Skip to main content

A ‘Theory’ Mechanism for a Proof-Verifier Based on First-Order Set Theory

  • Chapter
  • First Online:
Computational Logic: Logic Programming and Beyond

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2408))

Abstract

We propose classical set theory as the core of an automated proof-verifier and outline a version of it, designed to assist in proof development, which is indefinitely expansible with function symbols generated by Skolemization and embodies a modularization mechanism named ‘theory’. Through several examples, centered on the finite summation operation, we illustrate the potential utility in large-scale proof-development of the ‘theory’ mechanism: utility which stems in part from the power of the underlying set theory and in part from Skolemization.

E.G. Omodeo enjoyed a Short-term mobility grant of the Italian National Research Council (CNR) enabling him to stay at the University of New York during the preparation of this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Blass and Y. Gurevich. The logic of choice. J. of Symbolic Logic, 65(3):1264–1310, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  2. D. S. Bridges. Foundations of real and abstract analysis. Springer-Verlag, Graduate Texts in Mathematics vol. 174, 1997.

    Google Scholar 

  3. R. Burstall and J. Goguen. Putting theories together to make specifications. In R. Reddy, ed, Proc. 5th International Joint Conference on Artificial Intelligence. Cambridge, MA, pp. 1045–1058, 1977.

    Google Scholar 

  4. R. Caferra and G. Salzer, editors. Automated Deduction in Classical and Non-Classical Logics. LNCS 1761 (LNAI). Springer-Verlag, 2000.

    MATH  Google Scholar 

  5. P. Cegielski. Un fondement des mathématiques. In M. Barbut et al., eds, La recherche de la vérité. ACL-Les éditions du Kangourou, 1999.

    Google Scholar 

  6. A. Church. A formulation of the simple theory of types. J. of Symbolic Logic, 5:56–68, 1940.

    Article  MATH  MathSciNet  Google Scholar 

  7. E. Clarke and X. Zhao. Analytica—A theorem prover in Mathematica. In D. Kapur, ed, Automated Deduction—CADE-11. Springer-Verlag, LNCS vol. 607, pp. 761–765, 1992.

    Google Scholar 

  8. R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer, R. W. Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden, J. T. Sasaki, and S. F. Smith. Implementing mathematics with the Nuprl development system. Prentice-Hall, Englewood Cliffs, NJ, 1986.

    Google Scholar 

  9. Th. Coquand and G. Huet. The calculus of constructions. Information and Computation, 76(2/3):95–120, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  10. W. M. Farmer, J. D. Guttman, F. J. Thayer. IMPS: An interactive mathematical proof system. J. of Automated Reasoning, 11:213–248, 1993.

    Article  MATH  Google Scholar 

  11. A. Formisano and E. Omodeo. An equational re-engineering of set theories. In Caferra and Salzer G. Salzer, editors. Automated Deduction in Classical and Non-Classical Logics. LNCS 1761 (LNAI). Springer-Verlag, 2000 [4, pp. 175–190].

    Chapter  Google Scholar 

  12. G. Frege. Logik in der Mathematik. In G. Frege, Schriften zur Logik und Sprachphilosophie. Aus dem Nachlaß herausgegeben von G. Gabriel. Felix Meiner Verlag, Philosophische Bibliothek, Band 277, Hamburg, pp. 92–165, 1971.

    MathSciNet  Google Scholar 

  13. K. Futatsugi, J. A. Goguen, J.-P. Jouannaud, J. Meseguer. Principles of OBJ2. Proc. 12th annual ACM Symp. on Principles of Programming Languages (POPL’85), pp. 55–66, 1985.

    Google Scholar 

  14. R. Godement. Cours d’algèbre. Hermann, Paris, Collection Enseignement des Sciences, 3rd edition, 1966.

    Google Scholar 

  15. J. A. Goguen and G. Malcolm. Algebraic semantics of imperative programs. MIT, 1996.

    Google Scholar 

  16. T. J. Jech. Set theory. Springer-Verlag, Perspectives in Mathematical Logic, 2nd edition, 1997.

    Google Scholar 

  17. E. Landau. Foundation of analysis. The arithmetic of whole, rational, irrational and complex numbers. Chelsea Publishing Co., New York, 2nd edition, 1960.

    Google Scholar 

  18. A. Levy. Basic set theory. Springer-Verlag, Perspectives in Mathematical Logic, 1979.

    Google Scholar 

  19. P. Martin-Löf. Intuitionistic type theory. Bibliopolis, Napoli, Studies in Proof Theory Series, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Omodeo, E.G., Schwartz, J.T. (2002). A ‘Theory’ Mechanism for a Proof-Verifier Based on First-Order Set Theory. In: Kakas, A.C., Sadri, F. (eds) Computational Logic: Logic Programming and Beyond. Lecture Notes in Computer Science(), vol 2408. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45632-5_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-45632-5_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43960-8

  • Online ISBN: 978-3-540-45632-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics