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Abstract. In the areaof agent-basedcomputing thereare many proposalsfor
specificsystemarchitectures,anda numberof proposalsfor generalapproaches
to building agents.As yet,however, therearecomparatively few attemptsto relate
thesetogether, andeven fewer attemptsto provide methodologieswhich relate
designsto architecturesandthen to executableagents.This paperdiscussesan
attemptwe have madeto addressthis shortcoming, describinga generalmethod
of definingarchitecturesfor logic-basedagentswhich canbe directly executed.
Ourapproach is basedupontheuseof multi-context systemsandwe illustrateits
usethroughexamplesof thespecificationof a simpleagents.

1 Intr oduction

Agent-basedcomputing is fastemerging asa new paradigm for engineeringcomplex,
distributedsystems[18,36]. An importantaspectof this trendis theuseof agentarchi-
tecturesasameansof deliveringagent-basedfunctionality (asopposedtoworkonagent
programming languages[19,31,34]). In this context, anarchitecture canbeviewedas
aseparation of concerns—it identifiesthemainfunctionsthatultimatelygiveriseto the
agent’s behaviour anddefinestheinterdependenciesthatexist betweenthem.As agent
architecturesbecomemorewidely used,thereis an increasing demandfor unambigu-
ousspecificationsof themandthereis agreaterneedto verify implementationsof them.
To this end,a range of techniqueshave beenusedto formally specifyagentarchitec-
tures(including Concurrent MetateM[12, 35], DESIRE[3,32] andZ [8]). However,
thesetechniquestypically fall shortin at leastoneof the following ways:(i) they en-
forcea particularview of architectureupon thespecification;(ii) they offer no explicit
structuresfor modelling thecomponentsof anarchitectureor therelationshipsbetween�
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them;(iii) they leave a gapbetweenthespecificationof anarchitecture andits imple-
mentation.

To rectify theseshortcomings,we have proposedthe useof multi-context systems
[15] asameansof specifying andimplementing agentarchitectures.Multi-context sys-
temsprovide anoverarchingframework thatallows distinct theoreticalcomponentsto
be definedandinterrelated. Suchsystemsconsistof a setof contexts, eachof which
caninformally beconsidered to bea logic anda setof formulaewritten in that logic,
anda setof bridge rules for transferring informationbetweencontexts. Thus,differ-
entcontexts canbeusedto representdifferentcomponentsof thearchitecture andthe
interactions betweenthesecomponentscanbe specifiedby meansof the bridge rules
betweenthe contexts. We believe multi-context systemsarewell suitedto specifying
andmodellingagentarchitecturesfor two maintypesof reason: (i) from a softwareen-
gineeringperspectivethey support modular decompositionandencapsulation; and(ii)
from a logical modelling perspectivethey provideanefficientmeansof specifying and
executing complex logics.

From a software engineering perspective, multi-context systemssupport the de-
velopmentof modular architectures.Eacharchitectural component—beit a functional
component(responsiblefor assessingtheagent’s currentsituation,say)or a datastruc-
ture component(the agent’s beliefs,say)—canbe representedas a separatecontext.
The links betweenthe componentscanthenbe madeexplicit by writing bridgerules
to link thecontexts.This ability to directly support componentdecompositionoffersa
cleanroutefrom thehigh level specificationof thearchitecture throughto its detailed
design.Moreover, this basicphilosophycanbeappliednomatterhow thearchitectural
componentsaredecomposedor how many architectural componentsexist.

Moving onto the logical modellingperspective, therearefour mainadvantagesof
adopting a multi-context approach.Thefirst is anextensionof the softwareengineer-
ing advantageswhich specificallyappliesto logical systems.By breaking the logical
description of anagentinto a setof contexts, eachof which holdsa setof relatedfor-
mulae,we effectively geta form of many-sortedlogic (all theformulaein onecontext
areasinglesort)with theconcomitantadvantagesof scalabilityandefficiency. Thesec-
ondadvantagefollows on from this. Usingmulti-context systemsmakesit possibleto
build agentswhichuseseveral differentlogicsin awaythatkeepsthelogicsneatlysep-
arated(all the formulaein onelogic aregatheredtogether in onecontext). This either
makes it possibleto increasethe representationalpower of logical agents(compared
with thosewhich usea singlelogic) or simplify agentsconceptually (comparedwith
thosewhichuseseverallogicsin oneglobalcontext). This latteradvantageis illustrated
below whereweusemulti-context systemsto simplify theconstruction of aBDI agent.

Both of the above advantagesapply to any logical agentbuilt usingmulti-context
systems.Theremaining two advantagesapplyto specifictypesof logicalagent—those
whichreasonabout theirbeliefsandthoseof otheragents.Thefirst is thatmulti-context
systemsmake it possible[15] to build agents which reasonin a way which conforms
to the useof modal logics like KD45 (the standard modal logic for handling belief)
but which obviatesthedifficultiesusuallyinherent in theorem proving in suchlogics.
Again this is illustratedin [23]. Thusthe useof multi-context systemsmakesit easy
to directly execute agent specifications wherethosespecificationsdealwith modalno-



tions.Thefinal advantageis relatedto this.Agentswhichreasonaboutbeliefsareoften
confrontedwith theproblem of modelling the beliefsof otheragents,andthis canbe
hard,especiallywhenthoseotheragentsreasonaboutbeliefs in a different way (be-
cause,for instance,they usea different logic). Multi-context systemsprovide a neat
solutionto thisproblem[1,6].

When the software engineeringand the logical modelling perspectives are com-
bined,it canbeseenthatthemulti-context approachoffersa clearpathfrom specifica-
tion throughto implementation.By providing a clearsetof mappingsfrom concept to
design,andfrom designto implementation,themulti-context approachoffersa way of
tacklingthegapthatcurrently existsbetweenthetheoryandthepracticeof agent-based
systems.

2 Multi-context agents

As discussedabove,webelievethattheuseof multi-context systemsoffersanumberof
advantageswhenengineeringagent architectures.However, multi-context systemsare
not a panacea.We believe that they aremostappropriatewhenbuilding agents which
arelogic-basedandaretherefore largely deliberative1.

2.1 The basicmodel

Using a multi-context approach,an agentarchitecture consistsof four basictypesof
component.Thesecomponentswerefirst identifiedin thecontext of building theorem
proversfor modallogic [15], beforebeingidentifiedasamethodology for constructing
agentarchitectures[20]. Thecomponentsare2 :

– Units: Structural entitiesrepresentingthemaincomponentsof thearchitecture.
– Logics: Declarative languages,eachwith a setof axiomsanda numberof rulesof

inference.Eachunit hasasinglelogic associatedwith it.
– Theories: Setsof formulaewritten in thelogic associatedwith aunit.
– Bridgerules: Rulesof inferencewhich relateformulaein differentunits.

Units represent the various componentsof the architecture. They containthe bulk of
anagent’s problem solvingknowledge,andthis knowledgeis encoded in thespecific
theorythat theunit encapsulates.In general, thenatureof theunitswill vary between
architectures.For example, a BDI agent may have units which representtheories of
beliefs,desiresandintentions (seeSection3), whereasanarchitecturebasedona func-
tional separation of concerns may have units which encode theoriesof cooperation,
situationassessmentandplanexecution (seeSection4). In eithercase,eachunit hasa
suitablelogic associatedwith it. Thusthebeliefunit of aBDI agent hasa logic of belief
associatedwith it, andthe intentionunit hasa logic of intention. The logic associated
with eachunit providesthe languagein which theinformation in thatunit is encoded,
1 See[38] for a discussionof therelative meritsof logic-basedandnonlogic-basedapproaches

to specifyingandbuilding agentarchitectures.
2 For moredetailsee[20].



andthe bridge rulesprovide the mechanism by which information is transferred be-
tweenunits.

Bridgerulescanbeunderstoodasrulesof inferencewith premisesandconclusions
in different units.For instance: 	 ��
��� 	 ��
��	 � 
�
meansthat formula � maybe deducedin unit

	 � if formulae � and � arededucedin
units

	 � and
	 � respectively.

Whenusedas a meansof specifyingagentarchitectures,all the elementsof the
model,both units and bridge rules,are taken to work concurrently. In practicethis
meansthat the execution of eachunit is a non-terminating, deductive process3. The
bridgerulescontinuouslyexaminethetheoriesof theunitsthatappearin theirpremises
for new setsof formulaethat matchthem.This meansthat all the componentsof the
architecturearealwaysreadyto reactto any change(externalor internal)andthatthere
arenocentralcontrol elements.

2.2 The extendedmodel

Themodel asoutlinedabove is that introducedin [20] andusedin [23]. However, this
modelhasproved deficientin a couple of ways,both connected to the dynamicsof
reasoning. In particularwefoundit useful[29] to extendthebasicideaof multi-context
systemsby associatingtwo control elements with the bridge rules:consumption and
time-outs. A consuming condition meansthe bridge rule removes the formula from
the theorywhich containsthe premise (remember that a theoryis consideredto be a
set of formulae). Thus in bridge ruleswith consuming conditions, formulae “move”
betweenunits. To distinguishbetweena consuming condition anda non-consuming
condition, wewill usethenotation

	���� � for consumingand
	�� 
� for non-consuming

conditions.Thus: 	 � � ��� 	 � 
��	 ��
�
meansthatwhenthebridgeruleis executed,� is removedfrom

	 � but � is notremoved
from

	 � .
Consumingconditionsincreaseexpressivenessin thecommunicationbetweenunits.

With this facility, wecanmodel themovementof a formulafrom onetheory to another
(from oneunit to another), changesin the theory of oneunit that causethe removal
of a formula from another one,andso on. This mechanism alsomakesit possibleto
modeltheconcept of statesincehaving aconcreteformula in oneunit or anothermight
represent a different agent state.For example, laterin thepaperwe usethepresence of
a formulain aparticularunit to indicatetheavailability of a resource.

A time-out in a bridge rule meansthereis a delaybetweenthe instantin time at
which theconditions of thebridgerule aresatisfiedandtheeffective activation of the
rule.A time-outis denotedby a labelon theright of therule; for instance:	 ��
�	 ��
���� ���
3 For moredetailon exactly how this is achieved,see[29].



meansthat � unitsof time afterthetheoryin unit
	 � getsformula � , thetheoryin unit	 � will beextended by formula � . If during this timeperiodformula � is removedfrom

thetheoryin unit
	 � , this rule will not beapplied.In a similar way to consuming con-

ditions, time-outs increaseexpressivenessin the communicationbetweenunits. This
is importantwhenactionsperformedby bridgerulesneedto beretractedif a specific
event doesnot happenaftera givenperiodof time. In particular, it enablesusto repre-
sentsituationswheresilenceduringa period of time maymeanfailure(in this casethe
bridge rulescanthenbeusedto re-establishapreviousstate)4.

2.3 Modular agents

Usingunitsandbridge rulesastheonly structural elements canbecumbersomewhen
building complex agents (ascanbe seenfrom the model we develop below in Sec-
tion 3). As the complexity of the agent increases,it rapidly becomesvery difficult to
dealwith the necessarynumberof unitsandtheir interconnectionsusingbridgerules
alone.Adding new capabilitiesto theagentbecomesa complex taskin itself. To solve
this problemwe suggest adding anotherlevel of abstractionto themodel—themodule.

A module is a setof units andbridgerulesthat together modela particularcapa-
bility or facetof anagent.For example,planning agentsmustbecapable of managing
resources,andsuchanagentmighthaveamodulemodelingthisability. Similarly, such
an agentmight have a module for generating plans,a module for handling commu-
nication,andso on. Thusmodules capture exactly thesameideaasthe “capabilities”
discussedby Busettaetal. [4]. UnlikeBusettaetal., wedonotcurrently allow modules
to benestedinsideoneanother, largely becausewe have not yet found it necessaryto
doso.However, it seemslikely thatwewill needto develop ameansof handling nested
hierachies of modules in order to build morecomplex agentsthanwe are currently
constructing.

Eachmodule musthave a communicationunit. This unit is the module’s unique
pointof contactwith theothermodulesandit knowswhatkind of messagesits module
candealwith. All of anagent’scommunicationunitsareinter-connectedwith theothers
usingmulticastbridgerules(MBRs)asin Figure1. Thisfigureshows threeMBRs (the
rectangles in themiddleof thediagram)eachof which hasa singlepremisein module
a andasingleconclusionin eachof themodulesn � .

SincetheMBRssendmessagesto morethanonemodule,asinglemessagecanpro-
voke morethanoneanswerand,hence, contradictoryinformationmayappear. There
aremany possiblewaysof dealingwith thisproblem,howeverhereweconsiderjustone
of themasanexample.Weassociateaweightwith eachmessage.Thisvalueis assigned
to themessageby thecommunicationunit of themodule thatsendsit out.Weightsbe-
long to �  �"! � (maximum importance is 1 andminimum is 0), andtheir meaningis the

4 Bothof theseextensionsto thestandardmulti-context systemincuracost.Thisis thatincluding
themin themodelmeansthatthemodeldepartssomewhatfrom first orderpredicatecalculus,
andsodoesnot have a fully-definedsemantics.We arecurrentlylooking at usinglinear logic,
in which individual propositionscan only be usedoncein any given proof, as a meansof
giving a semanticsto consuming conditions,andvarioustemporallogicsasa meansof giving
a semanticsto time-outs.
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Fig.1. Theinter-connectionof modules(from a’sperspective only)

strengthof theopinion givenin themessage,andthis canbeusedto resolvecontradic-
tory messages.For instance,themessagewith highestweightmightbepreferred,or the
different weightsof incoming messagescouldbecombined by a communicationunit
receiving themto takeafinal decision(for instanceusingthebeliefrevisionmechanism
describedin [21]). Notethatweightsareusedonly in inter-module messages.

2.4 Messagesbetweenmodules

Given a set #�$ of agentnamesand a set %&$ of module names,an inter-module
messagehastheform: ')(+* �-,.�/�0�/12�/�03
where

–
'

is anillocutionaryparticlethatspecifiesthekind of message.
–
*

and , bothhave the form # �54768�/9 5 where #;:<#�$ or #>=;?A@CB D ( ?A@CB D refers
to theagentthatownsthemodule) and 6 :E%&$ , or 6 =GFHBIB ( FHBIB denotes all the
moduleswithin thatagent).

*
reflectswho is sendingthemessageand , indicates

to whom it is directed.
– � is thecontentof themessage.

5 As elsewherewe useBNF syntax,so that J�K LCMONQP meansJ followed by oneor moreoccur-
rencesof LCM .



– 1 is a recordof thederivationof � . It hasthe form: R�R7S �UTV�W�YX[Z\Z"Z RYS^] T_� ] X�X
whereS is a setof formulaeand � � is a formula with � ]`= � 6.

– � : �  �"! � is theweightassociatedwith themessage.

To seehow thisworksin practice,considerthefollowing.Supposethatanagent(nameda
) hasfour modules(a, b, c, d). Module a sendsthemessage:

#cbYd ( ?e@"B D 4Hf � ?A@CB D 4f�g+g �-1�hjilk
( a � # � $ f h g 3m�/�[�C�  Z5n�3

This meansthatmodule f of agent
a

is askingall its moduleswhether
a

shouldgive# a nail. The reasonfor doing this is � � andtheweight f putson this request is 0.5.
Assumemodulesc andd sendtheanswer

#�opb\q kYr ( ?e@"B D 4Hs � ?e@"B D 4Hf � o^t �
( 1�hjilk ( a � # � $ f h g 3u3C�u�v�H�  Z w�3

and #xopb\q kYr ( ?e@"B D 4y � ?e@"B D 4f � o^t �
( 1�h�ilk ( a � # � $ f h g 3u3m�/�v��  Z5z�3

while module b sends

#xopb\q kYr ( ?A@CB D 4�{ � ?A@CB D 4Hf �-1�hjilk
( a � # � $ f h g 3m�/��|�  Z }�3

Currentlywetreattheweightsof themessagesaspossibilitymeasures[9], andsocom-
binethedisjunctive support for o^t �

( 1�h�ilk ( a � # � $ f h g 3u3 usingmax.As this combined
weightis higher thantheweight of thepositive literal, thecommunicationunit of mod-
ulea will accepttheopinion o^t �

( 1�h�ilk ( a � # � $ f h g 3u3 .
Themessageswehavediscussedsofararethosewhicharepassedaround theagent

itself in order to exchange informationbetweenthe moduleswhich composeit. Our
approachalsoadmitsthemorecommon ideaof messagesbetweenagents.Suchinter-
agentmessageshave thesamebasicform, but they have two minordifferences:

–
*

and , areagentnames(i.e.

* �-, :~#�$ ), nomodulesarespecified.
– there is no degreeof importance(because it is internal to a particular agent—

however inter-agent messagescould be augmentedwith a degree of belief [21]
whichcouldbebasedupontheweightof therelevant intra-agentmessages.)

With thismachinery in place,wearein apositiontospecifyrealisticagentarchitectures.

2.5 Examplesof multi-context agents

This remainder of this papercontains two examplesof agent specificationusingmulti-
context systems,eachillustratingoneof theusesof unitsintroducedin Section??—the
first of these(basedon themodelin [23]) is thatfor a BDI agent,thesecond(basedon
6 In otherwords,� is exactlythesetof groundsof theargument for � [23]. Wheretheagentdoes

not needto beableto justify its statements,this componentof themessagecanbediscarded.
Notethat,asarguedby Gabbay[13] this approachis a generalisationof classicallogic—there
is nothingto stopthesameapproachbeingusedwhenmessages arejust formulaein classical
logic.



themodel in [29]), is that for anagentin which thearchitectural unitsarebasedon a
functional separationof concerns.Thefirst illustrateshow themulti-context approach
canbeusedto handle thekind of “mentalattitudes”agentarchitectureswhichhavebe-
comecommon. Thesecondshows how modulescanhelpto simplify themulti-context
model.

Bothof theseexamplesarebasedaround theexampleof home improvement agents
introducedin [22], andsketchedbelow7. In orderto save space(andalsoto save the
sanityof theauthorsandreadersfamiliarwith theexample), neithertreatmentdoesany
morethanspecifytheagents—fuller versionscanbefound in thepapers citedabove.

For thoseunfamiliar with theexample, it is asfollows.Two agents,# and
a

have,
respectively, thetasksof hanging a picture andhanging a mirror. # knows oneway of
hangingapictureandoneof hangingamirror.

a
justknowshow to hangamirror (using

a differenttechniquefrom # ). # hasthemeansto hang a mirror usingits technique,
a

hasthemeansto handeitherits mirror, usingits own technique,or # ’spicture.Thefull
solutionto theproblem involves # convincing

a
to use # ’s approachandresourcesto

hangthemirror sothat # canuse
a

’s resourcesto hangthepicture.

3 Agentswith mental attitudes

Ourfirst exampleexamineshow aparticularclassof agent architecture—BDIagents—
canbemodelledandthendescribeshow particular individualsof thatclasscanbespeci-
fiedin ordertosolvetheexample.ThisseemsanappropriatechoicebecauseBDI agents
arecurrently of wide interestwithin themulti-agentsystemcommunity [37].

3.1 A high-level description

Thefirst stepin specifyingtheagentis to choosetheunitsandthelogicsthatthey con-
tain.In thisexample,thechoiceis driven by thefactthatwearemodelling BDI agents.
The particulartheory of BDI on which the architecture is basedis that of Rao and
Georgeff. Thismodel hasevolvedovertime(ascanbeseenbycomparing[25] and[26])
andin thissectionweaccount for themostrecentapproach[26] wherethreemodalities
aredistinguished: � for beliefs—usedto represent thestateof theenvironment, � for
desires—usedto representthemotivationsof theagent,and � for intentions—usedto
represent the ends (or goals)of the agent.In order to fit this kind of model into our
multi-context framework, weassociateaseparateunit for eachof themodalities8

As dicussedin [23], we couldthenequipeachof theseunitswith exactly thesame
logic asis usedin RaoandGeorgeff ’s model,taking the logic of thebelief unit to be
modal logic KD45 andthe logics of the desireand intention units to both be modal
logic KD, andto take all thesemodallogics to be combined with the temporal logic�c���

[10]. However, it is morein the spirit of multi-context systems[15] to take
a

,�
and

'
aspredicates.Suchsystemsagainhave separate

a
,
�

and

'
unitsalongwith

7 Initially unnamed,this example seemsto have becomeknown as“The Nail Problem”(TNP);
despitebeingsimpleto expressit turnsout to beratherhardto handle.

8 In fact thegeneralapproach allows morethanoneunit for beliefs(asin [5]), desiresor inten-
tionsif deemedappropriate.In theexamplespresented, however, this is not necessary.
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Fig.2. Differenttypesof BDI agent.From left to right, the relationsbetweenmodalitiescorre-
spondto strongrealism,realismandweakrealism.

a communicationunit, andusefirst orderlogic. Thenecessaryinteractionbetweenthe
predicatesis establishedusingbridge rules(asdiscussedbelow) andtheaxiomsof the
relevant modal logics are modelledby adding formulae to the theories in eachunit
(againthis is discussedbelow).

3.2 Specificationof bridge rules

Having decidedon theunitsandthelogicsthat they contain,thenext stepin thespec-
ification is to write down thebridge ruleswhich connect theunits.Herewe have two
distinctsetsof suchrules.Thefirst model therelationshipsbetweenbeliefs,desiresand
intentions.Thesearedomain independent andwould hold for any BDI agentspecified
in this way. Thesecondmodel somedomainspecificknowledge.

BDI bridge rules As statedabove, thesetof bridge rulesdetermine the relationship
betweenthe modalitiesandhencethe behaviour of the agent.Threewell established
setsof relationships for BDI agents havebeenidentified[26]:

– Strongrealism. Thesetof intentions is a subsetof thesetof desireswhich in turn
is a subsetof the beliefs.That is, if an agentdoesnot believe something, it will
neitherdesirenor intendit [25].

– Realism. Thesetof beliefsis a subsetof thesetof desireswhich in turn is asubset
of thesetof intentions.That is, if anagentbelieves something, it bothdesiresand
intendsit [7].

– Weakrealism. A casein betweenstrongrealismandrealism.Agents do not desire
propertiesthenegation of whicharebelieved, do not intendpropositionsthenega-
tionsof which aredesired,anddo not intendpropositionsthenegationsof which
arebelieved[24].

Figure2 givesasuitablesetof bridgerulesfor eachof theseinterpretations.In [23], we
only consideredstrongrealistagents.In addition to this setof rules,we found thatwe



neededa couple of additional ruleswhichrelateintentionsto beliefs:

QSRTQVUXWZY[W]\]\ ^`_ abYdceWZYXcVa7^`Y (gf 3 =
' 
 ' � (ih 3a 
 a � (+' � (jh 3/3

QSRTQVUXWZY[W]\]\ ^`_ abYdceWZYXcVa7^`Y (ik 3 =
' 
ml ' � (ih 3a 
 a � ( l ' � (jh 3/3

Agentsareawareof their intentions,soif anagenthasanintention it alsobelievesthat
it hasthatintention.

a!npodqSrd\sa tuWZY[W]\]\ = a 
 a � (+' � (ih 3u3' 
 ' � (jh 3
Whenanagentbelieves it hasanintention, it adoptsthatintention.

Theselast two aresimilar in somewaysto thebasicrulesof modal logic9, except
that in standardmodal logic they don’t applyacrossmodalitiesin theway thatthey do
here.

Domain dependentbridge rules Thebridge rulesfor theappropriateform of realism
will berequired for thespecificationof any suchagent whatever domain it is operating
in. Without them,theagent will notconformto RaoandGeorgeff ’s ideaof whataBDI
agentis. In addition webelievethattheawarenessof intentionsandimplusivenessrules
(or something like them)will berequired in practiceby any BDI agent.

In additionto thesedomainindependentrules,any agentwill requireasetof bridge
ruleswhich definehow it interactswith otheragents.In the domainof this example,
theserelatethementalstateto whatanagent says(andwhatit hearsto its mental state).
Theseareasfollows10:

UXWwvxryW]\Sc =
' 
 ' � ( 1�h�ilk (iz �uh �|{�3/3� 
 #�b7d ( h � z �/1�h�ilk (iz �uh �|{�3/3

Whenanagent( h ) needssomething( { ) from anotheragent(

z
), it asksfor it

^x_w_}WZU =
' 
 ' � ( 1�h�i�k ( h � z �~{�3u3� 
 � k g g

( h � z �-1�h�i�k ( h � z �~{�3u3
Whenanagent ( h ) hastheintentionof offering something( { ) to another agent (

z
), it

informstherecipientof this fact.

cuUdrd\]c = � 
 � k g g
(�z �/h � ax� ( �v3u3a 
 a � ( �v3

Whenanagent( h ) is told of a beliefof anotheragent(
z

), it acceptsthatbelief.

QSRTQVUXWZY[W]\]\ ^x_ a�qSq�^u��rdcVa7^`Y�\ = � 
 ha 
 a � (jh 3
9 In particularthepositive andnegative introspectionaxioms4 and5 andtheT axiom.

10 Notethatin therestof thepaperweadopt aProlog-likenotationin whichtheuppercaseletters�����d�������
aretakento bevariables.



In addition, Figure2 includessomebridgeruleswhichallow thetransferof information
betweenthecommunicationunit andthebelief andintentionunits.Thesecapture the
fact that anagentwith an intentionto carryout an actionwill communicatethat fact,
andwhenanagent receivesnotificationthatanotheragenthascarriedoutanaction,the
first agentbelievesthis.

This completesthesetof bridge rulesthatwe require for our example, andwe can
passon to consider the logical theorieswith which eachunit is instantiated.However,
before doing so, consider that we have now specified13 bridge rules11 to connect 4
units.It is this tight network of interconnectionthat led us to conside themodular ap-
proach describedin Section2.3.

3.3 Instantiating the contexts

Having specifiedthe contexts, logics andbridgeruleswe have to considerwhat for-
mulaewill appearin eachunit. Someof thesewill be specificto an individual agent
(thedesireswith which it is programmedfor example), but otherswill bemoregeneric
andbecommonbetweena numberof agents.It is thesemoregenericformulaethatwe
considerhere.In thecaseof thehomeimprovementagents,bothagentsneeda simple
theoryof actionthat integratesa model of theavailableresourceswith their planning
mechanism.This theoryneedsto modelthefollowing ideas(whereh is anindex identi-
fying theagent):

Ownership. Whenanagent(X) is theowner of anartifact(Z) andit givesZ to another
agent(Y), Y becomes its new owner:

a 
 a � (i� f ilk
(iz �~{�3Z�81�hjilk (�z ���[�|{�3�� �

f i�k
( � �~{�3u3

Unicity. Whenanagent(X) givesanartifact(Z) away, it no longer ownsit 12:

a 
 a � (j� f i�k
(�z �~{�3Z�81�h�ilk (�z ���[�|{�3���l � f ilk

(�z �|{�3/3
Benevolence. Whenan agent h hassomething(Z) that it does not intendto useand

is asked to give it to anotheragent (X), h adoptsthe intentionof giving Z to X.
Naturallymore complex cooperativestrategiescanbedefinedif desired:

a 
 a � (i� f ilk
( h �~{�3Z��l ' � (i� f ilk

( h �~{�3u3Z� #�b7d (iz �uh �/1�h�ilk ( h � z �|{�3/3��' � ( 1�h�ilk ( h � z �|{�3/3u3
11 That is we require13 in order to specifya strongrealistagent.A weakrealistagentwould

require15.
12 As it standsthis formula appearscontradictory. This is becausewe have, for simplicity, ig-

nored the treatmentof time. Of course,the completespecificationof this example(which
is not our main focus)would needtime to be handled.We could do this by including time
as an additionalargument to eachpredicate,in which casethe unicity formula would read���S���g�������¡ ¢�£��������¤�¥s¦ ��§ �¡ ¢�£�����¨������¤�¥�©�ªZ���¡�¡ ¡�£��������¤Z«¬®¥�¥

. Doing this would in-
volve making the baselogic for eachunit “time capable”, for instanceby using the system
introducedby Vila [33].



Thefollowing axiomsrepresent asimilarly simplistictheoryof planning (but again one
which sufficesfor our example). In crude terms,whenanagentbelieves that it hasthe
intentionof doingsomething andhasa rule for achieving that intentionthenthe pre-
conditions of therule become new intentions.Recallthatthe � betweenthe ¯ � and °
is notmaterialimplication.

Parsimony. If anagentbelievesthat it doesnot intendsomething, it doesnot believe
thatit will intendthemeansto achieve it.a 
 a � ( l ' � ( ° 3/3±� a � ( ¯ � �EZ"Z\Z²� ¯Z³ �EZ"Z"Z´� ¯ ] � ° 3���l a � ( ' � ( ¯±³ 3u3

Reduction. If thereis only one way of achieving an intention,an agentadopts the
intentionof achieving its preconditions.a 
 a � (+' � ( ° 3/3±� a � ( ¯ � � Z"Z\Zµ� ¯Z³ �EZ"Z\Z²� ¯ ] � ° 3��l a � ( , � � Z"Z"Z´� ,x¶·� ° 3�� a � ( ' � ( ¯Z³ 3/3
where, � �EZ"Z\Zµ�8,e¶ is nota permutationof ¯ � � Z\Z"Z²� ¯ ] .

Unique Choice. If therearetwo or morewaysof achieving an intention, only oneis
intended. Notethatwe use ¸ to denote exclusive or.a 
 a � (+' � ( ° 3/3±� a � ( ¯ ��� Z"Z\Zµ� ¯ ³ �EZ"Z\Z²� ¯ ] � ° 3� a � ( ,����EZ\Z"Z²� , ¶ � ° 3��a � ( ' � ( ¯ �¹� Z\Z"Zµ� ¯ ] 3u3 ¸ a � ( ' � ( ,����EZ\Z"Z²� , ¶ 3/3

where ,U�¹�_Z"Z"Z¢�~, ¶ is not a permutation of ¯ �¹�_Z"Z\Zµ� ¯ ] . As mentioned above,we
acknowledgethatboththetheoryof actionandthetheory of planning arerathernaive.
Theinterestedreaderis encouragedto substitutetheirown suchtheoriesif desired.

Sofar, we have identifiedthecontexts andthelogicsthey will contain,decidedon
thebridge rulesbetweenthem,andidentifiedthebits of thetheoriesexpressedin each
logic that arecommon to bothagentsin our example. It remainsto addto the model
thosebits of thetheoriesthatareunique to eachagent.

3.4 Instantiating the individual agents

Agent f hasthe intentionof hanging a picture,it hasvarious beliefsabout resources
andhow they canbeusedto hangmirrors andpictures:' 
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Now, agent{ wantstohangamirror (andhasthisasanintention)andhasvariousbeliefs
about its resourcesandtheactionof hanging mirrors:' 
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We have now demonstratedhow themulti-context approachcanbeusedto specify
BDI agents.As mentionedabove,[23] showshow thisspecificationcanbeusedto solve
theexample.

4 A functional agent

This sectiongives a specificationof anagentwhich is capableof solvinga simplified
versionof thehome-improvement example.Thesimplificationis to reducetheproblem
to one in which a singleagenthasall the resourcesnecessaryto hanga picture. As
a result,compared with the morecomplex versionsof the home improvementagents
describedabove, the agent is not quite solipsistic(sinceit hassomeawarenessof its
environment) but it is certainlyautistic(sinceit hasnomechanismsfor interacting with
otheragents).For anexample of thespecificationof furtheragentsin thecontext of this
example, see[29,27]13.

4.1 A high-level description

Thebasicstructureof theagentis thatof Figure3. Therearethreemodulesconnected
by multicastbridge rules.Thesearetheplanlibrary (PL), theresource manager (RM),
13 Notethat[27] is distinctfrom [28]. Theformeris theversionin theworkshoppreproceedings,

whereasthelatter is theversionavailablein thepublishedproceedingsandtheexamplesthey
containaresubstantiallydifferent.



and the goal manager (GM). Broadly speaking, the plan library storesplansfor the
tasksthat the agent knows how to complete, the resourcemanager keeps track of the
resourcesavailableto theagent,andthegoal managerrelatesthegoalsof theagentto
theselectionof appropriateplans.

There aretwo typesof messagewhich getpassedalongthemulticastbridgerules.
Thesearethefollowing:

– Ask: a requestto anothermodule.
– Answer: ananswerto aninter-modulerequest.

Thusall themodulescando is to make requestson oneanother andanswerthosere-
quests.Wealsoneedto definethepredicateswhichform thecontentof suchmessages.
Givena setof agentnames#�$ , andwith #�$Â = #�$ÄÃ R SelfX .

– 1 t flg
(iz 3 : z is a stringdescribing anaction.This denotesthe fact that theagent

hasthegoal

z
.

–
�
f ilk

(�z �|{�3 : z :~#�$ÅÂ is thenameof anagent (herealwaysinstantiatedto

* k gjÆ ,
theagent’s namefor itself, but a variablesincetheagent is awarethatotheragents
mayown things), and { is thenameof anobject.This denotesAgent

z
haspos-

sessionof { .

Ascanbeseenfromtheabove,thecontent of themessagesis relativelysimple,referring
to goalsthattheagenthas,andresourcesit possesses.Thusatypicalmessagewouldbe
a requestfrom thegoal manager asto whethertheagentpossessesa hammer:

f b7d
( ?e@"B D 4 1 % � ?A@CB D 4Hflg+g � ¼ t flg

( » f ilk
( ?e@"B D �~» f�6 6 kYr3u3C� R XH3

Notethat in this message,asin all messagesin theremainderof this paper, we ignore
theweight in theinterestsof clarity. Sucha requestmight begeneratedwhenthegoal
manager is trying to ascertainif the agentcan fulfill a possibleplan which involves
usingahammer.

4.2 Specificationsof the modules

Having identifiedthestructureof theagentin termsof modules, thenext stagein the
specificationis to detail theinternalstructureof themodulesin termsof theunitsthey
contain, andthe bridgerulesconnectingthoseunits.Thestructureof the plan library
module is given in Figure4. In thisdiagram, unitsarerepresentedascircles,andbridge
rulesasrectangles.Arrows into bridge rulesindicateunitswhich hold theantecedents
of thebridgerules,andarrows out indicatetheunitswhich hold theconsequents.The
two unitsin theplanlibrary module are:

– Thecommunicationunit (CU): theunit which handlescommunicationwith other
units.

– Theplanrepository (S): aunit whichholds asetof plans.

Thebridge ruleconnectingtheseunitsis:
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Fig.5. Theresourcemanagermodule

wherethe predicate½ g f o
( {x� ¯ 3 denotesthe fact that ¯ , taken to be a conjunction of

terms,is a planto achieve thegoal { 14.
Whenthecommunicationunit seesamessageontheinter-modulebusaskingabout

thefeasibility of theagentachieving a goal, then, if thereis a planto achieve thatgoal
in theplanrepository, thatplanis sentto themodule whichaskedtheoriginal question.
Notethatthebridgerulehasaconsumingcondition—this is to ensurethatthequestion
is only answeredonce.

Thestructureof theresourcemanagermodule is givenin Figure5. Thetwo unitsin
this module are:

– Thecommunicationunit (CU).
14 Thoughherewe take a ratherrelaxed view of what constitutesa plan—our“plans” arelittle

morethana setof pre-conditionsfor achieving thegoal.
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– Theresourcerespository(R): a unit which holdsthe setof resourcesavailableto
theagent.

Thebridge ruleconnectingthetwo unitsis thefollowing:

Ê�Ë�Ë´ÌyÍwÊ]Î�ÏÑÐ
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wherethe rHk bYt 	 r s k
( {x� flg+g t sCf�� k y 3 denotesthe fact that the resource { is in use,andr7k bYt 	 r s k

( { � Æ rHkYkH3 denotesthefactthattheresource { is not in use.
Whenthecommunicationunit seesamessageontheinter-modulebusaskingif the

agenthasa resource, then,if thatresourceis in theresourcerepository andis currently
free,the formula recording the freeresource is deletedby theconsuming condition, a
new formula recordingthefactthattheresourceis allocatedis writtento therepository,
and a response is postedon the inter-module bus. Note that designating a resource
as“allocated” is not the sameasconsuming a resource (which would be denoted by
the deletionof the resource), andthat onceagainthe bridgerule deletesthe original
messagefrom thecommunicationunit.



Thegoalmanageris rathermore complex thaneitherof thepreviousmodules we
have discussed,as is immediatelyclear from Figure 6 which shows the modules it
contains,andthebridge ruleswhichconnectthem.Thesemodulesare:

– Thecommunicationunit (CU).
– Theplanlist unit (P): thiscontainsalist of planstheexecutionof whichis currently

beingmonitored.
– The goal manager unit (G): this is the heartof the module, andensuresthat the

necessarysub-goalingis carriedout.
– Theresourcelist module(R): thiscontainsa list of theresourcesbeing usedaspart

of planswhicharecurrently beingexecuted.

The bridge rulesrelatingtheseunits areasfollows. The first two bridge ruleshandle
incoming informationfrom thecommunicationunit:

UXW]\w^`ryU±��W = �ÉÈ � f opb\q kYr
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Thefirst of these,RESOURCE, looksfor messagesfrom theresourcemanagerreport-
ing that theagenthaspossessionof someresource.Whensucha messagearrives,the
goalmanager addsa formula representingtheresourceto its resourcelist module. The
secondbridge rule PLAN doesmuchthesamefor messagesfrom theplan library re-
porting theexistenceof a plan—suchplansarewritten to theplanlibrary. Thereis also
a bridgeruleASK whichgeneratesmessagesfor othermodules:
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If the agenthasthe goal to achieve

z
, and

z
hasnot beenachieved, nor is

z
an

availableresource (andtherefore in theR unit), nor is therea plan to achieve
z

, andz
hasnot alreadybeenrequestedfrom othermodules,then

z
is requestedfrom other

modulesandthis requestis recorded.Theremaining bridgerulesare:
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TheMONITOR bridgeruletakesagoal
z

and, if thereis noresourceto achieve
z

but
thereis a plan to obtaintheresource, addsthe formula 6 t7o h � t r

(�z � ¯ 3 to theG unit,
whichhastheeffectof beginnningthesearchfor theresourcesto carryouttheplan.The
DONE bridgerule identifiesthata goal

z
hasbeenachieved whena suitableresource

hasbeenallocated.

4.3 Specificationsof the units

Having identifiedthe individual unitswithin eachmodule, andthebridge ruleswhich
connect the units, the next stageof the specificationis to identify the logics present
within the various units, and the theories which arewritten in thoselogics. For this
agentmostof the units aresimplecontainers for atomicformulae. In contrast,the G
unit containsatheorywhichcontrols theexecution of plans.Therelevantformulaeare:
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The 6 t7o h � t r predicateforcesall theconjunctswhich make up its first argumentto be
goals(which will bemonitoredin turn), andkicks off the“proof” of theplanwhich is
its secondargument15. Thisplanwill beaconjunctionof actions,andaseachis “done”
(a stateof affairs achieved through the allocationof resources by otherbridge rules),
theproofof thenext conjunct is sought. Whenall havebeen“proved”, therelevant goal
is markedascompleted.

The specificationas presentedso far is generic—it is akin to a classdescription
for a classof autistichomeimprovement agents. To get a specificagentwe have to
“program” it by giving it informationabout its initial state.For our particular example
thereis little suchinformation,andwe only needto addformulaeto threeunits.The
planrepositoryholdsaplanfor hanging picturesusinghammers andnails:* 
 ½ g f o
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The resource repository holdsthe information that the agenthasa picture, nail anda
hammer:
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15 Givenour relaxedview of planning,this “proof” consistsof showing thepre-conditionsof the
plancanbemet.
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Finally, the goal manager contains the fact that the agent hasthe goal of hanging a
picture:
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With this information,thespecificationis complete.A full description of theexecution
of this specificationis containedin [28].

5 RelatedWork

Therearetwo mainstrandsof work to whichours is related—work onexecutableagent
architecturesandwork on multi-context systems.As mentioned above, mostprevious
work which hasproducedformal modelsof agentarchitectures,for example dMARS
[16], Agent0[30] andGRATE* [17], hasfailedto carryforwardtheclarity of thespeci-
ficationinto theimplementation—there is a leapof faith requiredbetweenthetwo. Our
work, on the otherhand, maintainsa clear link betweenspecificationandimplemen-
tation through the direct execution of the specificationasexemplified in our running
example. This relation to direct execution also distinguishesour work from that on
modelling agentsin Z [8], sinceit is not yet possibleto directly execute a Z specifica-
tion. It is possibleto animatespecifications,whichmakesit possibleto seewhatwould
happen if the specificationwereexecuted,but animating agent specificationsis some
way from providing operational agents.Our work alsodiffers from that which aims
to describe theoperationalsemanticsof agent architecturesusingthe ô -calculus[11],
sinceourmodelshavea declarative ratherthananoperational semantics.

Moredirectlyrelatedto ourwork is thatonDESIREandConcurrentMetateM.DE-
SIRE [3,32] is a modelling framework originally conceivedasa meansof specifying
complex knowledge-basedsystems.DESIREviews boththeindividual agentsandthe
overall systemasa compositionalarchitecture.All functionality is designedasa series
of interacting, task-based, hierarchically structuredcomponents.Thoughtherearesev-
eraldifferences,from thepoint of view of theproposaladvocatedin this paper, we can
seeDESIRE’s tasksasmodulesandinformation links asbridge rules.In our approach
thereis no anexplicit taskcontrol knowledgeof thekind foundin DESIRE.Thereare
no entitiesthat control which units, bridge rulesor modules shouldbe activatednor
whenandhow they areactivated. Also, in DESIREthecommunicationbetweentasks
is carriedout by the information links that arewired-in by the designengineer. Our
inter-modulecommunicationis organizedasabusandtheindependencebetweenmod-
ulesmeansnew onescanbe addedwithout modifying the existing structures. Finally
the communicationmodel in DESIRE is basedon a one-to-oneconnection between
tasks, in a similar way to that in which we connectunits insidea module. In contrast,
ourcommunicationbetweenmodulesis basedona multicastmodel.

ConcurrentMetateMdefinesconcurrent semanticsat the level of singlerules[12,
35].Thusanagentis basicallyasetof temporal ruleswhichfire whentheirantecedents
are satisfied.Our approach doesnot assumeconcurrency within the componentsof



units, ratherthe units themselves arethe concurrentcomponentsof our architectures.
Thismeans thatourmodel hasaninherent concurrentsemanticsat thelevel of theunits
andhasno centralcontrol mechanism. Though our exemplar useswhat is essentially
first orderlogic (albeit a first order logic labelledwith arguments),we could useany
logic wechoose—wearenot restrictedto a temporal logic asin MetateM.

There arealso differencesbetweenour work andprevious work on usingmulti-
context systemsto modelagents’ beliefs.In thelatter[14], differentunits,all contain-
ing a belief predicate,areusedto representthe beliefsof the agentandthebeliefsof
all the acquaintancesof the agent.The nestedbeliefsof agentsmay leadto tree-like
structuresof suchunits(calledbeliefcontexts). Suchstructureshave thenbeenusedto
solve problemslike the threewise men[6]. In our case,however, any nestedbeliefs
would typically be includedin a singleunit or module. Moreover we provide a more
comprehensiveformalisationof anautonomousagentin thatweadditionally show how
capabilitiesotherthanthatof reasoning about beliefscanbeincorporatedinto thearchi-
tecture.In thislatterrespectthispaper extendstheworkof [23] with theideaof modules
which links theapproachmorestrongly with thesoftwareengineeringtradition.

6 Conclusions

This paper hasproposeda general approachto definingagent architectures.It provides
a meansof structuring logical specificationsof agents in a way which makesthemdi-
rectly executable.This approachhasa numberof advantages.Firstly it bridges thegap
betweenthespecificationof agentsandtheprogramswhich implement thosespecifica-
tions.Secondly, themodularity of the approachmakesit easierto build agentswhich
arecapable of carrying out complex taskssuchasdistributedplanning. From a soft-
wareengineeringpoint of view, the approach leadsto architectureswhich areeasily
expandable,andhavere-useablecomponents.

From this latter point of view, our approachsuggestsa methodology for building
agentswhichhassimilaritieswith object-orienteddesign[2]. Thenotionof inheritance
canbeappliedto groupsof unitsandbridge rules,modulesandevencomplete agents.
Theseelementscouldhave a general designwhich is specializedto differentandmore
concreteinstancesby adding unitsandmodules,or by refining the theories insidethe
unitsof a generic agenttemplate.However, before we candevelop this methodology,
thereare someissuesto resolve. Firstly there is the matterof the semanticsof the
comsuming conditions andtime-outs in bridgerules.Secondly, thereis thequestionof
how to handle nestedhierachiesof modules—somethingwhich is essentialif weareto
develop reallycomplex agents.
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