics. Theoretical Computer Science, 160:321–363, 1996.
CT99. P. Cholewiński and M. Truszczyński. Extremal problems in logic program-

ming and stable model computation. Journal of Logic Programming, 38:219–
242, 1999.

Dix95. J. Dix. A classification theory of semantics of normal logic programs: Ii.
weak properties. Fundamenta Informaticae, 22(3):257 – 288, 1995.

EFLP00. T. Eiter, W. Faber, N. Leone, and G. Pfeifer. Declarative problem-solving
in DLV. In Jack Minker, editor, Logic-Based Artificial Intelligence, pages
79–103. Kluwer Academic Publishers, Dordrecht, 2000.

GL88. M. Gelfond and V. Lifschitz. The stable semantics for logic programs. In
R. Kowalski and K. Bowen, editors, Proceedings of the 5th International

Conference on Logic Programming, pages 1070–1080. MIT Press, 1988.
Knu98. D. E. Knuth. The Art of Computer Programming, volume 3. Addison Wesley,

1998. Second edition.
Kul99. O. Kullmann. New methods for 3-SAT decision and worst-case analysis.

Theoretical Computer Science, pages 1–72, 1999.
MM65. J.W. Moon and L. Moser. On cliques in graphs. Israel J. Math, pages 23–28,

1965.
MNR94. W. Marek, A. Nerode, and J. B. Remmel. The stable models of predicate

logic programs. Journal of Logic Programming, 21(3):129–154, 1994.
MS85. B. Monien and E. Speckenmeyer. Solving satisfiability in less than 2n steps.

Discrete Applied Mathematics, pages 287–295, 1985.

MT93. W. Marek and M. Truszczyński. Nonmonotonic logics; context-dependent

reasoning. Springer-Verlag, Berlin, 1993.
NS00. I. Niemelä and P. Simons. Extending the smodels system with cardinality and

weight constraints. In J. Minker, editor, Logic-Based Artificial Intelligence,
pages 491–521. Kluwer Academic Publishers, 2000.

SNV95. V.S. Subrahmanian, D. Nau, and C. Vago. WFS + branch bound = stable
models. IEEE Transactions on Knowledge and Data Engineering, 7:362–377,
1995.

