
On Partially Observable MDPs and BDI Models

Martijn Schut1, Michael Wooldridge2, and Simon Parsons2,3

1 Department of Artificial Intelligence, Vrije Universiteit Amsterdam,
1081 HV Amsterdam, The Netherlands,

schut@cs.vu.nl
2 Department of Computer Science, University of Liverpool,

Liverpool L69 7ZF, United Kingdom,
m.j.wooldridge@csc.liv.ac.uk

3 Center for Coordination Science, Sloan School of Management, MIT,
Cambridge, MA 02142, USA,

sparsons@csc.liv.ac.uk

Abstract. Decision theoretic planning in ai bymeans of solvingPartiallyObserv-
ableMarkov decision processes (pomdps) has been shown to be both powerful and
versatile. However, such approaches are computationally hard and, from a design
stance, are not necessarily intuitive for conceptualising many problems. We pro-
pose a novel method for solving pomdps, which provides a designer with a more
intuitive means of specifying pomdp planning problems. In particular, we investi-
gate the relationship between pomdp planning theory and belief-desire-intention
(bdi) agent theory. The idea is to view a bdi agent as a specification of an pomdp
problem. This view is to be supported by a correspondence between an pomdp
problem and a bdi agent. In this paper, we outline such a correspondence between
pomdp and bdi by explaining how to specify one in terms of the other. Addition-
ally, we illustrate the significance of a correspondence by showing empirically
that it yields satisfying results in complex domains.

1 Introduction

Designing autonomous agents that are to operate in uncertain environments has been
the focus of substantial research in various sub-areas of ai. These agents have to deal
with executing actions that may not have the intended results, with environments that
change while the agent is operating, and with making observations that might not be
completely accurate. Much research effort has gone into specifying such agents by
means of Markovian planning. In this respect, agents are implemented as solutions
to Markov Decision Problems: they are, as such solutions, mappings from states to
optimal actions. Although theoretically very appealing, theMarkov planning framework
poses some important problemswhen put into practice. For example, computing optimal
solutions of mdps is computationally very hard. Fast close-optimal solution algorithms
andvariousabstraction techniqueshavebeenproposed to solve this problem.Wepropose
an alternative technique. If we are able to map mdp components to bdi components, we
can use the bdi architecture to design a bounded optimal mdp agent. Then we utilise the
theoretical rigorousness of the mdp framework, combined with the practical utility of
the bdi framework.

M. d’ Inverno et al. (Eds.): UKMAS 1996–2000, LNAI 2403, pp. 243–259, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

244 Martijn Schut, Michael Wooldridge, and Simon Parsons

In this paper, we investigate the correspondence between the theory of Markov deci-
sion processes for planning in partially observable stochastic domains (pomdp) and the
belief-desire-intention (bdi) architecture for programming situated agents. The motiva-
tions for obtaining this correspondence are diverse. Firstly, we show that it is possible to
utilise an important characteristic of intentions – the constraint of reasoning – in practice
by using it to solve pomdps. Secondly, because solving pomdps is inherently intractable,
our approach contributes to dealing with this intractability by utilising tractable corre-
sponding bdi models. Thirdly, whereas pomdp models take away part of the burden
of explicitly programming agents, the identification of relevant problem structure often
proves to be very hard and unintuitive from a design point of view. bdi models seem
to be easier to specify, and if we can establish this corespondance and so build pomdp
models from bdi models, we may be able to simplify the construction of pomdpmodels.

Thispaperdoesnotaddressall these issues.Herewe just point out thecorrespondence
between the bdi and pomdp models and demonstrate empirically that the performance
of a bdi model approximates the performance of a discrete mdp model. Although we
present a general formulation of the correspondence, the experiments are still for the
specific case ofmdpproblemsandweare currentlyworking on pomdpexperiments. This
paper summarises the prerequisites for the construction of initial formal and empirical
correspondences between the two models. Thus the payoff of the work presented here
is in the future, but for now we have provided the first detailed comparison between the
models.

The paper is structured as follows. In the following Section, we provide some back-
ground information on the bdi agent architecture and we show how to specify bdi agent
programs. Section 3 presents the Markov decision framework upon which our approach
builds. Section 4 explains the correspondence between the bdi architecture and partially
observable mdps. In Section 5 we empirically evaluate our approach with respect to ef-
fectiveness and computational leverage. Finally, in Section 7 we present our conclusions
and describe related and future work.

2 Belief-Desire-Intention Agents

The idea of applying the concepts of beliefs, desires and intentions to agents originates
in the work of [4] and [9]. In this paper, we use the conceptual model of bdi agency
as developed by Wooldridge and Parsons [14]. This model is shown in Figure 1. The
model distinguishes three main data structures in an agent: abeliefset, adesireset and
an intentionset. An agent’s beliefs represent information that the agent has about its
environment, and may be partial or incorrect. Desires can be seen as states of affairs
that an agent ideally would want to accomplish. Intentions are those desires that an
agent has committed to bringing about. The behaviour of the agent is generated by four
main components: anext-statefunction, which updates the agent’s beliefs on the basis
of an observation made of the environment; adeliberationfunction, which constructs a
set of appropriate intentions on the basis of the agent’s desires, and its current beliefs
and intentions; anaction function, which selects and executes an action that ultimately
satisfies one or more of the agent’s intentions; and ameta-level controlfunction, the
sole purpose of which is to decide whether to pass control to either the deliberation or

On Partially Observable MDPs and BDI Models 245

perceptual
input

action
output

control flow
data flow

meta−level
control

next state

action

intentions

deliberation

beliefs

desires

Fig. 1.An abstract bdi agent architecture.

action subsystems. On any given control cycle, an agent begins by updating its beliefs
through its next-state function, and then, on the basis of its current beliefs, the meta-
level control function passes control to either the deliberation function (in which case
the agent expends computational resources by deliberating over its intentions), or to the
action subsystem (in which case the agent acts). As a general rule of thumb, an agent’s
meta-level control systemshould pass control to the deliberation functionwhen the agent
will change intentions as a result; otherwise, the time spent deliberating is wasted.

Wepresent a simple formalmodel of bdi agents. First, we have to consider that agents
are situated inenvironments; an environment denotes everything that is external to the
agent. LetP be a set ofpropositionsdenoting environment variables. In accordancewith
similar proposition based vector descriptions of states, we let environment states be built
up of such propositions. ThenE is a set ofenvironment stateswith members{e, e′, . . .},
ande = {p1, . . . , pn}, wherepi ∈ P . Let A denote the set of actions that an agent
can execute. A state transition functionτ : E × A → Π(E) manages the probabilistic
transition of environment states, based on doing some actiona ∈ A in statee ∈ E.

The internal state of an agent consists of beliefs, desires and intentions. LetBel :
E → [0, 1], where

∑
e∈E Bel(e) = 1, denote the agent’sbeliefs: we represent what the

agent believes to be true of its environment by defining a probability distribution over
the possible environment states. The agent’s set ofdesires, Des, is a subset of the set
of environment variables:Des ⊆ P . Finally, we denote the set of intentions byInt.
An intention denotes a number of different means to achieve a certain desire. This is
represented here by letting an intention be a stack of partially instantiated plans, i.e.,
plans in which some variables have been instantiated (as in [9]). We assume that a plan
consists of some trigger event, a context and a series of actions. The context is a series
of propositions that are evaluated true (for achievement plans) or false (for maintenance
plans) after executing the specified series of actions. Let theheadof a plan be a trigger
event and context. Then a plan that is intended typically contains a head that includes

246 Martijn Schut, Michael Wooldridge, and Simon Parsons

some true or false belief that the agent wants to bring about. This belief literal is an
environment proposition.

Note that an intention is a sequence of actions in a partially instantiated plan. This is
also the key to theway that bdi approximates pomdp: a bdi agent chooses a pre-compiled
plan (which is why the online computation is quick) which is nearest to being optimal
(which is why we only ever approximate the optimal solution).

An internal states is thens = 〈Bel,Des, Int〉, whereBel : E → [0, 1] is a
probability distribution over the agent’s beliefs,Des ⊆ P a set of desires andInt a
set of intentions. LetS be the set of all internal states. For a states ∈ S, we refer to
the beliefs in that state asBels, the desires asDess and to the intentions asInts. We
use subscriptS to refer to beliefs, desires and intentions for all states; for example,
BelS refers to the beliefs for all statess ∈ S. We refer to ani ∈ Ints as abackground
intentionof states ∈ S. We assume that it is possible to denote values and costs of
the outcomes of intentions1: an intention valueV : Int → IR represents the value of
the outcome of an intention; andintention costC : Int → IR represents the cost of
achieving the outcome of an intention. Thenet valueVnet : Int → IR represents the net
value of the outcome of an intention;Vnet(i), wherei ∈ Int, is typicallyV (i) − C(i).
We denote thequalityof a state by a functionQ : S → IR, which we assume to be based
on the net values of the outcomes of the intentions in a state. Moreover, we assume
that if ∀s, s′ ∈ S,∀p ∈ Ints,∀p′ ∈ Ints′ , Vnet(p) ≥ Vnet(p′), thenQ(s) ≥ Q(s′). In
the empirical investigation discussed in this paper, we illustrate that a conversion from
intention values to state qualities is feasible, though we do not explore the issue here2.
Finally,A denotes the set of actions the agent is able to perform; with everyα ∈ A we
identify a set of propositionsPα ⊆ P , which includes the propositions that change value
whenα is executed. (In the remainder of this paper, we label the various bdi components
with label bdi.)

3 Partially Observable Markov Decision Processes

A partially observableMarkov Decision Process (pomdp) can be understood as a system
that at any point in time can be in any one of a number of distinct states, in which
the system’s state changes over time resulting from the performance of actions and in
which the current state of the system cannot be determined with complete certainty [2].
pomdps satisfy the Markov assumption in that knowledge of the current state renders
information about the past irrelevant to making predictions about the future [2]. In a
pomdp, we represent the fact that the knowledge of the agent is not complete by defining
a probability distribution over all possible states. An agent then updates this distribution
when it observes its environment.

1 We clearly distinguish intentions from their outcome states and we do not give values to inten-
tions themselves, but rather to their outcomes. For example, when an agentintendsto deliver
coffee, anoutcomeof that intention is the state in which coffee has been delivered.

2 Notice that this problem is the inverse of the utilitarianlifting problem: the problem of how
to lift utilities over states to desires over sets of states. Discussing the lifting problem, and its
inverse, is beyond the scope of this paper, and therefore we direct the interested reader to the
work of Lang et al. [7].

On Partially Observable MDPs and BDI Models 247

state
estimator

beliefs

policy

perceptual
input

action
output

control flow
data flow

Fig. 2.Components of a pomdp agent.

Let a set of states be denoted byS and a set of actions be denoted byA. An agent
might not have complete knowledge of its environment, and must thusobserveits sur-
roundings in order to acquire knowledge: letΩ be a finite set of observations that the
agent can make of the environment. Then anobservation functionO : S ×A → Π(Ω)
defines a probability distribution over the set of observations; this function represents
the observations an agent can make resulting from performing an actiona ∈ A in a
states ∈ S. The agent receives rewards for performing actions in certain states: this is
represented by areward functionR : S × A → IR. Finally, astate transitionfunction
τ : S × A → Π(S) defines a probability distribution over states resulting from per-
forming an action in a state – this enables us to model non-deterministic actions. (In the
remainder of this paper, we label the pomdp components with subscript mkv3.)

Figure 2 shows the components of a pomdp. Unlike a discrete mdp, a pomdp model
includes astate estimatorSE, which controls the belief state transitions, based on the
last action, the current observation and the previous belief state. This component is not
necessary in a discrete mdp, since there the agent’s policy is based on external states
that always accurately reflect the current state of the environment. The state estimator
computes a new belief state from basic probability theory, as explained in [5]. The
output of the state estimator is used in the agent’s state transition function by assigning
a probability of 1 to belief stateb′ resulting from executing actiona in belief stateb and
making observationo if SE(b, a, o) = b′ and a probability of 0 otherwise.

Having defined the sets contained in a pomdp, we solve a pomdp by computing an
optimal policy: an assignment of an action to each possible state such that the expected
sum of rewards gained along the possible trajectories in the pomdp is a maximum.
An mdp has either an infinite horizon, which renders the policy to be a mapping from
states to actions, or a finite horizon, which makes the policy a mapping from states and
time to actions. In finite horizon pomdps it thus matterswhenan action is executed.
In this paper, our concern is mainly with infinite horizon mdps. Optimal policies can
be computed by applying dynamic programming methods to the pomdp, breaking the

3 Note that both thediscretemdpandcontinuouspomdpareMarkovprocesses, hence theacronym
mkv.

248 Martijn Schut, Michael Wooldridge, and Simon Parsons

problemup into one-step decision problems using Bellman’s equations [1]. The standard
dynamic programming algorithms are based on backwards induction; value iteration and
policy iteration are themost well known algorithms to solve pomdps. Amajor drawback
of applying pomdps is that these kinds of algorithms tend to be highly intractable.

Traditional approaches that attempt to tackle thecomputational complexityof solving
mdps are either aimed at reducing the state space by exploiting the space structure, e.g.,
bymeans of abstraction and aggregation; or the focus is on designing algorithms that are
faster thanvalueandpolicy iteration.Researchoncomputingoptimalpolicies forpomdps
have focused on problems with finite horizons. For some finite horizon problems, for
example, the Tiger problem in [5], the optimal policy turns out to be an infinite horizon
policy, i.e., a policy that does not depend on time. Computing infinite horizon policies
for pomdps turns out to be extremely hard4.

4 Correspondence betweenbdi and pomdp

The belief-desire-intention model can be used to specify partially observable Markov
decisionprocesses. In thisSectionweshowhowbdimodels correspond topomdpmodels
and what this means in terms of offline and online computation time and effectiveness.

The objective of our approach is to demonstrate that it is possible to identify a
correspondence between the structure of pomdps and structure of an existing agent
model, in this case the bdi model. The main motivation behind our approach is the
fact that, viewed at its most abstract, both the pomdp and bdi models ultimately model
decision making by mapping perceptual inputs to actions; all other components in the
pomdp model and the bdi model are therein the serviceof this abstract decision making
function. This can be easily observed by comparing Figures 1 and 2.

In this Section, we first explain what the problem of finding correspondence en-
compasses, in particular in relation to the bdi agent model. We do this by letting both
the pomdp model and bdi model be instantiations of an abstract generic agent function.
Secondly, we explain the correspondence in computing agent runs in both models and
actually running the models.

Agent Functions

Both the pomdp and bdi model can be represented on some level of abstraction, so that
they both correspond to some abstract agent functionag : S → A that maps agent
states to agent actions. This agent function can then be implemented by either a pomdp
or bdi model. As shown above, we define a pomdp as a tuple〈Smkv, Amkv, Ω,R, τmkv〉.
A bdi model is defined as〈Sbdi, Abdi, Bel,Des, Int〉 with the bdi control functions as
described earlier. Let the implementation ofag by a pomdp be denoted byagmkv and the
bdi implementation ofag by agbdi. We show here how the components ofagmkv andagbdi
map into each other.

4 Algorithms for solving finite horizon pomdps utilise the fact that in this case the value function
is piecewise-linear and convex. However, in an infinite pomdp, the value function is convex,
but not necessarily piecewise-linear.

On Partially Observable MDPs and BDI Models 249

Firstly, we identify the following obvious mappings between the bdi and pomdp
models:

– Actions– The sets of external actions that an agent has at its disposal in the bdi
and pomdp model are identical:Amkv ≡ Abdi. In the bdi model these actions can
be collected and represented more expressively through the concept of plans (or
intentions).

– States– Because it is assumed that the environment is only partially observable in
both the bdi and pomdpmodel, agent states are belief states rather than environment
states. The sets of belief states are identical:Smkv ≡ BelS , whereBelS refers to the
bdi set of beliefs. Thus the set of pomdp states is identical to the set of bdi states
when we exclude the desires and intentions in every bdi state. But because desires
and intentions are internal data structures, this issue is not a major obstacle to form
state correspondence and thus we letSmkv ≡ Sbdi.

– Transition–The external transition functions, as defined over the environment states
and external actions, are identical, because such functions are external to the agent:
τmkv ≡ τbdi. The internal transition functions are identical as well: in the bdi model
this is the next state function and in the pomdp model the state estimator controls
internal transitions:nextState ≡ SE. As such, the bdi next state function can be
implemented as a pomdp state estimator.

This leaves us with some mappings between components that are somewhat more con-
voluted: rewards on the pomdp side and desires and intentions on the bdi side. We relate
desires to rewards and intentions to a combination of rewards and actions. Asmentioned
above,rewardsare received for executing some action in a particular state and are thus
defined over action and state combinations.Desiresare states of affairs that the agent
wants to bring about, and thus define some kind of ordering over the set of states. Cur-
rently, we are not concerned with how this ordering is exactly realised; in this paper, we
define desires simply as a subset of the environment propositions. But, for example in
[7], this ordering is based on the individual utilities of the environment propositions. Let
D : S → IR be a function that represents the ordering of desires over the state space.
On the pomdp side, we can distill the rewards in such a way that they are defined only
over states5. Again, we do not prescribe how this should be done, but merely utilise the
fact that it can be done. An example conversion, that works for our experimental testbed
as described below, would be to define theworthof a state, denoted byW : S → IR, as
the maximum reward of all actions that can be executed in a states ∈ S:

W (s) = max
a∈As

R(s, a),

whereAs ∈ A denotes the set of all actions that can be executed ins. Then this concept
of state worth corresponds to the ordering on desires:W ≡ D. From this we conclude
that rewards correspond with desires.

Finally, we identify the concept ofintentionswith a combination of rewards and
actions. An intention is a stack of partially instantiated plans: it specifies a sequence

5 We claim that this conversion can be done in general without any loss of information, but cannot
currently support this claim with conclusive proof. Research is ongoing on this issue.

250 Martijn Schut, Michael Wooldridge, and Simon Parsons

of actions which, when executed, fulfills some desire of the agent. There is thus an
action as well as a desire aspect to intentions. First, we explore the desires part of
this plan definition of intentions. The set of desires is a subset of the set of environment
propositions. Asmentioned above, the head of an intended plan contains an environment
proposition that the agent wants to be either true or false: this is thus a desire. In terms
of a pomdp, this first part of intentions relates to rewards, because desires correspond to
pomdp rewards, as described previously.

The second part of intentions concerns the sequence of actions. In terms of a pomdp,
this clustering of actions into intentions is some form ofaction abstraction. It is this
abstraction which gives bdi approach its computational edge, but alsomeans it may only
approximate optimal actions. Because pomdps generate complicated plans progressively
by mere execution of single actions rather than to build and – partially or completely –
execute complex plans, we cannot simply utilise this similarity as a proper correspon-
dence.However, theseplansarenot ordinaryplans, but organised in intentions. Intentions
have particular characteristics, under which most importantly representing a number of
different means to fulfill the same desire. Based on the differences between traditional
plans and the characteristics of intentions, we claim a valid correspondence between this
part of intentions and actions. We further have to distinguish between deterministic and
stochastic actions. An optimal agent decides the stability of its intentions based on the
degree of determinism of its actions, the degree of observability of the environment, the
rate of change of the environment [12] and the agent’s own changing preferences. As for
deterministic actions, this leaves intention stability to depend on the other three factors.
However, we are concerned with stochastic domains and this renders the agent’s actions
stochastic. In that case, we have to take this non-determinism into account by expressing
it on the level of intentions rather than the level of actions.

To summarise, we have discussed the following correspondences between the bdi
and pomdp models. Firstly, the action spaces and transition functions (both internal and
external) of themodels are identical. Secondly, the pomdp state space and the belief parts
of internal bdi states are the same. Thirdly, the bdi desires correspond to the rewards.
And finally, bdi intentions correspond to a combination of pomdp rewards and actions.

Agent Runs

Assuming that the above correspondences are valid, we can identify the correspondence
between runningagmkv andagbdi. In both models, a run is a sequence of states connected
by the actions executed by the agent. The method of choosing such a run in the pomdp
model is based on the policy, as computed when solving the pomdp. In the bdi model,
such a run defines the optimality of the agent; an optimal agent generates an optimal run.
Computing runs for particular implementations of both models involves anofflineand
onlinecomponent. Offline computation takes place outside of the environment in which
the agent is to be situated and thus before executing actions. This computation results in
an optimal policy for the pomdp case, or in an agent program in the bdi case. The online
computation involves executing the policy or program. In caseof a policy, this boils down
to looking up the most believed state given the observations in the policy and executing
the optimal action for that state. In case of a program, the online computation concerns
the whole process that happens between receiving perceptual input and executing action

On Partially Observable MDPs and BDI Models 251

output. Thusagmkv andagbdi correspond to each other, though we have to be aware of
potential differences in online and offline computation times.

An important issue to keep in mind is the Markov property: it is not necessary to
maintain an action history. Obviously,agmkv obeys this property. However, in the bdi
model it often happens that selection of an optimal action is based on the history leading
up to the current state. Similar to approaches that turn non-Markovian processes into
Markovian ones, we assume for now that the bdi history is contained in the current state.
Since we have shown above that the belief states correspond and a belief state inagmkv is
updated using the previous belief state, we can safely state that we can makeagbdi obey
the Markov property.

Finally, we mention the role of observability in the correspondence specification.
In agmkv, observations are not only used to containphysicaltypes of observations, but
informationalas well. In this way, it is possible to capture notions of resource-bounded
information gathering or obtaining the value of information. We can use this correspon-
dence inagbdi. An important issuewhendesigning situatedagents concerns thedynamism
of the agent’s environment, i.e., the world changes while the agent executes its policy.
We can use the concept of observability to represent dynamism. In this way, we move to
another type of pomdp in which there is no uncertainty about the current environment
state, but there is uncertainty over state transitions and non-determinism of actions. We
return to this issue in Section 7.

5 Empirical Validation

In this Section we apply our model in the Tileworld testbed [8]. The results of our exper-
iments support the suggested benefit of our model in two ways. Firstly, we demonstrate
that the increase in effectiveness of a mdp agent over a bdi agent is small. Secondly, we
show that when the problem size grows, one cannot compute an mdp solution any more.
This is mainly due to the intractability of solving complex mdps. This issue is discussed
and illustrated below by indications of some offline computation times for solving an
mdp representing the Tileworld.

TheTileworld [8] is a grid environment onwhich there are agents andholes. An agent
can move up, down, left, right and diagonally. Holes have to be visited by the agent in
order for it to gain rewards. The Tileworld starts in some randomly generated world
state and changes over time with the appearance and disappearance of holes according
to some fixed probability distributions. An agent moves about the grid one step at a time.

The Tileworld testbed is easily represented as an mdp. LetL denote the set of
locations, i.e.,L = {i : 1 ≤ i ≤ n} represents the mutually disjoint locations, where
n denotes the size of the grid. A propositionpi then denotes the presence (pi = 1) or
absence (pi = 0) of a hole at locationi. An environment state is a pair〈{pi, . . . , pn},m〉,
where{pi, . . . , pn} are the propositions representing the holes in the grid, andm ∈ L
is the current location of the agent.

We computed the optimal infinite horizon mdp policy, using value iteration, for an
agent situated in a Tileworld. An environment state in this mdp is a combination of the
current location of the agent and the locations of present holes; the possible actions are
up, right, down, left and stay; an action succeeds with probability 0.9 – failure means

252 Martijn Schut, Michael Wooldridge, and Simon Parsons

Table 1.Offline computation times of running a value iteration algorithm for anmdp specification
of the Tileworld with discount rate = 0.9 (measured performance of Java2 on PentiumIII-500Mhz,
128MB RAM).

Tileworld size |Smkv| # Iterations Iteration

(length× width) before optimal duration (msec)

3× 3 81 5 84

4× 4 256 7 840

5× 5 625 9 5,200

6× 6 1296 11 23,750

7× 7 2401 13 92,700

8× 8 4096 15 250,000

that another action is chosen with equiprobability. Because the Tileworld is dynamic, we
have to take into account that every cell is either occupied by a hole or not. Combining
this fact with the current location of the agent, makes the state space of size2n × n. In
order to render the necessary computations in some degree feasible, weabstractedthe
Tileworld state space. In the Tileworld domain, we abstract the state space by letting an
environment statee be a pair〈p1, p2〉, wherep1 refers to the location of the hole which is
currently closest to the agent, andp2 refers to the current location of the agent. We deem
this knowledge sufficient for the agent to choose an appropriate action. This abstraction
means that the size of the state space is now reduced ton4.

We plotted some statistics of these mdp solution computations for a number of
Tileworlds of different size in Table 1 by means of value iteration. The results merely
illustrate that even for a simplistic application such as the Tileworld, the offline computa-
tion times are exorbitant6. Although this approach renders the online computation times
negligible, it is clearly not a realistic method for the design of agents in more complex
settings. Moreover, as we keep increasing the size of the Tileworld, at some point it
becomes impossible to compute mdp solutions (simply because of the intractability of
solving mdps). From this point onwards, it pays off for certain to use a bdi approach –
even if it only gives marginal results. (Currently, research is ongoing on exactly where
this point is for the Tileworld testbed and how well the bdi approach performs from that
point onwards.)

Whereas obtaining an optimal mdp policy in the Tileworld is computationally hard,
we observe that this optimal policy is a simple fixed control strategy: the agent executes
the action with highest success probability that brings it closer to the nearest hole. This
strategy is easily implemented and we have done so. The effectiveness of this strategy
is shown in Figure 3.

6 Wemention explicitly that these results haveonlybeen inserted for illustrative purposes.We are
aware that performance can be increased dramatically by choosing a more efficient algorithm
or even a faster programming language or machine. However, this does not refute our claim
that computation times are unacceptable for such a simple domain as the Tileworld and will
become impossibly long for sufficiently large Tileworld scenarios.

On Partially Observable MDPs and BDI Models 253

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80

E
ffe

ct
iv

en
es

s

Dynamism

mdp
bdi (p = 0)
bdi (p = 1)
bdi (p = 2)
bdi (p = 4)

Fig. 3.Overall effectiveness of an mdp and bdi agent. Effectiveness is measured as the result of
a varying degree of dynamism of the world. The four curves show the effectiveness for the bdi
agent at planning costs (denoted byp) from 0 to 4.

In the experiments, the Tileworld has dimensions20× 20, thus there are 400 unique
locations (n = 400). Environmentswere variedby changing thedegreeof dynamism (γ).
Dynamism is denoted by an integer in the range 1 to 80, representing the ratio between
the world clock rate and the agent clock rate. Ifγ = 1, then the world executes one cycle
for every cycle executed by the agent and the agent’s information is guaranteed to be
up to date; ifγ > 1 then the information the agent has about its environment may not
necessarily be up to date when it carries out an action. (In the experiments in this paper
we assume the environment is fully observable, i.e., the agent can update its information
at every cycle of its own clock.) Theplanning costp represents the time cost of planning,
i.e., the number of time-steps required to form a plan. Theeffectivenessε of an agent
is the ratio of the actual score achieved by the agent to the score that could in principle
have been achieved.

We conducted a similar series of experiments with the bdi agent, based on the con-
ceptual bdi architecture as explained in Section 2. The implemented bdi architecture is
described in [12]. This bdi agent adopts single intentions to visit a particular hole, con-
structs a plan, consisting of move actions, to achieve that intention – a path to the hole
– and sequentially executes actions of the adopted plan. An intention value corresponds
to the reward received by the agent for reaching a hole, and an intention cost is the
distance between the current location of the agent and the location that the agent intends
to reach. The meta-level control function determines thestability of an adopted plan.
The stability is computed based on a discrete deliberation scheduling method [10]. This
method determines the efficient trade off between continuing to execute the current plan

254 Martijn Schut, Michael Wooldridge, and Simon Parsons

or to spend computational resources on adopting a new plan7. Deciding this trade off is
based on knowledge of the probability distributions controlling when holes appear and
disappear. The results of the series of experiments with a bdi agent are shown in Figure
3 (for planning costp = 0, 1, 2, 4) in comparison with an mdp agent.

In Figure 4 the results of the bdi experiments are shown in comparisonwith a cautious
and bold agent. Acautiousagent reconsiders its intentions at every possible opportunity
whereas aboldagent does not reconsider until it has fully executed its current plan. We
have investigated the relationship between the reconsideration rate andvariousproperties
of an agent’s environment in [11]. The results of this investigation led us to undertake
further research on the problem of adaptive reconsideration, hence the bdi agent based
on discrete deliberation scheduling.

We conclude this Section with a short analysis of the demonstrated results. A more
in depth analysis of the bdi experiments are described in [12]. Firstly, we observe that
the effectiveness of both agents decreases as the dynamism of the world increases and
the bdi agent’s effectiveness decreases as the cost of planning cost increases (the cost of
the online part of the computation). The planning cost is a time cost, since it denotes the
number of time-steps required to construct a plan.

Secondly, the most important observation we make from comparing the graphs in
Figure 3 to each other is that the bdi effectiveness curve clearly approximates the mdp
effectiveness curve, assuming that the planning cost is small enough. We base this con-
clusion on matching the mdp agent’s effectiveness curve to the bdi agent’s effectiveness
curve forp = 0. This suggests that the bdi approach might be viewed as an approxi-
mation to the mdp approach, and one which is tractable, but shifts the computational
burden from offline to online. As this burden increases (p gets larger), the quality of the
approximation decreases.

Thirdly, the bdi approach can handle Tileworld exampleswhich are beyond the scope
of the mdp approach, e.g., a40 × 40 Tileworld. As the size of the Tileworld increases,
Table 1 shows that mdp computation times increase rapidly. Onemay safely assume that
from some point onwards, computing an optimal mdp policy becomes unfeasible and
even impossible. As mentioned above, it is necessary to investigate where this point is
and how the bdi approach performs from that point onwards. For this, we need to know
how well bdi methods scale and this issue is currently under investigation.

Finally, we comment on the performance of the mdp agent in this real-time domain.
We observe that although every action is chosen optimally by the mdp agent, the overall
effectiveness of the agent is not a maximum. For example, in the Tileworld domain, we
observe that for environments with a dynamism that is more than 6 (γ > 6), the effec-
tiveness of the mdp agent is less than 1 (ε < 1). The reason for this is that the frequency
with which holes appear and disappear is too high for the agent to get to one of those
that appear even when choosing the decision-theoretically optimal actions. Addition-
ally, the fact that an agent cannot preciselyanticipatefuture events – the appearance
and disappearance of holes – lowers the effectiveness of the agent. One example of this
is the appearance of an hole exactly at the same time that the agent moves away from
that location. With the benefit of hindsight, the agent would have done better to have

7 In bdi terminology this decisionmaking function is better knownasanintention reconsideration
function.

On Partially Observable MDPs and BDI Models 255

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80

E
ffe

ct
iv

en
es

s

Dynamism

p = 0

Cautious
Bold

Adaptive

(a)

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80

E
ffe

ct
iv

en
es

s

Dynamism

p = 4

Cautious
Bold

Adaptive

(b)

Fig. 4.Performance of a cautious, bold and adaptive agent. Effectiveness is measured as a result
of a varying degree of dynamism of the world at planning costs (denoted byp) p = 0 in (a) and p =
4 in (b). The adaptive agent is a bdi agent based on discrete deliberation scheduling. (From [12])

stayed there instead ofmoving away. However, from the viewpoint of the agent, these are
merely unlucky situations fromwhich it is hard to escape in realistic domains. These two
issues illustrate that choosing optimal actions individually does not guarantee overall
optimal performance.

256 Martijn Schut, Michael Wooldridge, and Simon Parsons

6 Related Work

The research described in this paper relates to a number of different research areas that
we briefly describe in this Section. Firstly, we describe research by Kinny and Georgeff
on which the experimental methodology in this paper is based. Secondly, we briefly
discuss the issue of computational intractability in solving pomdps. Finally, we discuss
work by Boutilier, which focuses on the relationship between agents and Markovian
planning.

The experimental methodology as used in our investigation is based on the work
of Kinny and Georgeff [6]. Their work includes an experimental program, based on
Pollack’s Tileworld, that aims to investigate how commitment to goals contributes to the
effectivebehaviourof situatedagents.This research ispart of amoregeneral investigation
into the reactive meta-level control of deliberation for resource-bounded agents situated
in dynamic domains. Kinny and Georgeff show that in dynamic environments different
meta-level control strategies achieve a different effectiveness. The empirical results as
obtained by Kinny and Georgeff emphasise the importance of meta-level control, but
closely relate to the Tileworld domain.

We have extended the investigation of Kinny andGeorgeff in twoways8 as described
in [11, 12]. Firstly, we considered partially observable and non-deterministic domains
for the investigation of effectiveness of situated agents. This enabled us to clearly iden-
tify a relationship between the environment (in terms of dynamism, observability and
determinism) and the deliberation control strategy as used by the agent. Secondly, we
aimed to develop domain independent deliberation control strategies to be applied in
a more general context then only the Tileworld testbed. As to the latter, we developed
the adaptive bdi agent as described above, based on the decision-theoretic concept of
deliberation scheduling. In this type of agent, the control strategy (or: reconsideration
policy) determines an efficient trade off between acting and deliberating. We developed
an additional decision-theoretic agent, in which the control strategy is anmdp policy that
lets the agent either act or deliberate at any moment in time9 [13]. This work illustrates
the close relationship between the bdi agent architecture and the pomdp framework,
which we have further worked out in this paper.

The problem of computational intractability of solution algorithms for pomdps has
received much research attention (summarised in [2]). The main focus of many of these
investigationshasbeenon factorisation, abstractionandaggregation techniques to reduce
the state space or action space. Probabilistic strips operators and influence diagrams are
such techniques that can be used to factor the state space of Markov problems. Although
these methods have been developed without the pomdp framework directly in mind,
they have proven successful in factoring pomdp state spaces and consequently rendering
computation times feasible. As such, our proposal for using the bdi agent architecture to
solve pomdps can be considered a similar effort. However, more than solely reducing the
state space or action space, the bdi architecture includes techniques to direct reasoning
while solving a pomdp. This is a potential important benefit over other methods.

8 This work has been presented at the UKMAS workshops 2000 and 2001, respectively.
9 Since this agent suffers from the same intractability of solving pomdps, as mentioned above,
we decided to compare this paper’s mdp agent with the deliberation scheduling agent.

On Partially Observable MDPs and BDI Models 257

The pomdp planning framework has for long been brought into relation with agent
based architectures. Asmentioned in the paragraph above, several techniques from plan-
ning under uncertainty have been successfully applied in a pomdp setting as well as in
the agent based research. Recently, the pomdp planning framework is being applied in
multi-agent settings10, in which either a pomdp problem is distributed among several
agents or every agent is represented as a pomdp. This new development brings, as any,
novel problems with it, but the multi-agent research area can contribute much to better
solve existing pomdp problems.Work in this area is relevant to the research described in
this paper, since it illustrates the importance and suggested benefit of combining pomdp
planning and agent-based systems.

Finally, we point out research byBoutilier et al. [3] which integratesMarkov decision
processes with Golog, a high level programming language with a situation calculus
semantics. Our model distinguishes from this work in the way that our method views the
programming and planning approaches as distinctive alternatives for each other, whereas
the work in [3] views them as complementary processes. Golog can be understood as an
agent specification language and as such can replace the bdi part of our approach. This
replacement is an interesting further extension in order to investigate the behaviour of
our model with respect to other correspondence specifications.

7 Discussion

In this paper we presented a preliminary analysis of the correspondence between the
theory of Markov decision processes for planning in partially observable domains and
thebelief-desire-intention agent architecture. Themain contributions of integrating these
two models are as follows: it would explain the existence of a correspondence between
the pomdp and bdi models, it would demonstrate how intentions contribute to efficiently
solving pomdps, and it would provide an intuitive method to specify pomdps by using
bdi models.We have not addressed all these issues in this paper, and, as described below,
leave further elaboration of non-addressed issues to future work.

Our research is centered around the hypothesis that bdi can still be used when mdp
is intractable. The results in this paper give reasonable support to suppose that this
hypothesis is true. Further support must be gathered through more rigorous theoretical
and empirical investigation as initiated above. Supposing the hypothesis is correct, one
concrete issue to address is to find the point at which it becomes impossible to compute
mdp solutions, but where bdi models still give reasonable performance.

The main contributions of this paper are to point out the correspondence between
the bdi and pomdp model and to demonstrate empirically that the performance of a
bdi model approximates the effectiveness of a pomdp model. Exactly how good this
approximation is depends on the time cost of planning in the bdi model, as we have
shown in this paper. Although the analysis and formalisation of our approach in this
paper are preliminary, the results of our experimental validation are promising as such
that further research is necessary to explore our findings in more detail.

10 The application of the pomdp framework in multi-agent systems was addressed by Boutilier in
the keynote talk of UKMAS 2000.

258 Martijn Schut, Michael Wooldridge, and Simon Parsons

The conclusions we derived from the Tileworld experiments are as follows. Firstly,
our findings confirm results as obtained earlier in similar experiments. Secondly, the
bdi model approximates the mdp model in terms of effectiveness. Thirdly, we claim
that on the basis of our results, bdi can deal with problems that are beyond the mdp
approach. Finally, we remark that the optimality of mdp solutions is only relevant with
respect to individual actions, not necessarily regarding overall optimal performance.
To this extent, the bdi approach might approximate the pomdp approach, where the
computational burden has been shifted from offline to online. In the testbed used in this
paper, the bdi approach can handle problems which are beyond the scope of an mdp
approach. We propose future research to investigate the behaviour of performance with
respect to balancing offline and online computation.

Our method is to be used for the design of autonomous agents that will operate in
uncertain environments.Weexpress this uncertainty bymeasurements of:dynamism, the
rate of change of the environment, independent of the activities of the agent;observabil-
ity, the extent to which the agent has access to the current state of the environment; and
determinism, the degree of predictability of the system behaviour for identical system
have inputs.

Exploration of future research paths from here is interesting from a number of differ-
ent viewpoints. Firstly, asmentioned above, we intend to conduct further investigation of
the formal analysis of our approach. Such research will give more insight into the com-
putational efficiency of our method compared to traditional pomdp solution algorithms.
The issue of balancing offline and online computation is a serious consideration for de-
sign. Through research on how these two different types of computation contribute to the
computational cost of our model and under which circumstances, we hope to eventually
automate balancing offline and online computation.

Secondly, we have undertaken preliminary research into the potential benefit of
using the notion of intentions in solving pomdps. Previously, pomdp researchers have
combined single actions into plans (called options or macro-actions) as a type of action
abstraction. We have used intentions to cover this notion of plans. The added benefit
of intentions over options is that, by definition, intentions direct and constrain future
reasoning. As such, intentions are a very natural way for abstracting the action space.

Finally, our experimental validation can be extended in different ways. We are cur-
rently working on the implementation of our model in a more realistic type of testbed,
robot navigation, to demonstrate wider model applicability. Besides this, we are inves-
tigating the implementation of observability as means of resource-bounded information
gathering, i.e., acquiring value of information, in the Tileworld. For this, it is necessary to
have solution algorithms for infinite horizon pomdps, and these algorithms are currently,
to our best knowledge, not available.

References

1. R. Bellman.Dynamic Programming. Princeton University Press, Princeton, NJ, 1957.

2. C. Boutilier, T. Dean, and S. Hanks. Decision-theoretic planning: Structural assumptions and
computational leverage.Journal of AI Research, pages 1–94, 1999.

On Partially Observable MDPs and BDI Models 259

3. C. Boutilier, R. Reiter, M. Soutchanski, and S. Thrun. Decision-theoretic, high-level agent
programming in the situation calculus. InProceedings of the 7th Conference on Artificial
Intelligence (AAAI-00), pages 355–362, Menlo Park, CA, 2000.

4. M. E. Bratman, D. J. Israel, and M. E. Pollack. Plans and resource-bounded practical reason-
ing. Computational Intelligence, 4:349–355, 1988.

5. L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observ-
able stochastic domains.Artificial Intelligence, 101:99–134, 1998.

6. D. Kinny andM. Georgeff. Commitment and effectiveness of situated agents. InProceedings
of the Twelfth International Joint Conference on Artificial Intelligence (IJCAI-91), pages
82–88, Sydney, Australia, 1991.

7. J. Lang, L. v. d. Torre, and E. Weydert. Utilitarian desires.Journal of Autonomous Agents
and Multi-Agent Systems, 2002. To appear.

8. M. E. Pollack and M. Ringuette. Introducing the Tileworld: Experimentally evaluating agent
architectures. InProceedings of the Eighth National Conference on Artificial Intelligence
(AAAI-90), pages 183–189, Boston, MA, 1990.

9. A. S. Rao and M. P. Georgeff. An abstract architecture for rational agents. In C. Rich,
W.Swartout, andB.Nebel, editors,Proceedings of KnowledgeRepresentation andReasoning
(KR&R-92), pages 439–449, 1992.

10. S. Russell and E. Wefald. Principles of metareasoning.Artificial Intelligence, 49(1-3):361–
395, 1991.

11. M. C. Schut and M. Wooldridge. Intention reconsideration in complex environments. In
M. Gini and J. Rosenschein, editors,Proceedings of the Fourth International Conference on
Autonomous Agents (Agents 2000), pages 209–216, Barcelona, Spain, 2000.

12. M. C. Schut and M. Wooldridge. Principles of intention reconsideration. In E. Andre and
S. Sen, editors,Proceedings of the Fifth International Conference on Autonomous Agents
(Agents 2001), Montreal, Canada, 2001.

13. M.C.Schut,M.Wooldridge, andS.Parsons. Reasoningabout intentions inuncertaindomains.
In D. Dubois and H. Prade, editors,Proceedings of European Conference on Symbolic and
Quantitative Approaches to Reasoning with Uncertainty, Toulouse, France, 2001.

14. M. Wooldridge and S. D. Parsons. Intention reconsideration reconsidered. In J. P. Müller,
M. P. Singh, and A. S. Rao, editors,Intelligent Agents V (LNAI Volume 1555), pages 63–80.
Springer-Verlag: Berlin, Germany, 1999.

	1 Introduction
	2 Belief-Desire-Intention Agents
	3 Partially Observable Markov Decision Processes
	4 Correspondence between bdi and pomdp
	5 Empirical Validation
	6 Related Work
	7 Discussion
	References

