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Abstract. We present an algorithm for deciding Gédel-Dummett logic.
The originality of this algorithm comes from the combination of proof-
search in sequent calculus, which reduces a sequent to a set of pseudo-
atomic sequents, and counter-model construction of such pseudo-atomic
sequents by a fixpoint computation. From an analysis of this construc-
tion, we deduce a new logical rule [Dx] which provides shorter proofs
than the rule [Dg] of G4-LC. We also present a linear implementation of
the counter-model generation algorithm for pseudo-atomic sequents.

1 Introduction

In [9], Godel introduced the logic G, which was later axiomatized by Dummett
in [4] and is known since as Gédel-Dummett logic LC. It is viewed as one of the
most important intermediate logics, between intuitionistic logic IL and classical
logic CL, with connections with the provability logic of Heyting’s Arithmetics [14]
and more recently fuzzy logic [10]. Starting from proof-search in intuitionistic
logic IL, the development of efficient proof-search procedures for intermediate
logics like Godel-Dummett logic has been the subject of recent studies [1, 6, 2].

The first formulation of a cut-free Gentzen-type system for LC [13] does not
terminate because of the duplication of formulae. The work of Dyckhoff [5] and
Hudelmair [11] solved the termination problem for IL with a duplication-free
sequent calculus now called G4-IL. This system was further refined by the au-
thor [8,12] in order to completely remove all the duplications, including those of
sub-formulae. Dyckhoff [6] successfully applied the ideas of the duplication-free
system G4-IL to the LC sequent calculus leading to a duplication-free sequent cal-
culus called G4-LC. Moreover, he showed that there is a complete proof-search
strategy which is deterministic, meaning that all the logical rules become invert-
ible. In the same time, Avellone et al. [1] and Fiorino [7] investigated the ideas
of the duplication-free system within the semantic tableaux approach and pro-
posed corresponding tableaux calculi for various intermediate logics including
LC. In [2], Avron claims that all these systems suffer from the serious drawback
of using a rule, called [Dg], with an arbitrary number of premises: this rule may
introduce exponential blowup in the proof search process. Avron’s solution to
this problem is to use a hypersequent calculus for LC [2].



In this paper, we propose an original solution to the problem of rule [Dpg]
which has an unbounded number of premises. It is based on the combination of
a proof-search method in standard sequent calculus and a counter-model gener-
ation algorithm. We have a process in three steps: first the formula (resp. the
sequent) to decide is converted into a flat sequent, the size of which is linearly
bounded by the size of the initial problem. This step consists in an indexing
of subformulae. Then, we apply a proof-search process to the flat sequent in
which all the rules have one or two premises and are strongly invertible, i.e. they
preserve counter-models top-down. It results in a set of pseudo-atomic sequents
which is equivalent to the initial formula (resp. sequent). The last step consists
of a counter-model generation algorithm to decide such pseudo-atomic sequents.
The algorithm is based on a fixpoint computation, and either outputs a short
proof or a (short) counter-model of the pseudo-atomic sequent. Then, from these
steps, we have a new decision procedure for LC that leads to a solution of the
problem of rule [Dg]. A surprising consequence of the fixpoint computation is
the discovery of a new logical rule [D ] which efficiently replaces [D]. We briefly
explain how this computation can be implemented in linear time.

Throughout this paper, we respect the following methodology: each time a
transformation of a sequent A into a sequent B is given, we justify this trans-
formation by giving the methods to convert a proof (resp. counter-model) of
B into a proof (resp. counter-model) of A. Thus, we fully describe a proof or
counter-model generation algorithm.

2 Godel-Dummett logic LC

In this section, we present the propositional Gédel-Dummett logic LC, its al-
gebraic semantics, and some admissible sequent calculus rules, including the
contraction-free system G4-LC.

2.1 Formulae, sequents and their algebraic semantic

The set of propositional formulae, denoted Form is defined inductively, starting
from a set of propositional variables denoted by Var with an additional bot-
tom constant L denoting absurdity and using the connectives A, V and D. A
substitution denoted by o is any function that associates a formula to every
propositional variable. We denote by A, the result of the application of ¢ to the
variables in A. IL will denote the set of formulae that are provable in any intu-
itionistic propositional calculus (see [5]) and CL will denote the classically valid
formulae. As usual an intermediate propositional logic [1] is a set of formulae £
satisfying IL C £ C CL and closed under the rule of modus ponens! and under
arbitrary substitution.?

The Godel-Dummett logic LC is an intermediate logic: in a Hilbert ax-
iomatic system, it is the smallest intermediate logic satisfying the axiom formula

'"IfAeLand ADBE L then Be L.
21If A € £ and ¢ is any substitution then A, € L.
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Fig. 1. The cut-free terminating system G4-LC.

(X DY)V (Y DX). On the semantic side, intermediate logics are character-
ized by monotonic Kripke models and more particularly, LC is characterized by
monotonic and linear Kripke models [4]. In this paper, we will rather use the
algebraic semantic characterization of LC [2]. Let N = N U {oo} be the set of
natural numbers with its natural order < augmented with a maximal element co.
An interpretation [-] : Var— N of propositional variables is inductively extended
to formulae: L interpreted by 0, the conjunction A is interpreted by the mini-
mum function denoted A, the disjunction V by the mazimum function V and the
implication D by the operator — defined by a — b = if a < b then co else b. A
formula is valid for the interpretation [-] if the equality [A] = oo holds and we
write |- A when A is universally valid. This interpretation is complete for LC [9].
A counter-model of a formula A is an interpretation [[-] such that [A] < oco.

A sequent is a pair I'+ A where I' and A are multisets of formulae. I; A
denotes the sum of the two multisets and if I" is the empty multiset, we write
F A. Substitutions may also be applied to multisets and sequents in the obvious
way and we denote by I, F A, the resulting sequent. Given a sequent I' - A
and an interpretation [-] of variables, we interpret I" = A;,..., A, by |I'] =
[Ai]A---AAL] and A = By,...,B, by [A] = [B1]] V- - -V [B,]- This sequent
is valid, with respect to the interpretation [-], if | I'|| < [A] and we write I'lF A
when the sequent is universally valid. On the other hand, a counter-model to this
sequent is an interpretation [-] such that [A] < | I']], i.e, for any pair (4, j), the
inequality [B;] < [A;] holds. We denote by I' ¥ A when such a counter-model
exists.

2.2 Sequent calculi

In this section, we present sequent calculus rules to deal with proofs in LC. We
only consider the L-free fragment of LC, i.e, atoms are propositional variables.?
We present the terminating system G4-LC of Dyckhoff [6] in figure 1.* It is com-

3 In section 6, we explain how to remove L at the first step of the proof-search process.
* In G4-LC, the use of rule [D}] is restricted to the case A atomic, but this condition
is not required for either soundness or completeness.



plete for LC and the structural rules of contraction [Contract], weakening [Weak],
cut [Cut] and substitution [Subst,| are admissible.> All the rules of G4-LC are
strongly invertibleS [15] except rule [Dg]. Its restricted form called [D%] is in-
vertible, making the system deterministic.

Let us analyze the use of the rule [Dg] ,
and its restriction [D%] and its consequences I AiF B, A°
in terms of complexity of proofs and proof- I'EA
search. A is a multiset of formulae contain-
ing the sub-multiset A* of the implicational formulae A1 D By,..., A, D B, of
A. A may also contain some other kinds of formulae. The rule indicates that for
each i € [1,n], there is premise I', A; F B;, A'. A% is the result of the removal of
A; D B; from A*. So the rule instance has exactly n premises. The rule [D’;] has
the same form but its use is restricted to the case where no other rule of G4-LC
is applicable.

Let us explore the logical implications of the rule [Dg]. Each premise of this
rule corresponds to a particular choice of an A; D B; formula. If we apply the same
rule to each premise, we have to choose between the remaining n— 1 implications,
thus to each premise of the root sequent corresponds n — 1 premises, etc. We
see that there is a proof-search branch for each particular choice sequence 7 (i.e.
permutation) of [1,n]. There are of course n! such possible sequences. A proof
search branch may stop (with an axiom for example) before all the sequence
Ty, Ta, ... has been explored but the proof size remains exponential: for example,
consider the provable cycle sequent FX; D Xo, ..., X, D X;. Within G4-LC, the
proof of this sequent uses only the axiom rule [Ax] and the rule [Dg] and one
can find at least (n/2)! branches of length greater than n/2, so the size of this
proof is bounded from below by an exponential.

[DR]

3 Linear reduction of sequents into flat sequents

In this section, we describe how to convert a sequent into a flat sequent and
in the next section, how to convert a flat sequent into a set of pseudo-atomic
sequents. This first phase consists in indexing the initial sequent in order to have
an equi-valid flat sequent. Propositions P and Q are equi-valid if they are both
either valid or invalid. Propositions could be either formulae or sequents.

Definition 1 (Flat formula and sequent). A formula is said to be flat if it
is of one of the following forms: X or X DY or ZD> (X ®Y) or (X®Y)DZ
where X, Y and Z are propositional variables and ® € {A,V,D}. A sequent
't A is flat if all formulae of I' are flat and A is only composed of formulae
of the form X or X DY with X and Y wvariables.

The process of flattening a formula D is quite standard, at least in classical
logic. It consists in transforming D into an equi-valid flat sequent. The principle
is to index the sub-formulae of D by new variables and to introduce the “axioms”
that correspond to the subformula relation between those variables.

5 [Subst,]: if o is any substitution and I+ A is provable then I'; - A, is provable.

5 A logical rule is invertible if the invalidity of any of its premise implies the invalidity
of its conclusion and is strongly invertible if any counter-model of one of its premises
is also a counter-model of the conclusion.



Let us fix a formula D for the rest of this section. We introduce a new variable
X for every subformula C of D.” We do not distinguish between occurrences of
subformulae. Moreover, if V is a variable occurring in D, we do not introduce a
new variable Xy, for it, i.e. we require the syntactic identity Xy = V. We define
two linear functions 6+ and 6~ on the set of subformulae of D by the mutual
induction with the following equations :

5t (V) =6 (V) =10 when V is a variable

ST (A® B) —5+(A) 0Y(B),Xagr D (X4 ® Xp) when ® € {A,V}
dT(ADB)=6(A),6"(B),Xa>p D (XaDXp)

5 (A®B) =6 (A),6(B),(Xa® Xp) D Xagp when ® € {A,V}
8" (ADB)=6"(A),6(B),(XaD>Xp)DXasn

In this definition, 61 (-) and () are multisets. The size of a formula is the
number of occurrences of its subformulae, which is the number of nodes in its
decomposition tree. Let C' be a formula of size n. It is obvious to prove that the
cardinals of §*(C) and 6~ (C) are smaller than n by mutual induction on C.
Moreover, both of theses multisets are only composed of flat formulae, the size
of which is 5, thus the size of either 67 (C) or §=(C) is bounded by 5n.

Proposition 1. Any proof of the sequent 6~ (D) F Xp can be transformed into
a proof of the sequent + D.

Proof. Let ¢ be the substitution defined by X¢o — C for any subformula C
of D. The result of applying the substitution o to any formula of either §+(D)
or 07 (D) is a formula of the form K D K. Let us consider the following proof
using one application of the rule [Subst,] and a repeated application of the cut
rule [Cut]:

- —[AY]
5~(D)F Xp K+ K
[Subst,] —— [Dr] —— [AX]
KiDKi,....K, > K, D - K)o K, K+ K,
Cut] ——— [D&]
- K, o K,
[Cut]
FD

This last proof part describes the transformation of a proof of the flat sequent
0~ (D)F Xp into a proof of the formula D. O

Now we prove the converse result: a counter-model to the sequent § ~(D)FXp
is also a counter-model to the formula D. This justifies the equi-validity of the
flattening of the formula D. For that, we introduce some useful derived rules to
prove semantic properties of 7 and ¢~ : these derived rules express the variance
of the logical operators with respect to the validity preorder IF.

7 As D has a finite number of subformulae and Form is infinite, this is always possible.



Proposition 2. The following rules (with ® is either V or A\) are admissible in

LC:

IAFB  AAFDB IBFA AAFDB

® D
LAA®AFBeB = LA A>AFB>B (5]

We do not give the proof of this standard result. From these rules, we derive
a relation between C' and 67 (C) (resp. 6~ (C)):

Lemma 1. The sequents 67 (C),Xc+C and 6~ (C),C+ X¢ are valid for any
subformula C of D,

Proof. By mutual induction on C. We only present the case of C' = A D B.
Let us prove 67 (AD B), X45pIF AD B. By induction hypothesis, we know that
7 (A),AlF X4 and 67(B), Xp I+ B. Then by the proof
6 (A),A-X4 6Y(B),XptB
6 (A),67(B),XaD>Xp+-ADB
6_(A),6+(B),XADB7XA >DXpHADB
6_(A)75+(B)7XADBuXADB D) (XA D) XB) FADB

[ ]
[Weak]

=

and the soundness of the logical rules, we deduce the validity of the sequent
0t (AD B),Xa>ptF AD B. The other cases are similar. 0

Proposition 3. Let [-] be a counter-model of the sequent §— (D)t Xp. Then it
is also a counter-model of D, i.e. [D] < oo.

Proof. As [-] is a counter-model, the relation [Xp] < |6~ (D) ] holds. Moreover
the relation [D] > [Xp] would imply [Xp] < [0~ (D)]] A[D] and [-] would be
a counter-model of the sequent 6~ (D), D+ Xp which is impossible by lemma 1.
As a consequence, we have [D] < [Xp] < . O

Corollary 1. Let D be any formula of size n, there exists a flat sequent which
1s equi-valid to D and of size smaller than 5n + 1.

Proof. We know by proposition 1 and 3 that D is equi-valid to 6= (D) F Xp.
This flat sequent is of size smaller than 5n + 1. ad

We point out the fact that it is also possible to transform the sequent
Ai,..., A, By,..., By into the flat sequent

ST (A1), ... 0T (An), Xays ooy Xa,, 6 (B1),...,0 (By)F Xp,,...,XB

p



4 From flat to pseudo-atomic sequents

In this section, we describe the second stage of our decision algorithm. It is a
proof-search process that converts a flat sequent into a set of pseudo-atomic
sequents such that the flat sequent is valid if and only if all the pseudo-atomic
sequents are valid. Moreover, any counter-model of any of the pseudo-atomic
sequents is also a counter-model to the flat sequent.

We present six strongly invertible rules to reduce any formula of the form
ZDO(X®Y)or (X®Y)DZ on the left-hand side of the I sign into variables X
and/or implicational formulae X DY (all the X, Y and Z represent variables).
But before, we introduce some logical equivalences holding in LC:®

Proposition 4. The following equivalences hold in LC:

1) (AANB)DCH(ADC)V(BDC) 1')AD(BAC)H(ADB)
2) (AvVB)DCH(ADC)A(BDC) 2)A>(BVC)+4(ADB)
3) AD(BDCO)4-(ADC)Vv(BDO)

< >
N
U
a

The reader can find proofs of similar equivalences in [2]. Now we introduce
six rules that can decompose any flat formula on the left-hand side of F into
implicational formula (X DY) or variables (X):

Proposition 5. The following rules are sound and strongly invertible for LC:

INADCFA I'BOCFEFA I'ADB,ADCFA ,
IL(ANB)DCHA [>2] [LA>(BAC)FA 3]
INA>DC,BOCFA I''ADBFA INADCEFA ,
I, (AVB)>CFA [53] [LA>(BVC)FA 23]

ILBS5CHASB,A I,CFA rLASCrA TI,B>CHA
[ (ADB)>CFA 4] [LA>(B>C)F A =4l

Proof. The rule [D3] (resp. [D4]) is included in G4-LC under the name [DF]
(resp. [D%]) so they are sound. For the other rules, we use the preceding equiva-
lences. We prove soundness of rule [D%], using the cut rule [Cut] in conjunction
with proposition 4, part 2'):

[LASBFA RADCFA[]
V
[(ASB)V(ASC)FA " AS(BVC)F(ASB)V(ASCO)
[LA>(BVO)F A

[Cut]

Let us also prove the strong invertibility of rule [D4]. Let -] be a counter-
model of the premise, by proposition 4, part 1’), and soundness, we obtain the
relation [A] < [TJA[ADBJA[ADC] = |ITJAJ(ADB)A(ADCO)] <
|| AAD (BAC)] and then, [-] is a counter-model of the conclusion. O

8 The notation A 4+ B means that both sequents A+ B and BF A are valid in LC.



With the six preceding rules, we are able to decompose any flat sequent until
all the formulae of the form Z D (X ® Y) or (X ® Y) D Z have been replaced
by variables or atomic implications. What we obtain is called a pseudo-atomic
sequent:

Definition 2 (Pseudo-atomic and atomic sequents). An atomic context
denoted by I, is a multiset of the form Ay,...,A;, B1 D C4,..., By DC,, where
all the A;, B;,C; are (propositional) variables. An atomic sequent is a sequent
of the form I', &+ X1,..., X, where I, is an atomic context and all the X; are
variables. A pseudo-atomic sequent is a sequent of the form I,FX1DY1,..., X, D
Yo, Z1,...,Z, where all the X;, Y; and Z; are variables.

Proposition 6. The bottom-up application of the rules of proposition 5 pre-
serves flat sequents. If a flat sequent is irreducible by those rules then it is
pseudo-atomic.

Proof. The result of the conversion of a formula Z2> (X ®Y) or (X®Y)DZ is
one or two formulae of the form X DY on the left-hand side of the - sign for all
the rules except rule [Dy4]. In this last case, we add X DY on the right-hand side
(left premise) and the introduction of a variable X on the left-hand side (right
premise). Then flat sequents are preserved.

Then it is clear that flat sequents without formulae of the form Z 2> (X ®Y)
or (X ® YY) D Z in the left-hand side are in fact pseudo-atomic sequents. a

5 Deciding pseudo-atomic sequents

In this section we develop the last step of our decision algorithm for LC. We
present a counter-model generation algorithm to decide pseudo-atomic sequents.
Pseudo-atomic sequents are sequents to which only the rules [Ax], [D}] or [Dg]
of the G4-LC calculus may be applied bottom-up. But as explained in section 2.2,
the use of rule [Dg] is not efficient in a decision algorithm. We propose a com-
putationally efficient procedure which is based on counter-model generation.

Proposition 7. The validity of the atomic sequent I, F X1,..., X, can be de-
cided in linear time and is equivalent to the validity of one of the I, - X;.

Proof. We apply the rule [D1] in any order until this rule is no more applica-
ble. As this rule is strongly invertible, the validity is preserved by this process.
Each B; D C; occurring in I', may be reduced at most once and this algo-
rithm is linear. If the obtained sequent is not an axiom, then it is necessarily of
the form A;,...,A;,B1 DC1,...,Bpn DCpnFXy,..., X, where {A1,..., A} N

{X1,...,Xn,B1,...,Bn} =0 and such a sequent has a classical counter-model:
[A;] =1 and [X;] = [B;] = 0 for any 4. This interpretation is also a counter-
model for all the I', F X; sequents. O

The reader may have noticed that on atomic sequents, all intermediate logics
collapse to classical logic and its boolean semantic. Of course, this is not the
case for pseudo-atomic sequents.



5.1 Decision as a fixpoint computation

We present the general method to decide a fixed pseudo-atomic sequent with no
variables on the right-hand side of the F sign, i.e. of the form

I,FX:1DOY,....X,DY, (n>0)

Let I C [1,n] be a subset of [1,n]. If I is the subset {i1,...,ix} then we denote
by X; the multiset of variables {X;,, ..., X;, }. We also denote by I = [1,n] — I
the complement of I and by S,, the symmetric group i.e. the set of permutations
of [1,n]. We define an increasing function ¢ on the complete (and finite) lattice
of subsets of [1,n], by:
2[17n] N 2[1,n]
“’{IH {i | Ta, X K Yy}

We recall that the sequent I, X7+ Y] is atomic and then ¢(I) can be computed
in linear time using the method of proposition 7. Because of the two negations
(I and J¥), the function ¢ is monotonic. Then we can compute the least fixpoint?
fie Of

Lo=0Ch=p0)<C - CI=¢"(0) = p

This process takes a finite number of steps p which is less than the size of [1,n]:

0 < p < n. The following theorem shows that the cardinal of the fixpoint pu,
characterizes the validity of the pseudo-atomic sequent.

Theorem 1. The three following propositions are equivalent:

1. The sequent I, X1 DYq,..., X, DY, has a counter-model
2.3reS,, Ve [l,n] Ig,Xe,..., X WY,
3. py = [1,n]

In the following three subsections, we prove 1 = 2, 2 = 3 and finally 3 = 1.

A necessary condition of invalidity

Proposition 8 (1 = 2). Let the interpretation [] be a counter-model of the
pseudo-atomic sequent I, F X1 D Yy,...,X,, DY,. Then there exists a per-
mutation T € S, such that for any k € [1,n], [-] is also a counter-model of
LuXosoo o Xo, F Y

Proof. Let 7 be any permutation such that [X, ] < --- < [X,,], obtained by
sorting all these values. As [-] is a counter-model of I, - X; DYy,..., X, DY,
we obtain [ X DYi] < | I, ] for any k € [1,n]. We fix a particular k and consider
Tk € [1,n]. We can then derive [X,, D Y, ] < oo and thus [X, ]| — [¥+.] < o
holds. Then it is necessary that [V, ] < [Xr. ] = [Xn] A+ A [ X4 ] and thus
[Y-.] =1X: DY, ] < [ ITull- As a conclusion, [Y., ] < | Lo, Xr,--., X7 |- We
deduce that [-] is a counter-model of Iy, Xr,..., X, F Y7, a

9 Or equivalently, this is the greatest fixpoint of I+ {i | I'y, X1 IF Y;}.



Computing the fixpoint
Proposition 9 (2 = 3). If there exists a permutation 7 € S,, satisfying the
condition Vk € [1,n]) Iy, X+, ,..., X5, WY, then p, =[1,n].

Proof. We write p for p,. Let k € [1,n]. We proceed by descending induction
on k > 1. We prove the induction step:

{Tks1y-- T} Cpu=1 Ep

The identity Xm ={X;,..., X, tholdsand I'y,, X,,,..., X, KY,, also
holds so 7, € @({Tk+1,-..,7n}) holds. With the induction hypothesis and the

monotonicity of ¢, we obtain 7, € ©({Tk+1,...,7}) C w(u) = p which proves
the induction step. Then it is trivial to prove 7, € u for all k: 7, € p, then
Tn—1 € i, ... and finally 71 € p. Thus we obtain p = [1,n] O

From the fixpoint to the counter-model

We now suppose that we have computed the fixpoint p, and that it equals
[1,n]. How to build a counter-model from this information? Let us consider the
strictly increasing sequence In =0 C Iy = ¢(0) C -+ € I, = ¢P(0) = pyp. As
[y 1S nOL empty,'? the inequation p > 0 holds. We show how to build a counter-
model out of this strictly increasing sequence. We define a decreasing sequence
Mo 2D My D D Mpyy of subsets of Var by

Mo =Var and My ={Z € Var | Lo, X IF Z} for k € [0,p]
Then we define the following interpretation for any variable Z:
[Z] = max{k € [0,p+1] | Z € My} (1)

The next two propositions establish that [-] is a counter-model of the sequent
I,FXiDY,...,.X,,DY,.

Proposition 10. If the formula A is in I, then [A] > p+ 1.

Proof. Let A be an element of [, if A is a variable then [A] is given by
equation (1). Since A € I, holds, we deduce T, XZII— A by the axiom rule [Ax],
then A € Mpyq and [Al =p+ 1.

Otherwise, A is of the form P D @) where P and @Q are variables. If [P] =0
then [P D Q] = co = p + 1. Otherwise let [P] = k + 1 with k € [0, p]. Since P
is a variable we obtain P € M1, thus I',, A7 |- P holds. Since P D Q € Iy,
Iy, X7-I- P2 @Q also holds. So, by application of the rule of modus ponens (which
is admissible!!) the validity of I, X7-I-Q holds. As (@ is a variable, we deduce
Q € My [Q] is given by the equation (1) and we obtain [Q] > k+ 1 = [P].
Finally [P D Q] = oc. O

10 We have supposed n > 0. The case n = 0 is treated separately in the proof of
corollary 3, section 5.2.

1 The modus ponens rule can be viewed as a combination of the cut rule [Cut] and
the contraction rule [Contract] in G4-LC.



Proposition 11. For any i € [1,n], the relation [X; D Y;] < p holds.

Proof. Let us fix a particular 7 € [1,n]. By the definition of the sequence () =
Ip C I € --- C I, =[1,n], there exists a unique k € [0,p — 1] such that i € I 41
and i & I. From i & I, we derive i € I, and then FG,XEH- X;. As X, is a
variable, X; € M1 holds thus [X;] > k + 1 holds by equation (1).

From i € Iy1 = ¢(Ix), we deduce by definition of ¢ that I, XEH‘ Y; and
Y & Myii1. Then, we have [V < k < [X;] and [X; DY = [Vi]l <k <p
holds. ad

Corollary 2 (3 = 1). The semantic [] defined by equation (1) is a counter-
model of the sequent I, X1 DYy,..., X, DY,.

Proposition 12. If Z is a variable such that I'y W Z holds then [Z] < p holds.

Proof. I, =[1,n], so I, = 0 and finally Z € M, ={Z | [, IF Z}. O

5.2 Deciding all pseudo-atomic sequents

We have an algorithm to decide pseudo-atomic sequents with no variables on
the right-hand side of the F sign. But it is straightforward to generalize it to any
pseudo-atomic sequent.

Corollary 3. Let I, - X1 D Yy,...,.X,, DYy, Z1,...,Z4 be a pseudo-atomic
sequent. It is provable in LC iff one of the sequents I', & Z; or the sequent I,
X1DY,..., X, DY, is provable.

Proof. The (if) part is a simple application of a weakening rule on the right
of the F sign of sequents. For the (only if) part, we distinguish between n = 0
and n > 0. In the former case, we use proposition 7. In the later case, suppose
that neither the sequents I, - Z; nor the sequent I, - X; D Y:,...,. X, DY,
are provable (i.e. valid). We compute the fixpoint for this last sequent. Then
by theorem 1, the fixpoint is [1,n] and by proposition 12 and corollary 2, the
semantics defined by equation (1) is also a counter-model of the sequent I', F
Xi0oW,...,. X, DY, Z4,...,Z,. O

5.3 A new logical rule inspired by the fixpoint computation

From theorem 1, we know that u, = [1, 7] holds when the pseudo-atomic sequent
I',FX1DYs,...,X,, DY, is not valid. When p, C [1, n], the sequent is provable
and we aim to provide a proof of it. Unfortunately, with the rule [Dg], we would
not be able to provide a proof of reasonable size, as explained in section 2.2.
Now, we propose a new rule in order to replace [Dr]. We show that the condition
pe € [1,n] is the expression of a very natural logical rule.

Proposition 13. If u, C [1,n] then there exists a non empty subset I of [1,n]
such that for any i € I, the sequent I, X1 FY; is valid.



Proof. Let I be the complementary subset of p1, so I is not empty and I= o
Let i € I then i ¢ I = ¢(I) and thus Iy, X7 IFY;. O

Then, with all the sequents I, X7 FY; being valid, it would be nice to have
a sound logical rule from which we could derive in only one step the conclusion
I,F-X,10Y1,...,X,DY,. Now, we present a rule for decomposing implicational
formulae on the right-hand side but, as opposed to the rule [Dg], all the im-
plications can be decomposed in only one step and for which there are no side
conditions:!'?
Proposition 14. Let I = {i1,...,it} by a non empty subset of [1,n|, the fol-
lowing rule [DN] is sound for LC:

[V Ai, .. Ay FBi, ... L Ai,... A

i F B
I'-A;>By,...,A, DB, A

ik

[On]

Proof. We prove soundness by showing that any model [-] of the premises is
also a model of the conclusion. Let [-] be a model of the premises. Then, for
any j € [1,k], the inequality [I"] A [As] A--- A [A;] < [By,] holds. Let ¢
be the index such that [A;;] is minimal among the values [A;;]. The property
[A4:;] = [Ai, ] A -+ A[Ai, ] holds and also | I']| A [A4;] < [Bi]-

Now, we prove that we have |I'| < [Ai, D Bi]. If [4i,] < [Bi,] then
[Ai; D Bi;] = oo and the property is trivially verified. On the other hand,
suppose that [A;,] > [Bi,] holds. Then [A;; D B;,]| = [Bi,] holds. The relation
|| > [Bis] is false because otherwise the relation | I'|| A [A;,] > [Bi;] would
hold. Therefore we obtain | I'|| < [Bs,] = [Ais D Bisl-

The property |I'| < [A1 D Bi] V -+ V [4n, D B,] V [A] holds because
Ai; D By, is one of the A; D Bj. O

5.4 Remarks on complexity

From the complexity point of view, this new rule [Dy] has major advantages
over the rule [Dg]: it allows to prove the sequent I', F X; D Yq,..., X, DY, in
only one step using proposition 13:

I, X vY, ... I,XFY,
I,FX;>Y,...,.X,DY,

DN]

Compared to the [Dg] rule, this [Dx] rule avoids the exponential blowup which
occurs because a proof-search algorithm based on [Dg] needs to explore branches
corresponding to all possible permutations of [1, n] (see section 2.2). The case of
pseudo-atomic sequents is a worst case example for the application of rule [Dg].
On the contrary, applicability of the [Dy] rule can be decided using a fixpoint

12 Tn rule [Dn], A can be any multiset of formulae, i.e. it is not necessary that the
A; D B, enumerate all the implicational formulae on the right-hand side of I-.



computation and the fixpoint contains an instance of rule [Dy]. So in the case
of pseudo-atomic sequent, the new rule [Dy] is clearly much more efficient than
[Dr]. Now what about replacing [Dg| by [Dn] in G4-LC ? This direct replace-
ment does not lead to a complete cut-free calculus for LC. Indeed, the valid
sequent AD (BV C)F(AD B)V(ADC) has no proof in such a system. So care
has to be taken when designing a proof-search calculus based on [Dy]. We will
investigate these logical properties in some future work. We have proposed a par-
ticular transformation of sequents into pseudo-atomic sequents. Other possible
transformations will also be studied from a complexity point of view.

6 Removing the constant | from formulae

In this section, we present a linear transformation of a formula into an equi-
valid sequent that does not contain L as a subformula.'® The idea is to replace
L by new variable a and to introduce hypothesis sufficient enough to be able to
deduce “anything” from «. We denote by A, the formula A where 1 has been
substituted by a, i.e. Ay = A1 ay- If X1,..., X, are the variables occurring
in A, this idea is well described by the following rule

FA
adXy,...,adD X, FA,

[a new variable]

and we prove that it is sound and invertible in appendix A.

Theorem 2. Let A be a formula, {X1,...,X,} its variables and o be another
variable which is not one of the X;’s. Any proof (resp. counter-model) of the
sequent « D X1,...,aD X, F A, can be transformed into a proof (resp. counter-
model) of = A. The size of the former sequent is linear in the size of A.

7 Computation of p,

In this section, we describe an algorithm to compute the iterated sequence Iy =
0C I =¢0) C--- CI,=¢P(0) = p, in time linear to the size of the pseudo-
atomic sequent. We do not give a full proof of the algorithm but rather explain
the basic ideas. Suppose we want to compute the fixpoint for the sequent

Al,...,Al,BlDCl,...,BmDcml_XlDyl,...,XnDYn

We describe an algorithm that computes the fixpoint for this sequent. It can be
seen as a reference counting algorithm [3]. In this scheme, an occurrence of an
implication B; D C; in the context represents a relative reference of the variable

13 The proof search method we have described in the preceding sections can be easily
extended to the L-case. But as it lengthens all the proofs, we have chosen to present
a |-free decision procedure together with the removal of | at the beginning of the
process.



B; to the variable C;. An occurrence variable A; or X; in the context represents
an absolute reference. For any variable X, the reference count of X equals the
number of absolute references to X plus the number of relative references to
X from any K which has a strictly positive reference count. The main point is
that a variable is deducible from the context if and if only its reference count is
strictly positive.

First, we represent this pseudo-atomic sequent by a graph G: the vertezes
are the variables occurring in the sequent and the arrows are B; — C; for all
the implications B; D C; on the left-hand side of the - sign. Let S be a multiset
of vertexes (thus variables) and X a vertex. We represent the validity of the
sequent S, B; D C1,..., By, D C, F X by accessibility from S in the graph G:

§,B12Cy,...,.Bp, DC,IFX iff 32€8,Z—-"Xing

Thus, the computation of the fixpoint can be done on the contraction of the graph
G where directed connected components are collapsed.™ Then we suppose that
the graph G is acyclic, i.e. there are no loops inside this graph.

We compute accessibility from S in G by a reference counting function Sz
defined inductively on the vertex Z:'° this weight function counts the number
of occurrences of the vertex Z in S plus the number of vertexes K below Z
(K — Z € G) such that Sk > 0. There are three important facts: Sz > 0 holds
iff Z is accessible from S; the sum of all the weights >, Sz is smaller than the
number of arrows in G plus the cardinal of S; (SU{X})z (resp. (S —{X})z)
can be computed incrementally from Sz using a depth-first search algorithm and
the total time to recompute (SU {X})z (resp. (S — {X})z) is linearly bounded
by the increase (resp. decrease) of the value ), Sz.

Let A be the multiset vertexes {A1,...,A;}. For the computation of the
fixpoint sequence, we first compute (A, X7-)z = (A, X1,..., Xy)z which takes a
time linear in the size of G plus [ 4+ n, i.e. is linearly bounded by the size of the
initial sequent. Then, I is the set of indexes ¢ such that (A, X7)y; = 0 holds.
We remove those indexes from Iy obtaining I; and recompute the corresponding
weight function (A, A7) z. Thus we can compute I,, etc. The total time for this
computation is also linearly bounded by the size of the initial sequent because of
the incremental computation of the sequence (A, X7-)z, ..., (A, XZ) z of weight
functions. In appendix B, we develop a complete execution of this algorithm.

What about the complexity of the three steps algorithm we have described ?
Without entering the full details, it should appear that the final goal is to obtain
an implementation with a complexity equivalent to that of a connection method
for classical propositional logic. In this setting, atomic paths correspond to our
pseudo-atomic sequents. To fulfill this design goal, we have to be able to compute
the fixpoint on-the-fly, i.e. using a incremental reference count (garbage collec-
tion) algorithm so as to be able to decide pseudo-atomic sequent in constant
time when we obtain an atomic path. For the moment, this step takes a linear

14 Computing the connected components of a graph is a linear time process.
15 That is why we need G acyclic.



time. But existing results in cyclic and incremental garbage collection techniques
suggest the feasibility of such a design.

8 Conclusion

In this paper, we have proposed an algorithm, in three steps, that is able to
compute either a proof or a counter-model of any formula of LC. The main con-
tributions are: a counter-model generation algorithm for pseudo-atomic sequents
than can be implemented in linear time and a new proof system where a new
logical rule [Dp] efficiently replaces [Dg]. The main perspectives of this work
are the resource-conscious implementation of this algorithm and the study of the
logical properties of the new rule. We would also like to investigate the extension
of our methodology to some other intermediate logics.
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A Proof of theorem 2

Theorem 2. Let A be a formula, {X1,...,X,} its variables and o be another
variable which is not one of the X;’s. Any proof (resp. counter-model) of the
sequent D X1,...,aD X, F A, can be transformed into a proof (resp. counter-
model) of = A. The size of the former sequent is linear in the size of A.

Proof. We show how to transform a proof (resp. a counter-model) of a D
X1,...,aD X, F A, into a proof (resp. a counter-model) of FA.

Suppose that we have a proof of @« D X1,...,a D X,, - A,. We remark that
substituting L for a in A, produces A. Let o be the substitution {a — L}. We
obtain the following proof of FA:

[Lr]
OéDXl,...,O[DXnI_Aa 1FX5
[Subst,] — [Dr
1>Xy,..., DX, FA FLDX,
[Cut] [Lr]
1o5Xs,..., L DX, FA ... 1lrFX,
DR]
FL DX,
[Cut]
FA

On the other hand, we suppose that [-] is a counter-model of the sequent
aDXi,...,aD X, FA,. Then for any i, the property [a D X;] > [As] holds.
In the n = 0 case (i.e. A does not contain any variable) we get the property
[Aa] < oo, and this property also holds in the case n > 0.

We now prove that the identity [of < [X;] holds for any i. If n = 0, the
property trivially holds. Otherwise, let iy an index such that the value of [aD X;]
is minimal and let § = o D X;,] be this value. We prove by contradiction that
o] <.

We suppose [[a] > &. Then all the atoms of A, are interpreted by values
(the [X;]’s and [a]) which are greater than d. Then by definition of [-], [Aa]
is necessarily greater than 0. So [a D X;,] > [Aa] = ¢. But as [of > [X;,] =9,
we obtain [a D X;,]| = [o] — [X4]] = 0 and a contradiction.

For any 4, [o] < [X;] holds. Thus we can define [X]" = [X] — [a] for
X €{a,X1,...,X,}, the other values of the semantic function do not matter. In
this new semantic, « is interpreted by 0 which is the same as | and thus, [A] =
[A.]"- Moreover, by the definition of the semantic function [-] on formulae, for
any formula B, built with atoms in {a, X1,..., X, }, the identity [B] = [B] —



[a] holds.'® In particular [A,]" = [Aa] — [ < co. Thus, since [A] = [Aa],
the function [-]" is a counter-model of A.

For the size of the sequent « D X7,...,aD X, F A,, it is linear in the size of
A since the number of variables in A is lower than the size of A. ad

B Example of linear computation of p,,

We develop an full example of computation of the fixpoint u, on the graph of
variables G, see section 7. We choose the following sequent:

051,152,153,254,3>4
F22:1,1250,4D32

In the graph on the right-hand side, the black arrows represent the real graph
structure, the dashed (and numbered) arrows are only displayed to remind the
reader of the implications on the right (X; D Y;).

We display the weight function Sz on G by marking the vertexes K such
that K occurs in the multiset S and the arrows K — Z such that Sg > 0. We
also display the current value of Sz beside the vertex Z

The first stage is to compute (X1 231)z = (2,1,4)z. We start from (0)
which is the zero weight function and compute successively (2)z (two steps),
(2,1)7 (three steps) and (2,1,4)z (one step):

Thus, we obtain the value of I
which is {2} because 1 —4 0 is the
only dashed arrow for which the end-
vertex has weight 0. So, we have
to compute (A7) = (X3y)z =
(2,4)z. We unmark vertex 1 (corresponding to the dashed arrow 1 —5 0) and
recompute the weight function in 3 steps.

The computed value of I is {1,2} because
2 —1 1 and 1 —5 0 are the two arrows for
which the end-vertex has weight 0. We unmark
vertex 2 (corresponding to the dashed arrow
2 —j 1) and recompute the weight function
(XE) = (X{3})Z = (4)z in 2 steps.

We obtain I3 = {1,2,3} and stop. The fixpoint is [1,3]. We can derive the
counter-model: from the weights we obtain Xy 53y IF{1,2,3,4}, X1 3y IF{2,4},
Xygy IF {4} and Ay IF (. Thus the counter-model is defined by [0] = 0, [1] =
[3] =1, [2] = 2 and [4] = 3.

16 This is trivial by induction on B, since the operation = — x — [«] strictly preserves
the order on the semantic values of atoms. Remark that the — operator is defined
in such a way that the identity co — [[@]] = oo holds.



