Skip to main content

Towards Local Search for Answer Sets

  • Conference paper
  • First Online:
Logic Programming (ICLP 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2401))

Included in the following conference series:

Abstract

Answer set programming has emerged as a new important paradigm for declarative problem solving. It relies on algorithms that compute the stable models of a logic program, a problem that is, in the worst-case, intractable. Although, local search procedures have been successfully applied to a variety of hard computational problems, the idea of employing such procedures in answer set programming has received very limited attention.

This paper presents several local search algorithms for computing the stable models of a normal logic program. They are all based on the notion of a conflict set, but use it in different ways, resulting in different computational behaviors. The algorithms are inspired from related work in solving propositional satisfiability problems, suitably adapted to the stable model semantics. The paper also discusses how the heuristic equivalence method, that has been proposed in the context of propositional satisfiability, can be used in systematic search procedures that compute the stable models of logic programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Bertoni, G. Grossi, A. Provetti, V. Kreinovich, and L. Tari. The prospect for answer sets computation by a genetic model. In Proc. of the AAAI Spring 2001 Symposium on Answer Set Programming. http://www.cs.nmsu.edu/~tson/ASP2001/, 2001.

  2. T. Dell’Armi, W. Faber, G. Ielpa, C. Koch, N. Leone, S. Perri, and G. Pfeifer. System description: DLV. In Proc. of the 6th Intern. Conf. on Logic Programming and Nonmonotonic Reasoning, LPNMR-01, LNCS 2173, pages 424–428. Springer Verlag, 2001.

    Google Scholar 

  3. Y. Dimopoulos, B. Nebel, and J. Koehler. Encoding planning problems in nonmonotonic logic programs. In Proc. of the 4th European Conference on Planning, ECP’97, LNCS 1348, pages 169–181. Springer Verlag, 1997.

    Google Scholar 

  4. T. Eiter, W. Faber, N. Leone, and G. Pfeifer. The diagnosis frontend of the dlv system. AI Communications, 12(1/2):99–111, 1999.

    MathSciNet  Google Scholar 

  5. J. Frank. Learning short-term weights for GSAT. In Proc. 15h Intern. Joint Conference on AI, IJCAI-97, pages 384–391, 1997.

    Google Scholar 

  6. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In Proc. of the 5th Intern. Conf. and Symp. on Logic Programming, ICSLP-88, pages 1070–1080, 1988.

    Google Scholar 

  7. M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases. New Generation Computing, 9(3/4):365–386, 1991.

    Article  Google Scholar 

  8. C. Gomes, B. Selman, and H. Kautz. Boosting combinatorial search through randomization. In Proc. of the 15th National Conference on AI, AAAI-98, pages 431–437, 1998.

    Google Scholar 

  9. K. Heljanko and I. Niemela. Bounded LTL model checking with stable models. In Proc. of the 6th Intern. Conf. on Logic Programming and Nonmonotonic Reasoning, LPNMR’01, LNCS 2173, pages 200–212. Springer Verlag, 2001.

    Google Scholar 

  10. H. Hoos and T. Stutzle. Local search algorithms for SAT: An empirical evaluation. Journal of Automated Reasoning, 24(4):421–481, 2000.

    Article  MATH  Google Scholar 

  11. N. Jussien and O. Lhomme. Local search with constraint propagation and conflictbased heuristics. In Proc. of the 17th National Conference on AI, AAAI-00, pages 169–174, 2000.

    Google Scholar 

  12. N. Leone, S. Perri, and P. Rullo. Local search techniques for disjunctive logic programs. In 6th Congress of the Italian Association for Artificial Intelligence, AI*IA 99, LNCS 1792, pages 107–118. Springer Verlag, 2000.

    Chapter  Google Scholar 

  13. B. Mazure, L. Sais, and E. Gregoire. Tabu search for SAT. In Proc. of the 14th National Conference on AI, AAAI-97, pages 281–285, 1997.

    Google Scholar 

  14. D. McAllester, B. Selman, and H. Kautz. Evidence for invariants in local search. In Proc. of the 14th National Conference on AI, AAAI-97, pages 321–326, 1997.

    Google Scholar 

  15. P. Nicolas, F. Saubion, and I. Stephan. GADEL: a genetic algorithm to compute default logic extensions. In Proc. of the 14th European Conference on AI, ECAI’00, pages 484–488. IOS Press, 2000.

    Google Scholar 

  16. P. Nicolas, F. Saubion, and I. Stephan. New generation systems for non-monotonic reasoning. In Proc. of the 6th Intern. Conf. on Logic Programming and Nonmonotonic Reasoning, LPNMR’01, LNCS 2173, pages 309–321. Springer Verlag, 2001.

    Google Scholar 

  17. D. Schuurmans and F. Southey. Local search characteristics of incomplete SAT procedures. In Proc. of the 17th National Conference on AI, AAAI-00, pages 297–302, 2000.

    Google Scholar 

  18. B. Selman, H. Kautz, and B. Cohen. Noise strategies for improving local search. In Proc. of the 12th National Conference on AI, AAAI-94, pages 337–343, 1994.

    Google Scholar 

  19. B. Selman, H. Levesque, and D. Mithcell. A new method for solving hard satisfiability porblems. In Proc. of the 10th National Conference on AI, AAAI-92, pages 440–446, 1992.

    Google Scholar 

  20. P. Simons. Extending the stable model semantics with more expressive rules. In Proc. of the 5th Intern. Conf. on Logic Programming and Nonmonotonic Reasoning, LPNMR-99, LNCS 1730, pages 305–316. Springer Verlag, 1999.

    Google Scholar 

  21. P. Simons. Extending and implementing the stable model semantics. Ph.D. Thesis, Research Report 58, Helsinki University of Technology, 2000.

    Google Scholar 

  22. T. Surjanen and I. Niemela. The Smodels system. In Proc. of the 6th Intern. Conf. on Logic Programming and Nonmonotonic Reasoning, LPNMR-01, LNCS 2173, pages 434–438. Springer Verlag, 2001.

    Google Scholar 

  23. A. Van Gelder, K. Ross, and J. Schlipf. The well-founded semantics for general logic programs. Journal of the ACM, 38(3):620–650, 1991.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dimopoulos, Y., Sideris, A. (2002). Towards Local Search for Answer Sets. In: Stuckey, P.J. (eds) Logic Programming. ICLP 2002. Lecture Notes in Computer Science, vol 2401. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45619-8_25

Download citation

  • DOI: https://doi.org/10.1007/3-540-45619-8_25

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43930-1

  • Online ISBN: 978-3-540-45619-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics