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Abstract

We advocate a declarative approach to proving properties of logic programs. Total cor-
rectness can be separated into correctness, completeness and clean termination; the latter
includes non-floundering. Only clean termination depends on the operational semantics,
in particular on the selection rule. We show how to deal with correctness and completeness
in a declarative way, treating programs only from the logical point of view. Specifications
used in this approach are interpretations (or theories). We point out that specifications
for correctness may differ from those for completeness, as usually there are answers which
are neither considered erroneous nor required to be computed.

We present proof methods for correctness and completeness for definite programs and
generalize them to normal programs. For normal programs we use the 3-valued completion
semantics; this is a standard semantics corresponding to negation as finite failure. The
proof methods employ solely the classical 2-valued logic. We use a 2-valued characterization
of the 3-valued completion semantics, which may be of separate interest.

The method of proving correctness of definite programs is not new and can be traced
back to the work of Clark in 1979. However a more complicated approach using opera-
tional semantics was proposed by some authors. We show that it is not stronger than the
declarative one, as far as properties of program answers are concerned. For a corresponding
operational approach to normal programs, we show that it is (strictly) weaker than our
method. We also employ the ideas of this work to generalize a known method of proving
termination of normal programs.

KEYWORDS: declarative programming, negation in logic programming, specifications,
program correctness and completeness, termination, teaching logic programming

1 Introduction

This paper discusses reasoning about logic programs in terms of their declarative

semantics. We view total correctness of programs as consisting of correctness, com-
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pleteness and clean termination. Correctness (sometimes called partial correctness)

means that any answer obtained from the program satisfies the specification. As

logic programming is nondeterministic, one is interested in completeness, i.e. that

all the results required by the specification are computed. Programs should also

(cleanly) terminate — computations should be finite and without run-time errors,

like floundering and arithmetical exceptions.

Obviously, clean termination depends on the operational semantics, in particu-

lar on the selection rule. However correctness and completeness do not; they are

declarative properties. It is desirable that they could be dealt with in a declarative

way, abstracting from any operational semantics and treating programs and their

answers only from the logical point of view. Otherwise logic programming would not

deserve to be considered a declarative programming paradigm. Declarative treat-

ment of correctness and completeness makes it possible to separate reasoning about

“logic” and “control”; correctness and completeness are related to logic and clean

termination to control. Changing the control component does not influence correct-

ness and completeness.

In this paper we show how to prove correctness and completeness declaratively.

We discuss a known method of proving correctness of definite programs and in-

troduce a method for proving completeness. Then we generalize both methods to

programs with negation. As their declarative semantics we employ the 3-valued com-

pletion semantics (Kunen 1987). Our proof methods use however only the standard

2-valued logic. The employed 2-valued characterization of Kunen semantics may be

of separate interest.

The proof method for definite program correctness (Clark 1979; Hogger 1981;

Deransart 1993) is simple and straightforward. It is declarative: it abstracts from

any operational semantics. It should be well known. However its usefulness is often

not appreciated. Instead a more complicated approach using operational semantics

was proposed by some authors (Bossi and Cocco 1989; Apt 1997; Pedreschi and Ruggieri 1999).

That approach takes into account the form of atoms selected under LD-resolution.

We show that, as far as declarative properties of programs are concerned, the oper-

ational approach is not stronger than the declarative one. The last of these papers

also deals with normal programs. In this case we show that the operational ap-

proach is strictly weaker than that presented here, when declarative properties are

of interest.

The following observation is important for our approach: it should be possible

to use approximate specifications, and one should not require that the same spec-

ification is used for both correctness and completeness. This is natural, as there

usually are answers which are neither considered erroneous nor required to be com-

puted. Using the same specification for both purposes requires making decisions

like “should append([ ], 7, 7) be correct?”; this brings substantial and unnecessary

complications. So there is some 3-valued flavour even in logic programming without

negation. Notice that if a program is both correct and complete with respect to a

specification then the specification cannot be approximate. Approximate specifica-

tions are useful not only in the context of proving correctness and completeness.

We show how a (non-unique) approximate specification can replace the unique in-
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terpretation in the method of (Apt and Pedreschi 1993) for proving termination of

normal programs.

The paper consists of two main chapters: Section 3 is devoted to definite pro-

grams, Section 4 to normal programs. In each case we first discuss proving cor-

rectness, then proving completeness. We also discuss completeness of the presented

proof methods and compare them with the operational approach. Section 4.3 on

proving correctness of normal programs also presents a generalization of the method

for proving termination by Apt and Pedreschi (1993). The paper is concluded by a

section on related work. A preliminary and abridged version of this paper appeared

as (Drabent and Mi lkowska 2001).

2 Preliminaries

For basic definitions we refer the reader to (Lloyd 1987) and to (Apt 1997; Doets 1994).

We consider the declarative semantics given by 3-valued logical consequences of

program completion (Kunen 1987). This is a standard semantics for normal pro-

grams with finite failure (Doets 1994). It is a generalization of the classical seman-

tics for definite programs (2-valued logical consequences of the program). SLDNF-

resolution is sound for this semantics and important completeness results exist.

We are interested in declarative properties of programs, i.e. properties of pro-

grams treated as sets of logic formulae. Speaking more formally, we consider prop-

erties of program answers. We are not interested in distinguishing logically equiv-

alent programs, for instance logically equivalent definite programs with different

S-semantics (Bossi et al. 1994), like { p(X)←, p(a)←} and { p(X)←}.

By a computed (resp. correct) answer we mean an instance Qθ of a query Q,

where θ is a computed (correct) answer substitution for Q and the given program.

(A query is a sequence of literals; it is a sequence of atoms when definite programs

are concerned). Notice that, by soundness and completeness of SLD-resolution, the

sets of computed and of correct answers for a given definite program are equal. (In

particular, a correct answer Qθ for a query Q is a computed answer for a query Qθ.)

So in the case of definite programs we usually do not distinguish between these two

kinds of answers; the term “answer” refers to both of them. Due to incompleteness

of SLDNF-resolution, some correct answers for normal programs are not computed

answers. So in the context of normal programs the term “answer” refers to correct

answers.

We assume an arbitrary fixed first order language L. Sometimes it is required

that the set of function symbols of L is infinite; this will be stated explicitly. A

preinterpretation for L is an algebra J and a mapping assigning an n-ary function

of J to each n-ary (n ≥ 0) function symbol of L. We will represent interpretations

as sets (Lloyd 1987, p. 12), (Doets 1994, p. 124): an interpretation (over J ) is a set

of constructs of the form p(e1, . . . , en), where p is a predicate symbol and e1, . . . , en
are elements of the carrier |J | of J . Such a p(e1, . . . , en) will be called a J -atom.

Obviously, if J is a Herbrand algebra then an interpretation is a set of ground

atoms. The Herbrand base w.r.t. (with respect to) a given language L will be

denoted by H, and the least Herbrand model of a definite program P by MP .
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We sometimes use a comma instead of ∧ and assume that conjunction has a higher

priority than disjunction, and disjunction higher than implication. For instance

α, β ∨ γ, δ stands for (α ∧ β) ∨ (γ ∧ δ), and α ∨ β → γ for (α ∨ β)→ γ. In program

examples we use some elements of the notation of Prolog (variable names begin

with an upper case letter, lists are denoted using [, |, ], etc).

3 Reasoning about Definite Programs

First we show a method of proving program correctness. In the next section we

compare it with an approach related to operational semantics. Then we introduce

a method of proving completeness.

3.1 Correctness of Definite Programs

We begin with a brief discussion on specifications. As a standard example let us

take the program APPEND:

app( [ ], L, L )←

app( [H |K], L, [H |M ] )← app(K,L,M )

We want to prove that it indeed appends lists. We need a precise statement (a

specification) of this property. A slight complication is that the program does not

actually define the relation of list concatenation, but its superset; the least Herbrand

model contains atoms like app([ ], 1, 1). This is a common phenomenon in logic

programming, the least model contains “ill-typed” atoms which are irrelevant for

the correctness of the program.

So we want to prove that:

for any answer app(k, l,m), if k and l are lists then m is a list and k ∗ l = m.

(By a list we mean a term [t1, . . . , tn] (in Prolog notation), where n ≥ 0 and

t1, . . . , tn are possibly non-ground terms. Symbol ∗ denotes the list concatenation.)

This property could be equivalently expressed as

spec |= app(k, l,m) (1)

for any answer app(k, l,m), where spec is the Herbrand interpretation:

spec = { app(k, l,m) ∈ H | if k and l are lists then m is a list and k ∗ l = m } (2)

Obviously, (1) holds iff all the ground instances of app(k, l,m) are in spec.

Notice that we do not need to refer to the notion of a query in the specifica-

tion. Assume that app(k, l,m) = app(k′, l′,m′)θ is a computed answer for a query

app(k′, l′,m′). If k′, l′ are lists then obviously k, l are lists and (1) implies that m

is a list and k ∗ l = m.

Such specifications, referring to program answers, will be called declarative. A

declarative specification can be an interpretation (possibly not a Herbrand one) or
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a theory.1 In this paper we will use specifications of the first kind, but we expect

that our results also apply to specifications of the second kind.

Definition 3.1

A definite program is correct w.r.t. a declarative specification spec iff spec |= Q

for any answer Q of the program.

Notice that a program P is correct w.r.t. a Herbrand interpretation spec iff its least

Herbrand model MP is a subset of spec (as for such interpretations spec |= Q means

that all the ground instances of the atoms in Q are in spec).

To prove correctness (of a logic program w.r.t. a declarative specification) we

use an obvious approach, discussed among others by Clark (1979), Hogger (1981,

p. 378–9) and Deransart (1993, Section 3).2 We will call it the natural proof method.

It consists of showing that spec |= C for each clause C of the considered program.

The soundness of the natural method follows from the following simple property.

Proposition 3.2 (Correctness, definite programs)

Let P be a program and spec be an interpretation. If

spec |= P

then P is correct w.r.t. specification spec.

Proof

By soundness of SLD-resolution, P |= Q for any answer Q. Now spec |= P and

P |= Q imply spec |= Q. (This also holds for spec being a theory.)

The method is also complete (Deransart 1993) in the following sense. If a pro-

gram P is correct w.r.t. a declarative specification spec then there exists a stronger

specification spec′ ⊆ spec such that spec′ |= P , and thus the method is applicable

to spec′. (To prove this property, take as spec′ the least model of P over the given

preinterpretation.)

Example 3.3

The proof of correctness of APPEND w.r.t. specification (2) is rather simple. We

present here its less trivial part with details. Consider the second clause. To show

that

spec |= app([H |K], L, [H |M ])← app(K,L,M)

take ground terms h, k, l,m (and valuation {H/h,K/k, L/l,M/m }) such that

spec |= app(k, l,m), in other words app(k, l,m) ∈ spec. We have to show that

spec |= app([h|k], l, [h|m]). Assume that [h|k] and l are lists, hence k is a list.

Then m is a list and k ∗ l = m, as spec |= app(k, l,m). Thus [h|m] is a list and

[h|k] ∗ l = [h|m], hence app([h|k], l, [h|m]) ∈ spec. This concludes the proof.

1 A specification corresponding to our example specification spec may consist of an axiom
app(k, l,m) ↔ (list(k), list(l) → list(m), k∗l=m) together with axioms describing predicates
=, list and function ∗, and an induction schema for lists.

2 where it is called “inductive proof method”.
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Example 3.4

The specification of APPEND considered above does not describe the usage of

APPEND to split a list or to subtract lists. Also the requirement on k is unnecessary.

This is because our intention was to follow a corresponding example of (Apt 1997).

A full specification of APPEND may be

specAPPEND =

{

app(k, l,m) ∈ H

∣
∣
∣
∣

if l or m is a list then

k, l,m are lists and k ∗ l = m

}

.

It is easy to check, in a way described above, that specAPPEND |= APPEND. Thus

by Proposition 3.2 program APPEND is correct w.r.t. specAPPEND.

The program in the next example uses accumulators. Alternatively it can be seen

as employing difference lists. Let us define that a difference list representing a list

[t1, . . . , tn] is any pair ([t1, . . . , tn|t], t) of terms, where t is an arbitrary term.

Example 3.5

Consider the standard REVERSE program:

reverse(X ,Y )← rev(X ,Y , [ ])

rev([ ], X,X)←

rev([H |L], X, Y )← rev(L,X, [H |Y ])

The declarative reading of the program is simple: the first argument of rev is a list,

its reverse is represented as a difference list of the second and the third argument.

This can be expressed by a formal specification

specR = { reverse([t1, . . . , tn], [tn, . . . , t1]) | n ≥ 0, t1, . . . , tn ∈ T }

∪ { rev([t1, . . . , tn], [tn, . . . , t1|t], t) | n ≥ 0, t1, . . . , tn, t ∈ T }

where T is the set of ground terms.

To prove that the program is correct w.r.t. this specification it is sufficient to show

specR |= REVERSE. The nontrivial part of the proof is to show that the last clause

is true in the interpretation specR. Take ground terms l, x, h, y, such that specR |=

rev(l , x , [h|y]). So there exist n ≥ 0, t1, . . . , tn, t such that l = [t1, . . . , tn], x =

[tn, . . . , t1|t], t = [h|y]. Then rev([h|l], x, y) is rev([h, t1, . . . , tn], [tn, . . . , t1, h|y], y),

thus specR |= rev([h|l ], x , y).

A quite common opinion is that “ill-typed” logical consequences of programs (like

app([ ], 1, 1) for program APPEND) lead to difficulties in reasoning about program

correctness (cf. eg. (Apt 1995; Apt 1997; Naish 1992)). Similarly, programs dealing

with accumulators or difference lists are sometimes considered difficult to reason

about(cf. eg. (Apt 1995)). The natural method deals with such programs without

any special burden, as the examples above show.

Notice that the natural method refers only to the declarative semantics of pro-

grams. A specification is an interpretation (alternatively a theory). Correctness is

expressed as truth (of the program’s answers) in the interpretation. Program clauses

are treated as logic formulae, their truth in the interpretation is to be shown. We

abstract from any operational semantics, in particular from the form of queries
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appearing during computation. The reasoning is obviously independent from the

selection rule. Still we can use declarative specifications to reason about queries and

corresponding answers, using the fact that an answer is an instance of the query.

3.2 Call-Success Specifications and the Operational Approach

In this section we present an operational approach to program correctness and

prove that it is not stronger than the natural method of Proposition 3.2 (as far as

properties of program answers are concerned). We also argue that from a practical

point of view the natural method is advantageous.

Some authors (Bossi and Cocco 1989), (Apt 1997, Chapter 8), (Pedreschi and Ruggieri 1999)3

propose another approach to proving correctness. The approach explicitly deals with

the form of queries. It uses specifications consisting of two parts. The precondition

specifies atomic queries and the postcondition their success instances. We will call

such specifications call-success specifications. Formally, pre- and postconditions

are sets of atoms, closed under substitutions.

The proof method used in this approach was proposed by (Bossi and Cocco 1989)

and is an instance of the method of (Drabent and Ma luszyński 1988).4 We will call

it the operational proof method. It is based on the following verification condition:

Let 〈pre, post〉 be a call-success specification, with the precondition pre and the

postcondition post . For each clause C of the program it should be shown that for

each (possibly non-ground) instance H ← B1, . . . , Bn (n ≥ 0) of C

if H ∈ pre, B1 , . . . ,Bk ∈ post then Bk+1 ∈ pre (for k = 0, . . . , n−1),

if H ∈ pre, B1 , . . . ,Bn ∈ post then H ∈ post .
(3)

Additionally, there is a condition on initial queries. One requires that for any in-

stance B1, . . . , Bn (n > 0) of such query, if B1, . . . , Bk ∈ post then Bk+1 ∈ pre (for

k = 0, . . . , n−1). In (Apt 1997) a program (a query) with a call-success specification

is called well-asserted if it satisfies the respective condition above.

The intuition behind condition (3) is related to operational semantics – to proce-

dure calls and successes under LD-resolution (SLD-resolution with the Prolog selec-

tion rule). Indeed, (3) implies a stronger, non-declarative notion of correctness. We

will say that a program is correct w.r.t. a call-success specification 〈pre, post〉 if

every procedure call in an LD-derivation is in pre and every procedure success is in

post , provided the initial query satisfies the condition above. By a procedure call we

mean the atom selected in a goal, and by a procedure success a computed instance

of a procedure call. If P satisfies the verification condition (3) then P is correct

w.r.t. the call-success specification (see (Apt 1997) and the references therein).

Notice that correctness w.r.t. a call-success specification is not a declarative prop-

erty. It considers not only computed answers, but whole computations (LD-trees).

Thus this kind of correctness depends on the selection rule used. This is why we

call the method operational.

3 Whenever these approaches differ, we follow that of (Apt 1997).
4 The latter approach does not require specifications to be closed under substitutions.



8 W lodzimierz Drabent and Miros lawa Mi lkowska

Example 3.6

Consider the APPEND program. We refer here to its treatment in (Apt 1997,

p. 214). The precondition and postcondition are, respectively,

pre = { app(k, l,m) | k and l are lists },

post = { app(k, l,m) | k, l,m are lists and k ∗ l = m }.

(Here k, l,m are terms, possibly non-ground.) The details of the proof can be found

in (Apt 1997).

Now we formally compare both proof methods. We are going to prove that, as far

as declarative properties are of interest, both methods are equivalent. Remember

that we refer to two notions of program correctness: w.r.t. declarative specifications

(of the natural method) and w.r.t. call-success specifications (of the operational

method).

We first prove that the operational method is stronger than the natural one. We

show that correctness w.r.t. a declarative specification can be expressed by means

of correctness w.r.t. a call-success specification, and that whatever can be proven by

the natural method, can be proven by the operational method. Roughly speaking,

the natural method is the operational one with the preconditions abandoned.

Proposition 3.7

Let P be a program, and let an interpretation spec be a declarative specification.

Consider a call-success specification 〈pre⊤, post(spec)〉, where pre⊤ is the set of all

atoms and post(spec) = {A | spec |= A}.

Then P is correct w.r.t. spec iff P is correct w.r.t. 〈pre⊤, post(spec)〉. Moreover, P

and spec satisfy the verification condition of the natural method (Proposition 3.2)

iff P and 〈pre⊤, post(spec)〉 satisfy the verification condition (3) of the operational

method.

Proof

The first equivalence is obvious.

Consider the call-success specification 〈pre⊤, post(spec)〉. Notice that the condi-

tion on initial queries is trivially satisfied by any query. All the implications of

(3) except the last one are trivially satisfied. The last implication of (3) holds

for each instance of a clause C iff spec |= C. (For the non-obvious “if” case no-

tice that B1, . . . , Bn ∈ post(spec) means spec |= Bi for i = 1, . . . , n; hence from

spec |= H ← B1, . . . , Bn we obtain spec |= H .)

It remains to show that the operational method is not stronger than the natu-

ral one, as far as the declarative properties are concerned. Consider a call-success

specification 〈pre, post〉. A corresponding declarative specification could be seen,

speaking informally, as implication pre→ post. The following definition formalizes

this idea.

Definition 3.8
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Let pre and post be sets of atoms closed under substitution. The declarative spec-

ification corresponding to the call-success specification 〈pre, post〉 is the Herbrand

interpretation

pre→post := {A ∈ H | if A ∈ pre then A ∈ post }.

In other words, pre→post = (H\pre)∪ (H∩post ). If P is correct w.r.t. pre→post

and Aθ is an answer to a query A ∈ pre then Aθ ∈ post . As an example take the call-

success specification of APPEND from Example 3.6. The corresponding declarative

specification is the specification (2) of APPEND from the previous section.

The following proposition compares the corresponding declarative and call-success

specifications. (Similar property is mentioned without proof in (de Boer et al. 1997;

Pedreschi and Ruggieri 1999).) The next proposition (see also (Courcelle and Deransart 1988))

compares both proof methods.

Proposition 3.9

If a program P is correct w.r.t. a call-success specification 〈pre, post〉 then P is

correct w.r.t. the declarative specification pre→post.

Proof

Assume that a program P is correct w.r.t. 〈pre, post〉. As pre→post is a Herbrand

interpretation, it is sufficient to show that MP ⊆ pre→post (cf. the comment fol-

lowing Definition 3.1). Consider an A ∈MP . So query A succeeds. If A ∈ pre then

A ∈ post . Thus A ∈ pre→post .

Now we show that if it can be proved by the operational method that a program

P is correct w.r.t. 〈pre, post〉 then it can be proved by the natural method that P

is correct w.r.t. pre→post.

Proposition 3.10

If P and 〈pre, post〉 satisfy the verification condition (3) of the operational method

then pre→post |= P .

Proof

pre→post |= P means that for any ground instance H ← B1, . . . , Bn of a clause of

P , if B1, . . . , Bn ∈ pre→post then H ∈ pre→post . Consider such an instance and

assume that B1, . . . , Bn ∈ pre→post . If H 6∈ pre then H ∈ pre→post . Otherwise,

for H ∈ pre we obtain from (3) by simple induction that Bi ∈ pre and Bi ∈ post ,

for i = 1, . . . , n. Hence H ∈ post , by (3); thus H ∈ pre→post .

The converse of the two propositions does not hold:

Example 3.11

For a simple counterexample consider P and 〈pre, post〉 satisfying the verification

condition (3), and reorder the atoms in the clause bodies. The obtained program

P1 may be incorrect w.r.t. 〈pre, post〉, but pre→post |= P1.
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For a counterexample independent from the ordering of body atoms, consider the

program P2:

p(X,Y, Z)← q(X,Z), q(Y, Z)

q(X,X)←

Let S be a set of ground terms. Consider a declarative specification pre→post ,

where

pre = {p(t1, t2, t3) | t1 ∈ S or t2 ∈ S} ∪ {q(t1, t2) | t1 ∈ S},

post = {p(t1, t2, t3) | t3 ∈ S} ∪ {q(t1, t2) | t2 ∈ S}.

We have pre→post |= P2, but P2 is incorrect w.r.t. the operational specification

〈pre, post〉. The same holds for P2 with the atoms in the clause body swapped.

The last two propositions show that the natural method is stronger than the

operational one (and hence equivalent to it), as far as declarative properties are

concerned. In contrast to the operational method, the natural one is independent

from the order of the body atoms in clauses.

We proved that the two methods are formally equivalent. Now we argue that,

from the practical point of view, switching from the operational method to the

natural one does not bring any difficulties or complications. First, a declarative

specification corresponding to a given call-success specification is obtained from the

latter by a simple composition of three operations: removing non-ground atoms, set

complementation and set union. Then, the proof of Proposition 3.10 shows how to

obtain a natural method proof out of an operational one. This is done by adding a

few simple steps. (Notice that for the new proof we consider implications (3) only

for ground instances of clauses).

The natural method requires proving one implication per program clause. In

contrast, the operational method requires proving one implication for each atom

occurring in the program or in the initial query. This is a price for obtaining more

information: the property proved concerns not only program answers but also calls

and successes under LD-derivations. However, when one is not interested in the

latter, the natural method seems more convenient.

There are many examples of using the operational method where the declarative

one is sufficient (for instance cf. the papers mentioned above). Apparently people are

often confused by the fact that the least Herbrand model contains undesired, “ill-

typed” atoms (cf. the opinions of (Apt 1995)). They want a specification describing

exactly the set of atoms of interest. For instance, such a set for APPEND is spec′ =

{ app(k, l,m) | k, l,m are lists and k ∗ l = m }. A program is usually not correct

w.r.t. such a declarative specification. It is often not recognized that the property

of interest can be described by means of an approximate declarative specification,

like those from the examples of Section 3.1.

There may be another reason for using specifications describing exactly the sets of

answers of interest: such specifications can be employed in reasoning about program

completeness. It is however not necessary to use the same specification for both

correctness and completeness. As we argue in Section 3.3, it is quite convenient and

natural to use separate specifications instead.
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Notice the difference in the treatment of “ill-typed” atoms (like app([ ], 1, 1) for

APPEND) by the two approaches. In the natural method we can include such atoms

in a specification.5 For example, the declarative specification specAPPEND from

Example 3.4 contains all ground atoms of the form app(k, l,m) where l and m are

not lists. In the operational method the “ill-typed” atoms are usually excluded from

postconditions. A precondition states explicitly how the program should be called

to avoid “ill-typed” answers. The call-success specification of APPEND discussed

above is a typical example. So the postcondition of a call-success specification is

MP ∩ pre or its superset, while a declarative Herbrand specification is a superset

of MP (for instance MP ∪ (H \ pre)).

The following example shows that such treatment of “ill-typed” atoms by the

operational method is impossible in some cases. It also shows that sometimes a

non-trivial precondition cannot be used and the operational method boils down

to the natural one; what conceptually is a precondition has to be expressed by a

postcondition.

Example 3.12

Let us consider a program TWO = TWOp ∪ TWOq, where TWOp is

p(X,Y )← q(X,X2, X1, X3), q(X1, X3, X2, Y )

and p does not occur in TWOq. Assume that TWOq is correct w.r.t. declarative

specification

specq = (pre1q→post3q) ∩ (pre2q→post4q),

where

pre1q = { q(t, s, u, v) | list(t) } post3q = { q(t, s, u, v) | list(u) }

pre2q = { q(t, s, u, v) | list(s) } post4q = { q(t, s, u, v) | list(v) }

and list(t) stands for “t is a list”, for a possibly non-ground term t. (Thus specq
states that if the i-th argument of q is a list then its argument i + 2 is a list too,

for i = 1, 2. Nothing more is known about TWOq. Notice that specq includes all

atoms with the predicate symbol distinct from q.)

Program TWO is an abstraction of “two-pass” programs and of certain us-

ages of difference lists. Some examples of such programs can be found e.g. in

(Boye and Ma luszyński 1997). Informally, its data flow can be described as follows.

The value of X1 produced by the first call of q is used by the second call. The value

of X2 is produced by the latter and used by the former, which uses it to produce

the value of X3. The value of X3 is used by the second call, which produces the

value of Y .

By means of the natural method it is easy to show that, in an answer p(t1, t2)

of TWO, if t1 is a list then t2 is a list too. In order to describe this, let us use

declarative specification

specTWO = (prep→postp) ∩ specq

5 Generally: a specification may permit any answer A that is not an instance of any query for
which the program is intended to be used.
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where

prep = { p(t, s) | list(t) } postp = { p(t, s) | list(s) }.

TWO is correct w.r.t. specTWO, as specTWO |= TWOp
6 and TWOq is correct w.r.t.

specTWO by our initial assumption.7

Correctness of TWO w.r.t. spec implies that if p is called with the first argument

being a list and succeeds then the second argument is bound to a list. Now we

discuss how this can be proved using the operational method. Let Ar denote the

set of all atoms with the predicate symbol r.

To express this property one needs a call-success specification 〈pre, post〉 such

that pre ∩ Ap = prep and post ∩ Ap = postp. Assume that the operational proof

method is applicable to this specification, in other words that the verification con-

ditions (3) hold. Hence in any LD-derivation any procedure call is in pre and any

procedure success is in post, provided the initial goal is in pre.

As explained previously, a usual way of using the operational method is such

that “ill-typed” atoms are excluded from the postcondition. This is impossible for

program TWO, as in the computations (i.e. LD-derivations) started from a goal

A ∈ prep, predicate q may succeed with its second and fourth arguments being not

lists.

Notice that the precondition pre has to permit any value of the second, third and

fourth argument of q, as during the computation q is invoked with these arguments

being variables. Formally, pre contains any atom of the form q(t1, t2, t3, t4) where

t1 is a list. These atoms are in pre1q, but (some of them) are not in pre2q. Thus pre2q
cannot be used as a precondition for q (more precisely, pre∩Aq cannot be pre2q , or

a subset of pre2q).

We could use pre1q as a precondition for q (formally pre ∩ Aq could be pre1q)

provided that q did not occur in any clause body of TWOq. Otherwise we have to

use the trivial precondition for q (formally pre ∩ Aq = Aq), as nothing is known

about the procedure calls in TWOq.
8

Hence for the last implication of (3) for TWOp to hold, the postcondition has to

express that if the i-th argument of q is a list then its argument i + 2 is a list, for

6 Here are the details of the proof. Take a ground instance H ← B1, B2 of the clause of TWOp.
Notice that:

H ∈ prep implies B1 ∈ pre1q,

B1 ∈ post3q implies B2 ∈ pre1q,

B2 ∈ post3q implies B1 ∈ pre2q,

B1 ∈ post4q implies B2 ∈ pre2q,

B2 ∈ post4q implies H ∈ postp.

Assume that specTWO |= B1, B2. Thus we have, for i = 1, 2:

Bi ∈ pre1q implies Bi ∈ post3q , Bi ∈ pre2q implies Bi ∈ post4q,

Combining these implications together we obtain that H ∈ prep implies H ∈ postp . This means
that specTWO |= H.

7 To view this reasoning as application of Proposition 3.2, take a specification I = MTWOq
∪

(prep→postp ∩ {p(t1, t2) | t1, t2 are ground terms }). I ⊆ specTWO (as MTWOq
⊆ specq), and

I |= TWO (as specTWO |= TWOp).
8 Notice that the same holds if we swap the body atoms of TWOp.
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i = 1, 2. So the postcondition for q is the declarative specification specq lifted to

non-ground terms. Formally, spec ∩ Aq = (pre1q ∪ post
3
q) ∩ (pre2q ∪ post

4
q).

Conceptually, pre1q and pre2q are preconditions, as they are premises of implica-

tions which have to be used in the proof. However, as shown above, pre2q (and pre1q,

for some programs TWOq) cannot be used in the precondition of the operational

method. Instead they have to be employed in the postcondition.

Notice that the first two implications of (3) hold trivially, and that proving the last

implication is basically a generalization of the declarative proof presented above.9

Thus the operational proof for TWOp is basically the same as the declarative

method proof presented above. (Restriction of the former to ground clause instances

gives the latter.)

Propositions 3.9 and 3.10 show that, for proving properties of program answers,

we do not need preconditions. Declarative specifications and the natural method of

Section 3.1 are sufficient. The proof of Proposition 3.10 shows how every operational

method proof can be easily transformed into a natural method one, with introducing

only minor changes. The converse does not hold; Examples 3.11 and 3.12 show that

in some cases a natural method proof cannot be converted into an operational one

with a non-trivial precondition.

The operational method is a generalization of the natural one: roughly speaking

any natural method proof can be seen as operational one, with a trivial precondition

(Proposition 3.7). The operational method proves more, as it also deals with the

form of procedure calls and successes in LD-resolution. However it is more compli-

cated and, for declarative properties, it is not stronger than the natural one. In our

opinion, when one is interested only in declarative properties, the natural method

should be preferred to the operational one.

3.3 Completeness of Definite Programs

Let us begin from an observation that for a given program a specification for com-

pleteness is in general different from that for correctness. For the purposes of cor-

rectness we describe a superset of the set of answers of a program. For the purposes

specification for completeness
︷ ︸︸ ︷

required incorrect

︸ ︷︷ ︸

specification for correctness

9 One has to show that if H ∈ prep and B1, B2 ∈ (pre1q ∪ post
3
q)∩ (pre2q ∪ post

4
q) then H ∈ postp,

for any instance H ← B1, B2 of the clause of TWOp. For ground instances this is equivalent to
specTWO |= TWOp.
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of completeness we describe its subset, as a program satisfying a completeness re-

quirement may compute something more than required. Often when a specification

for correctness is of the form pre→post then a specification for completeness is post .

For instance, it makes no sense to require that APPEND program were complete

w.r.t. the specification spec from the beginning of Section 3.1, or specAPPEND from

Example 3.4. Such a program should compute “ill-typed” answers, like app(a, b, c).

Our specification for completeness of APPEND is the Herbrand interpretation

specCAPPEND = {app(k , l ,m) ∈ H | k , l ,m are lists, k ∗ l = m}.

Notice that it properly expresses our intentions: APPEND should compute all the

cases of list concatenation. The difference specAPPEND \ specCAPPEND contains only

“ill-typed” atoms, with the first or second argument not being a list. We are not

interested whether they are answers of APPEND.

As previously, we consider specifications which are (possibly non-Herbrand) inter-

pretations. Additionally we require that a specification is over a preinterpretation

J in which equality satisfies the Clark equality theory CET.10 (Alternatively, we

may consider specifications which are theories containing CET.)

Definition 3.13

A definite program P is complete for a query Q w.r.t. a specification specC if

specC |= Qθ implies that Qθ is an answer for P , for any instance Qθ of Q.

P is complete w.r.t. specC if it is complete for any query w.r.t. specC .

Remember that Qθ is an answer for P iff P |= Qθ; this implies that Qθ is an

instance of some computed answer for Q.

Below we refer to theory ONLY-IF(P ) (Doets 1994, p. 135) that is usually used

while defining the Clark completion of a program P . Informally, ONLY-IF(P ) is

P with implications reversed. For each predicate symbol p, if the clauses of P

beginning with p are p(~t1)← ~B1, . . . , p(~tk)← ~Bk then ONLY-IF(P ) contains

p(~x) →
k∨

i=1

∃−~x ~x = ~ti ∧ ~Bi,

where ~x are distinct new variables and the quantification is over the variables oc-

curring in the clauses. For k = 0 the implication is equivalent to ¬p(~x). In our

example, ONLY-IF(APPEND) is (equivalent to)

app(x , y, z ) → x = [ ], y = z ∨ ∃ h, k ,m (x = [h|k ], z = [h|m], app(k , y,m)).

We also need a specification for equality:

spec= = {=(t, t) | t ∈ |J | }

where |J | is the carrier of the considered preinterpretation J . So in the case of

Herbrand specifications we have spec= = {=(t, t) | t is a ground term}.

10 As an example what happens if this requirement is not satisfied consider J in which constants
a, b are given the same value. Take an interpretation spec over J such that spec |= p(a). Then
a program P = { p(a)←} is not complete w.r.t. spec, as spec |= p(b) but p(b) is not an answer
of P .
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The following can be used to prove completeness of a program.

Proposition 3.14 (Completeness, definite programs)

Let P be a definite program and Q a query. Assume that the set of function symbols

of the underlying language is infinite. If

(i) specC ∪ spec= |= ONLY-IF(P ) and

(ii) P terminates for Q, i.e. there exists a finite SLD-tree for P and Q

then P is complete for Q w.r.t. specC .

If P is complete w.r.t. specC for each ground instance of each atom from a query

Q then P is complete for Q w.r.t. specC .

Notice that no particular selection rule is required in (ii). For Herbrand specifi-

cations, condition (i) means that for each A ∈ specC there exists a ground instance

A← B1, . . . , Bn of a clause of P such that B1, . . . , Bn ∈ specC .

Proof

The first part of the proposition follows from a more general Theorem 4.21. (Take

spec = (⊤, specC), where ⊤ is the set of all J -atoms over the considered prein-

terpretation. By Theorem 4.6, P seen as normal program is correct w.r.t. spec and

thus Theorem 4.21 can be applied.)

For the second part, let Q = A1, . . . , An and P be complete w.r.t. specC for

each ground instance of each Ai. Now specC |= Qθ implies specC |= Aiθσ and

then P |= Aiθσ, for each ground instance Aiθσ of Aiθ, i = 1, . . . , n. This implies

P |= Aiθ. The latter follows from the fact that if P |= Aσ for each ground instance

Aσ of an atom A then P |= A (see e.g. Theorem 3.3 of (Apt et al. 1996), the proof

there requires infinite set of constants, but can be easily modified for infinite set of

function symbols). We obtained P |= Aiθ for i = 1, . . . , n, this means P |= Qθ.

Example 3.15

Consider program APPEND and the specification specCAPPEND given above. It is

easy to show that specCAPPEND ∪ spec= |= ONLY-IF(APPEND). One can show,

using any standard method, that APPEND terminates for any ground atomic query.

Thus APPEND is complete for any ground atomic query and then, by the second

part of the proposition, complete.

Consider a query Q = app(X,Y,m), where X,Y are variables and m a possibly

non-ground list. For any lists k, l such that k ∗ l = m we have specCAPPEND |=

app(k , l ,m). By completeness of APPEND, P |= app(k, l,m). So by completeness

of SLD-resolution, app(k, l,m) (or a more general atom) is a computed answer

for Q. Summarizing, Q produces all the required divisions of m into two lists.

In our opinion, Proposition 3.14 is a formalization of a rather natural way of

informal reasoning about completeness, which consists of checking that any tuple

of argument values to be defined by the predicate is “covered” by some of its clauses.

The proposition without condition (ii) does not hold. Program { app(X,Y, Z)←

app(X,Y, Z) } is a counterexample. Also the requirement on function symbols can-

not be removed. For a counterexample take P = { p(a)←, p(b)←}, Q = p(X),
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a Herbrand universe {a, b} and a Herbrand interpretation specC = { p(a), p(b) }.

Then specC |= Q and P is not complete for Q. However (i) and (ii) hold.

The method proposed here proves program completeness for queries that termi-

nate. This should not be seen as a disadvantage, since in most cases termination of

a program has to be established anyway. Deransart and Ma luszyński (1993, Section

6.2.2, Theorem 6.1) provide a similar sufficient condition for completeness, which

does not refer to termination. Instead of (ii) it employs some other property, which

involves norms on atoms. Checking that property is similar to proving termination.

So whenever termination has to be shown anyway, our approach is simpler.

Notice that Proposition 3.14 is also applicable when termination is not proven.

Condition (i) alone implies that if we obtain a terminating execution for a partic-

ular query Q then all the answers for Q required by the specification have been

computed.

There is certain limitation in using interpretations as specifications for complete-

ness. One cannot express properties like “for any lists k, l there exists some m such

that P |= app(k, l,m).” (The same limitation applies to call-success specifications of

the operational approach from the previous section.) Such properties can however

be expressed by specifications which are theories.

The proof method of Proposition 3.14 is not complete, in contrast to that of

(Deransart and Ma luszyński 1993). For a counterexample, consider a program P

containing a clause p(~x)← p(~x). P is complete (for query p(~x)) w.r.t. specification

MP , but condition (ii) does not hold.

The method is however complete for arbitrary program P and any query Q for

which P terminates (or any query A1, . . . , An such that P terminates for any ground

instance of Ai, for i = 1, . . . , n). To prove this fact, assume that P is complete w.r.t.

a specification specC . Then there exists a weaker specification specC ′ ⊇ specC such

that P is complete w.r.t. specC ′ and (i) holds for specC ′. One may take as specC ′

the least model of P over the given preinterpretation. Thus Proposition 3.14 makes

it possible to show that, for any query as above, P is complete w.r.t. specC ′, and

thus specC .

4 Reasoning about normal programs

We first discuss specifications for normal programs and present a 2-valued charac-

terization of the 3-valued completion semantics. Then we introduce a method for

proving correctness (Section 4.3) and a method for proving completeness of pro-

grams (Section 4.4). Each presentation includes an example, discussion of complete-

ness of the method and comparison with an operational approach. In the section

on correctness we also show how the presented approach can be used to generalize

a well-known method for proving termination. We conclude with a bigger example

(Section 4.5).

In this chapter, unless stated otherwise, the considered programs (queries) are

normal programs (queries). We are interested in the completion semantics (log-

ical consequences of program completion in 3-valued logic (Kunen 1987)). This
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semantics corresponds to an operational notion of finite failure. So we usually skip

“finitely” in phrases like “finitely fails”.

4.1 Specifications for normal programs

In order to introduce specifications for normal programs let us first consider definite

programs with queries which may contain negative literals. Assume that we have

a definite program P complete w.r.t. a Herbrand specification specC and correct

w.r.t. a specS (C as completeness, S as soundness). If an atomic query A fails

then specC |= ¬A. So for P and atomic queries, negation as finite failure is correct

w.r.t. the specification for completeness. Now consider a query Q = p(~t),¬q(~u).

If it succeeds with an answer Qθ then spec1 |= Qθ for an interpretation spec1
that interprets p as specS and q as specC. If Q fails then spec2 |= ¬Q for an

interpretation spec2 that interprets p as specC and q as specS. In order to deal

with this phenomenon, we will use the following renamings of predicate symbols.

Definition 4.1

Let L be a first order language. Let Q be a formula or a set of formulae (e.g. a

query or a program) of L. Let us extend L by adding, for any predicate symbol p,

a new predicate symbol p′.

Q′ is Q with p replaced by p′ in every negative literal of Q (for any predicate

symbol p, except for =). Similarly, Q′′ is Q with p replaced by p′ in every positive

literal.

If I is an interpretation for L then I ′ is the interpretation obtained from I by

replacing each predicate symbol p by p′.

For normal programs, a specification for correctness should describe two (possibly

overlapping) sets of ground atoms — those allowed to succeed and those allowed to

fail. Similarly, a specification for completeness should describe two (disjoint) sets,

of the ground atoms required to fail and of those required to succeed. It is natural

to allow to succeed any atom not required to fail, and allow to fail any atom not

required to succeed. Hence the two sets needed to specify correctness can be the

complements of the two sets used to specify completeness.

Definition 4.2

A specification for a normal program is a pair (specS , specC ), where specC and

specS are interpretations over the same preinterpretation J , in which the equality

satisfies the Clark equality theory CET.

A specification (specS , specC ) is called proper if specC ⊆ specS .

Formal definitions of correctness and completeness are given in the respective

sections below. For an informal explanation, assume that a program P is correct

w.r.t. a proper Herbrand specification spec = (specS, specC). Then, if a ground

atomic query A succeeds then A ∈ specS, if it fails then A 6∈ specC. If P is

complete w.r.t. spec then any A ∈ specC succeeds and any A 6∈ specS fails. Thus

atomic queries from specS− specC are allowed to succeed or to fail, but nothing is

required about these queries.
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One can consider correctness w.r.t. a specification that is not proper (atomic

queries from specC−specS are neither allowed to succeed nor to fail). On the other

hand a program cannot be complete w.r.t. a non-proper Herbrand specification.

This would require that some atoms both succeed and fail.

Sometimes it may be helpful to view our specifications as interpretations in the 4-

valued logic of Belnap. The logical values in this logic are the subsets of {true, false}.

By removing the value {true, false} we obtain the logical values of the 3-valued

logic that is usually used when dealing with semantics of logic programs. For a

4-valued interpretation I and a formula F , I |=4 F means that the logical value

of F in I contains true. For more details see (Fitting 1991) or (Stärk 1996). A

specification spec = (specS, specC) can be seen as a pair I4S(spec), I4C(spec) of 4-

valued interpretations. The first interpretation corresponds to viewing spec as a

specification for correctness, the other — for completeness.

Definition 4.3

Let spec = (specS, specC) be a specification over a preinterpretation J .

I4S(spec) is the 4-valued interpretation over J such that for any J -atom A the

logical value of A contains true iff A ∈ specS, and it contains false iff A 6∈ specC.

I4C(spec) is the 4-valued interpretation over J such that for any J -atom A the

logical value of A contains true iff A ∈ specC, and it contains false iff A 6∈ specS.

We will avoid 4-valued interpretations by employing the predicate renaming of

Definition 4.1.

4.2 Characterization of 3-valued completion semantics

In this section we introduce a characterization of the 3-valued completion semantics

of normal programs. The characterization uses the standard 2-valued logic. It em-

ploys renaming of predicate symbols. There exist other 2-valued characterizations

of the completion semantics, based on predicate renaming. The approach of Man-

carella et al. (1990) (see also references therein) is applicable to a restricted class of

programs and deals with different semantics, which employs a domain closure axiom

(thus the underlying language has a finite set of function symbols). Our characteri-

zation combines the ideas of those of (Stärk 1996) and (Drabent and Martelli 1991;

Drabent 1996).

Lemma 4.4 (Characterization of completion semantics)

Let P be a program and Q a query.

comp(P ) |=3 Q iff P ′ ∪ONLY-IF(P ′′) ∪ CET |= Q′,

comp(P ) |=3 ¬Q iff P ′ ∪ONLY-IF(P ′′) ∪ CET |= ¬Q′′.

Proof

We use a result of Stärk (1996) who introduced a notion of partial completion

of a logic program and showed that 3-valued consequences of the completion of a

normal program are classical consequences of the partial completion of the program

(modulo a simple syntactic transformations described below).
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The main observation is that Stärk’s partial completion pcomp(P ) of a program

P and P ′∪ONLY-IF(P ′′)∪CET are just syntactical transformations of each other.

Let L be the underlying first-order language. The language L used by Stärk is

obtained from L by adding for every predicate symbol p a new symbol p with the

same arity.

Let us transform P ′, ONLY-IF(P ′′), Q′ and ¬Q′′ as follows:

– replace in ONLY-IF(P ′′) each implication of the form α→ β by ¬β → ¬α,

– transform each formula containing negation to an equivalent form in which

negation occurs only in negated literals,

– substitute each occurrence of a negated literal of the form ¬p′(~t) by atom

p(~t) (notice that every negated literal will be of that form and the obtained formulae

do not contain primed predicate symbols).

Let us denote the translation of F by F (where F is P ′, ONLY-IF(P ′′), Q′ or

¬Q′′). Now the partial completion pcomp(P ) of a program P is P ′∪ONLY-IF(P ′′)∪

CET .

From Theorems 3.2 and 3.4 in (Stärk 1996) it follows that:

comp(P ) |=3 Q iff pcomp(P ) |= Q′

comp(P ) |=3 ¬Q iff pcomp(P ) |= ¬Q′′

Let F be Q′ (resp. ¬Q′′). pcomp(P ) |= F is equivalent to P ′ ∪ ONLY-IF(P ′′) ∪

CET |= F .

4.3 Correctness of normal programs

We now introduce our method for proving program correctness. The presentation is

followed by an example proof. Section 4.3.3 discusses completeness of the method

and the next section compares the method with some other approaches. Section

4.3.5 shows how correctness w.r.t. approximate specifications can be employed in

generalizing a known method of proving program termination. The reader may wish

to skip Sections 4.3.3 – 4.3.5 in the first reading.

4.3.1 Proof method

Definition 4.5

We say that a program P is correct with respect to a specification spec =

(specS, specC) if for any query Q

(i) if comp(P ) |=3 Q then specS ∪ specC′ |= Q′

(ii) if comp(P ) |=3 ¬Q then specS ∪ specC′ |= ¬Q′′

The reader may compare this definition with the informal discussion of Section

4.1, related to Definition 4.2.11 In particular, if P is correct with respect to spec =

(specS, specC), then from the soundness of SLDNF-resolution it follows that every

11 Notice that specS ∪ specC′ |= Q′ is equivalent to I4
S
(spec) |=4 Q, and specS ∪ specC′ |= ¬Q′′

is equivalent to I4
S
(spec) |=4 ¬Q.
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computed answer Q (of SLDNF-resolution) satisfies specS∪ specC′ |= Q′. It means

that for each positive literal A in Q, specS |= A, and for each negative literal ¬A in

Q, specC |= ¬A. For P and spec as above, if a query Q fails then specS∪ specC′ |=

¬Q′′ (by soundness of negation as failure). In the case of queries consisting of one

literal A (resp. ¬A) it means that specC |= ¬A (resp. specS |= A).

The same holds for any operational semantics, which is sound w.r.t. 3-valued

completion semantics. This includes constructive negation (cf. (Drabent 1995) and

the references therein) and extensions of SLDNF-resolution allowing selecting a

non-ground negative literal ¬A if A fails or succeeds without binding its variables

(Lloyd 1987; Stärk 1996).

The proposed proof method is given by the following theorem. (spec= is defined

in Section 3.3.)

Theorem 4.6 (Correctness, normal programs)

Let P be a program and spec = (specS, specC) a specification, such that

(a) specS ∪ specC′ |= P ′

(b) specS ∪ specC′ ∪ spec= |= ONLY-IF(P ′′)

then

P is correct w.r.t. spec.

Proof

From (a), (b) and spec= |= CET we obtain specS ∪ specC ′ ∪ spec= |= P ′ ∪

ONLY-IF(P ′′)∪CET . Assume that comp(P ) |=3 Q (respectively comp(P ) |=3 ¬Q).

By Lemma 4.4, specS ∪ specC′ |= Q′ (resp. specS ∪ specC′ |= ¬Q′′).

4.3.2 Example correctness proof

We illustrate our correctness proof method by applying it to a program (from

(Stärk 1996)) defining the subset relation. We present a detailed proof.

Example 4.7

Let P be the following program:

subset(L,M)← ¬notsubset(L,M)

notsubset(L,M)← member(X,L),¬member(X,M)

member(X, [X |L])←

member(X, [Y |L])← member(X,L)

Consider Herbrand specification spec = (specS, specC), where

specS = sSm ∪ sSn ∪ sSs, specC = sCm ∪ sCn ∪ sCs

sSm = {member(x, l) | l is a list→ x ∈ l}

sCm = {member(x, l) | l is a list ∧ x ∈ l}

sSn = {notsubset(l,m) | l and m are lists→ l 6⊆ m}

sCn = {notsubset(l,m) | l and m are lists ∧ l 6⊆ m}

sSs = {subset(l,m) | l and m are lists→ l ⊆ m}

sCs = {subset(l,m) | l and m are lists ∧ l ⊆ m}
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(l ⊆ m means that all elements of l are elements of m.)

We would like to prove that our program is correct with respect to the above

specification spec. We show that conditions (a) and (b) of Theorem 4.6 are sat-

isfied. This implies that whenever subset(l,m) is a computed answer of P then

sSs |= subset(l,m), and thus if l,m are lists then l ⊆ m. Also, whenever a query

subset(l,m) fails then sCs |= ¬subset(l,m). Hence l or m is not a list or l 6⊆ m.

Let spSC = specS ∪ specC′. In order to prove condition (a) one has to show, for

each clause C of P , that spSC |= C′. In order to prove condition (b) one has to show

that each implication of ONLY-IF(P ′′) is true in the interpretation spSC ∪ spec=.

Let us first consider the second clause of program P . For condition (a) we have

to prove that:

spSC |= notsubset(L,M)← member(X,L) ∧ ¬member′(X,M).

Let l, m, x be any elements of the universe such that spSC |= member(x, l) ∧

¬member′(x,m). That means that member(x, l) ∈ sSm and member(x,m) 6∈ sCm.

We would like to prove that notsubset(l,m) ∈ sSn. So assume that l and m are lists.

From member(x, l) ∈ sSm we obtain that x ∈ l, and from member(x,m) 6∈ sCm —

x 6∈ m. Hence l 6⊆ m.

For condition (b) and predicate notsubset we have to show that

spSC |= notsubset′(L,M)→ ∃X(member′(X,L) ∧ ¬member(X,M))

Let l, m be any elements of the universe such that spSC |= notsubset′(l,m). So

l and m are lists and l 6⊆ m. So there exists an element, say a, such that a ∈ l

and a 6∈ m. Thus member(a, l) ∈ sCm and member(a,m) 6∈ sSm. Hence spSC |=

member′(a, l) ∧ ¬member(a,m), so the implication above is true in spSC.

Let C denote the first clause of P . Notice that subset(L,M)↔ ¬notsubset(L,M)

is true both in sSs∪sCn and in sCs∪sSn. After replacing notsubset by notsubset′,

this implies sSs ∪ sC′
n |= C′, and hence (a) for the first clause. After replacing

subset by subset′, this implies sSn ∪ sC′
s |= subset′(L,M) → ¬notsubset(L,M),

hence (b) for predicate subset.

The proof for predicate member boils down to a proof of a definite program (a

proof of correctness and part (i) of completeness proof, cf. Proposition 3.14). ✷

4.3.3 On completeness of the proof method

To discuss completeness of the proof method we need an ordering on specifications.

Definition 4.8

Let sp = (spS, spC), spec = (specS, specC) be specifications (over the same prein-

terpretation J ). We say that sp is stronger than spec (written sp � spec) if

spS ⊆ specS and specC ⊆ spC.

The set of atoms allowed to succeed (fail) by the stronger specification is a subset

of the set of atoms allowed to succeed (fail) by the weaker one. The set of atoms

required to succeed (fail) by the stronger specification is a superset of the analogical

set for the weaker one.
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Notice that this definition corresponds to an intuitive notion of a stronger spec-

ification. Let spec1 � spec2, then for any program P , if P is correct w.r.t. spec1
then it is correct w.r.t. spec2.

The ordering � on specifications corresponds to the information content order-

ing ≤k (Fitting 1991) on 4-valued specifications for correctness (cf. the last para-

graphs of Section 4.1): spec1 � spec2 iff I4S(spec1) ≤k I4S(spec2). It also holds that

spec1 � spec2 iff I4C(spec2) ≤k I4C(spec1).

We say that a proof method is complete for P if the following condition holds:

if P is correct w.r.t. a specification spec then there exists a specification stronger

than spec which satisfies the conditions of the proof method.

As the following examples show, the proof method for program correctness (The-

orem 4.6) is not complete.

Example 4.9

Let P be the following program:

p(f(x))← p(x)

q ← p(x)

Consider a non-proper Herbrand specification spec = (∅, {q}), which says that no

atom is allowed to succeed and all atoms except q are allowed to fail. Notice that

I4S(spec) = ΦP ↑ω and ΦP ↑ω is not the ≤k-least fixpoint, where ΦP is the 4-valued

immediate consequence operator of P (Fitting 1991). Program P is correct w.r.t.

this specification. Unfortunately neither spec nor any specification stronger than

spec satisfies conditions (a) and (b) of Theorem 4.6 (for justification see below).

Thus the proof method cannot be applied.

On the other hand program P is correct w.r.t. a proper specification (∅, ∅), corre-

sponding to the least fixpoint of the operator ΦP , and this specification does satisfy

conditions (a) and (b). ✷

Example 4.10

Consider a program P :
p(a)←

q ← ¬p(x)

and assume that the underlying language has exactly one function symbol a. (This

example can be easily generalized for any finite set of function symbols.) Notice

that comp(P ) 6|=
3
q and comp(P ) 6|=

3
¬q. Consider a Herbrand specification spec =

({p(a)}, {p(a), q}), which allows q neither to succeed nor to fail. P is correct w.r.t.

spec but the verification condition of our method (Theorem 4.6) is not satisfied.

The latter is due to {p(a), p′(a), q′}) 6|= q′→∃x¬p(x).

The condition holds for a weaker specification ({p(a)}, {p(a)}) that corresponds

to the least fixpoint of ΦP over one element Herbrand algebra.

To explain the incompleteness we will refer to the 4-valued immediate conse-

quence operator ΦJ
P (over a preinterpretation J ). A 4-valued interpretation I is a

pre-fixpoint of ΦJ
P iff ΦJ

P (I) ≤k I. For any α, the interpretation ΦJ
P ↑α is 3-valued
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and is identical to the corresponding power of the 3-valued immediate consequence

operator (Stärk 1996).

Conditions (a) and (b) of Theorem 4.6 mean that the 4-valued interpretation

I4S(spec) corresponding to a specification spec over a preinterpretation J is a pre-

fixpoint of ΦJ

P . A program P may be correct w.r.t. a specification spec for which

I4S(spec) is not preceded by the least fixpoint of ΦJ

P (in the ordering≤k). Then there

does not exist a specification which satisfies (a), (b) and is stronger than spec. Hence

Theorem 4.6 is inapplicable in such a case. In Example 4.9 this happens because

ΦJ

P ↑ω is not a fixpoint of ΦJ

P . In Example 4.10 the program is correct w.r.t. a

specification, which is stronger than the ΦJ

P ↑ω.

When the set of function symbols of the underlying language is infinite then

the strongest Herbrand specification with respect to which P is correct is specω,

where I4S(specω) = ΦP ↑ω. The latter follows from the fact (Kunen 1987) that

comp(P ) |=3 F iff ΦP ↑n |=3 F for some finite n (where F is a query or a negation

of a query).

This reasoning can be summarized as:

Proposition 4.11

The correctness proof method of Theorem 4.6 is complete for an arbitrary program

P and for any specification weaker than the ≤k-least fixpoint of ΦJ

P .

When the set of function symbols of the underlying language is infinite then the

proof method is complete for an arbitrary Herbrand specification spec and any

program P for which ΦP ↑ω is the ≤k-least fixpoint of ΦP .

We believe that cases for which the method is not complete are rather artificial

(like those from the two examples above) and are rare in practice.

4.3.4 Correctness proving methods — comparison

In this section we compare the correctness proof method from Section 4.3.1 with

that for definite programs (Section 3.1) and with the approach of (Pedreschi and Ruggieri 1999).

We show that the latter is (strictly) weaker, as far as declarative properties of pro-

grams are concerned.

We first show that the natural method for proving correctness of definite pro-

grams (Proposition 3.2) is a special case of the method for normal programs (Theo-

rem 4.6). Let P be a definite program and specS a specification for correctness.

Take spec = (specS, ∅). Then condition (a) is equivalent to specS |= P (i.e.

the verification condition of the natural method), and condition (b) reduces to

spec= |= ONLY-IF(P ), which trivially holds.

A straightforward way of generalizing to normal programs the natural method

for proving correctness of definite programs is to replace 2-valued interpretations

by 4-valued ones, and programs by program completions:

Proposition 4.12

Let P be a program, Q a query and I a 4-valued interpretation such that I |=4

comp(P ).
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1. If comp(P ) |=3 Q then I |=4 Q. If comp(P ) |=3 ¬Q then I |=4 ¬Q.

2. P is correct w.r.t. a specification spec such that I4S(spec) = I.

Proof

Let F be Q or ¬Q. From comp(P ) |=3 F it follows that comp(P ) |=4 F (Stärk 1996).

As I |=4 comp(P ), we obtain I |=4 F . If I4S(spec) = I then implications 1. are

equivalent to the conditions (i), (ii) of Definition 4.5 of program correctness.

The proof method provided by Proposition 4.12 is in fact weaker than that of

Theorem 4.6, as I4S(spec) |=4 comp(P ) implies conditions (a) and (b) of the Theo-

rem but not vice versa. This is because I4S(spec) |=4 comp(P ) means that I4S(spec)

is a fixpoint of the 4-valued immediate consequence operator ΦP (Stärk 1996),

while conditions (a), (b) mean that it is a pre-fixpoint of ΦP . (For details see Sec-

tion 4.3.3.)

Pedreschi and Ruggieri (1999) presented an operational method for proving to-

tal correctness of normal programs. It is an extension of the method for definite

programs discussed in Section 3.2. The method uses call-success specifications (cf.

Section 3.2), the difference is that the pre- and postconditions are Herbrand inter-

pretations. The core of the method is the following definition of a proof relation ⊢t.

A level mapping is a function from ground atoms to natural numbers. For a level

mapping | | and an atom A, |A| will denote the maximum of {|Aθ| : Aθ is ground}

or ∞ when such maximum does not exist.

Definition 4.13 (Pedreschi and Ruggieri 1999, Definition 5.3 )

Let P be a program, and 〈Pre, Post〉 a call-success specification, where Pre, Post

are Herbrand interpretations. We write ⊢t {Pre}P{Post} iff there exists a level

mapping | | such that:

(i) for every ground instance A← L1, . . . , Ln of a clause of P :

1. for i ∈ [1, n]:

Pre |= A ∧ Post |= L1, . . . Li−1 =⇒
{

Pre |= Bi ∧ | A | > | Bi | if Li = Bi

Pre |= Bi ∧ | A | > | Bi | if Li = ¬Bi

2. Pre |= A ∧ Post |= L1, . . . , Ln =⇒ Post |= A

(ii) TP (Post) ⊇ Post ∩ Pre.

If ⊢t {Pre}P{Post} holds and P does not flounder for (ground atomic) queries

from Pre then P is totally correct w.r.t. 〈Pre, Post∩Pre〉 in the following sense:

1. Post ∩ Pre is the set of those atoms from Pre that succeed,

2. Pre \ Post is the set of those atoms from Pre that fail,

3. if Pre |= A0, |A0| is finite, and L is A0 or ¬A0 then the LDNF-tree with the

root L

(a) is finite, and

(b) for each selected literal A or ¬A in the tree, Pre |= A.
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Properties 1. and 2. mean that P is correct (in the sense of Definition 4.5) w.r.t. a

specification spec for which (H\Pre)∪ (Post∩Pre) are the ground atoms allowed

to succeed and (H\Pre)∪(Pre\Post) are the ground atoms allowed to fail. Simple

calculation results in spec = ((H \ Pre) ∪ Post, Pre ∩ Post).

The following proposition states that whenever the method of (Pedreschi and Ruggieri 1999)

can provide a proof of program correctness (in the sense of Definition 4.5) then a

proof can be obtained by our method.

Proposition 4.14

Assume that ⊢t {Pre}P{Post} holds. Then conditions (a) and (b) of Theorem 4.6

hold for specification spec = (specS, specC), such that specS = (H \ Pre) ∪ Post

and specC = Pre ∩ Post. Hence P is correct w.r.t. spec.

Proof

To prove (a) consider a ground instance H ← ~B of a clause of P and assume that

specS∪specC′ |= ~B′ and Pre |= H . (If Pre 6|= H then condition (a) trivially holds.)

Then for each literal L of ~B we obtain from (i) 1. by induction that Pre |= L if L

is positive, Pre |= ¬L if L is negative, and hence Post |= L (as in the first case

specS |= L and in the second case specC |= L). Thus Post |= H , by (i) 2., and

specS ∪ specC′ |= H .

To prove (b) it is sufficient to show that for every ground atom A such that

specC |= A there exists a ground instance of a program clause A ← ~B such that

specS ∪ specC′ |= ~B′′. Let A be a ground atom for which specC |= A (i.e. A ∈

Pre ∩ Post). By (ii) A ∈ TP (Post). From the definition of TP it follows that there

exists a ground instance of a program clause A ← ~B such that Post |= ~B. From

(i) 1. each literal Li of ~B, where Li = Bi or Li = ¬Bi, satisfies Pre |= Bi. In case

Li = Bi we have Post |= Li and Pre |= Li, thus specC |= Li. In case Li = ¬Bi we

have Post |= Li and Pre 6|= Li, thus specS |= Li. Hence specS ∪ specC′ |= L′′
i for

every literal Li of ~B, so specS ∪ specC′ |= ~B′′.

The condition ⊢t {Pre}P{Post} in the Proposition may be weakened: notice that

no facts concerning the level mapping (from the definition of ⊢t) were used in the

proof.

We showed that the proof method of (Pedreschi and Ruggieri 1999) is weaker

than that of Theorem 4.6, as far as the declarative semantics and program correct-

ness are concerned. It is actually strictly weaker, due to the following limitations.

The method deals only with total correctness, thus correctness, completeness and

termination have to be proved together; none of them can be dealt with separately.

As a result, the method is not applicable to approximate specifications, for which

a program is correct but not complete (or does not terminate). A specification

has to be exact for the atoms in Pre, in the sense that it states exactly which of

them succeed and which fail. Formally, Pre ∩ Post is unique for a given program

and precondition.12 The method deals with LDNF-resolution and is inapplicable

12 Notice that this restriction does not concern the operational method for definite programs
(Section 3.2); that method permits approximate specifications.
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to programs that flounder or do not terminate under Prolog selection rule (but

are intended to be executed under some other operational semantics, for instance

delays or constructive negation). It is also inapplicable when the LDNF-tree is in-

finite but has success nodes (e.g. when a query has an infinite set of computed

answers). In all these cases the method of Theorem 4.6 is applicable. Notice also

that the operational method, in contrast to our approach, requires separate proving

of non-floundering.

Obviously, the method of (Pedreschi and Ruggieri 1999) deals also with proper-

ties which are out of the scope of our approach, namely termination and the form

of selected literals in LDNF-resolution. See Section 4.4 for a comparison with the

method for proving program completeness proposed in this paper.

4.3.5 A note on proving termination

This section, in contrast to the rest of the paper, considers a property which is

not declarative. We show how approximate specifications (which describe declara-

tive notion of program correctness) can be employed in generalizing a well-known

method of proving termination.

Apt and Pedreschi (1993) presented a method of proving termination of normal

programs with the Prolog selection rule. They introduced a notion of an acceptable

program (w.r.t. a 2-valued interpretation I and a level mapping). Any acceptable

program is left terminating, this means it terminates with the Prolog selection rule

for all ground goals. The interpretation I is a model of the program and a model

of comp(P−), where P− is the involved in negation part of the program.13 It turns

out that I is unique for all the predicates in P− (Apt and Pedreschi 1993). This is

a disadvantage of the approach; to show that P is left terminating one has to know

the unique interpretation.

We show that the unique 2-valued interpretation can be replaced by an approxi-

mate specification spec w.r.t. which the program is correct. We introduce a notion

of an approximately acceptable program (a-acceptable in short). We prove that each

a-acceptable program is acceptable, and thus left terminating.

Definition 4.15

Let P be a program, | | a level mapping, and spec = (specS, specC) a specification.

P is called a-acceptable with respect to | | and spec if P is correct w.r.t. spec,

and for every ground instance A ← L1, . . . , Ln of a clause from P the following

implication holds for i ∈ [1, n]:

if specS ∪ specC′ |=
i−1∧

j=1

L′
j then | A | > | Li | .

where |¬B| = |B| for any ground atom B.

13 To define P−, first Neg∗
P

is introduced; it is the least set such that any predicate symbol
occurring in a negative literal of P is in Neg∗

P
, and if p ∈ Neg∗

P
occurs in the head of a clause

C of P and q in the body of C then q ∈ Neg∗
P
. Program P− contains those clauses of P that

use symbols from Neg∗
P

in their heads.
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This definition differs from that of an acceptable program in two aspects. Con-

dition I |=
∧i−1

j=1
Lj has been replaced by specS ∪ specC′ |=

∧i−1

j=1
L′
j. Also, P is

required to be correct w.r.t. spec, instead of I being a model of P ∪ comp(P−),

where comp is taken w.r.t. the alphabet Neg∗P of predicate symbols.14

The notion of a-acceptability is a generalization of that of acceptability. If P is

acceptable w.r.t. | | and an interpretation I, which is a model of comp(P ), then P

is a-acceptable w.r.t. | | and spec = (I, I). This follows directly from the definitions

and from the fact that I |= comp(P ) implies correctness of P w.r.t. (I, I).

In a general case, if P is acceptable w.r.t. | | and an interpretation I over a

preinterpretation J then P is a-acceptable w.r.t. | | and spec = (I, I \ B), where

B is the set of J -atoms of the form p(~t), where p 6∈ Neg∗P . This follows from the

definitions and from the fact that I |= P ∪comp(P−) implies that P is correct w.r.t.

(I, I \ B). The latter implication follows from a lemma that for any J -literal L and

any natural number n, if L is true in (the 3-valued interpretation) ΦJ

P ↑n then L′

is true in (2-valued) I ∪ (I \ B)′, where ΦJ

P is the 3-valued immediate consequence

operator over J . We skip details of the proof.

To show that a-acceptability implies left termination we employ the following

theorem, analogous to Theorem 6.7 of (Apt and Pedreschi 1993). In what follows,

ΦP denotes the 3-valued immediate consequence operator. A 3-valued Herbrand

interpretation is total if any ground atom is either true or false in this interpretation.

Theorem 4.16

Assume that the set of function symbols is infinite. Let P be an a-acceptable pro-

gram w.r.t. | | and spec. Then ΦP ↑ω is total.

Proof (outline)

The proof is basically the same as that of (Apt and Pedreschi 1993), however a

substantial part of the latter proof is made shorter. The part is entitled Subcase 2

and shows that ΦP ↑n |=3 ¬Lk̄, for a literal Lk̄ which is not undefined in ΦP ↑n

and for which I |= ¬Lk̄ (where P is acceptable w.r.t. I). In our case I |= ¬Lk̄ is

replaced by specS ∪ specC′ |= ¬L′

k̄
(where spec = (specS, specC)) and the whole

Subcase 2 is reduced to the following: an assumption that Lk̄ is true in ΦP ↑n

leads (by Kunen theorem (Kunen 1987; Doets 1994)) to comp(P ) |=3 Lk̄ and, by

correctness of P , to specS ∪ specC′ |= L′

k̄
, contradiction. So ΦP ↑n |=3 ¬Lk̄.

Now we can prove the main result.

Theorem 4.17

Assume that the set of function symbols is infinite. Let P be an a-acceptable pro-

gram w.r.t. | | and spec. Then P is acceptable (w.r.t. | | and some interpretation)

and P is left terminating.

14 Thus if comp(P−) contains an axiom ¬p(~x) then p ∈ Neg∗
P
.
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Proof

Let spec = (specS, specC) and P be as in the assumptions of the theorem. By

Theorem 4.16 ΦP ↑ω is total, thus this is the least fixpoint of ΦP , hence ΦP ↑ω |=3

comp(P ). Let I be the ground atoms true in ΦP ↑ω, we have I |= comp(P ).

Now to show that P is acceptable w.r.t. I and | |, it is sufficient to show that

I |= L implies specS ∪ specC′ |= L′, for any ground literal L.

Consider a ground literal L such that I |= L. This means ΦP ↑ω |=3 L. Thus

ΦP ↑n |=3 L for some n < ω. Hence comp(P ) |=3 L, by Kunen theorem (Kunen 1987;

Doets 1994). So specS ∪ specC′ |= L′, by the correctness of P .

Example 4.18

To illustrate the method we employ the following program, similar to program

GAME of (Apt and Pedreschi 1993).

win(X)← move(X,Y ),¬win(Y ).

move([l|X ], X).

move([l, l|X ], X).

move([l, l, l, l|X ], X).

It models a two person game, in each move a player removes a certain number of

tokens, the one who removes the last token wins.

Let | | be the function on ground terms such that |f(t1, . . . , tn)| = 0 if f 6= [ | ]

and |[t1|t]| = |t|+1. Consider a level mapping |win(t)| = |t|+1, |move(t1, t2)| = |t1|,

and a Herbrand specification spec = (sSw ∪ sSm, ∅) where

sSw = {win(t) | t is a ground term },

sSm = {move(t1, t2) | |t1| > |t2| }.

The program is obviously correct w.r.t. spec, and it is easy to check that it is

a-acceptable. Thus it is left terminating. Notice that the analogical proof in (Apt and Pedreschi 1993)

requires providing the unique model I of the program completion. This model is

also needed to apply the method of (Pedreschi and Ruggieri 1999) for this program.

(More precisely, in order to show termination for goals from a precondition Pre,

one has to know I ∩ Pre; see the discussion of Section 4.3.4.)

The proof of (Apt and Pedreschi 1993) considers arbitrary relation move for

which the corresponding graph is finite and acyclic. Our proof can be easily ad-

justed to such case, by replacing function | | above by the function f used in

(Apt and Pedreschi 1993) to define the level mapping in the proof.15

Left termination does not imply a-acceptability. But according to Theorem 4.18

of (Apt and Pedreschi 1993) if P is a left terminating, non-floundering program

then P is acceptable w.r.t. some level mapping | | and a model I of comp(P ). Thus

P is a-acceptable w.r.t. | | and specification spec = (I, I).

In this section we generalized the notion of acceptable program, so that in termi-

nation proofs one can use approximate specifications instead of unique models. We

15 As function f is defined only for the nodes of the graph, it should be generalized to arbitrary
terms. This can be done by assuming f(t) = 0 for any term which is not a node of the graph.
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deal with termination of a program for all ground goals. There is another path of

generalizing the method of (Apt and Pedreschi 1993) to programs that terminate

only for some ground goals (Bossi et al. 1994; Schreye et al. 1992). The approach

of (Pedreschi and Ruggieri 1999) belongs to this path. It proves left termination for

the goals satisfying the precondition, however — as discussed in Section 4.3.4 —

for such goals the specification has to be exact.

We expect that some improvements of the method of (Apt and Pedreschi 1993)

are also applicable to the method presented here, for instance a weakening of in-

equalities in case of non-mutually recursive predicates (Apt and Pedreschi 1994;

Pedreschi and Ruggieri 1999).

4.4 Completeness of normal programs

As the operational semantics for normal programs we assume SLDNF-resolution, as

defined by Apt and Doets (1994). To discuss completeness we need to refer to the

notion of SLDNF-tree. We outline its definition below, for more details the reader

is referred to (Apt and Doets 1994) or (Doets 1994).

An SLDNF-tree for query Q and program P is a set of trees, with one of them

distinguished as the main tree. The nodes of the trees are queries and the trees

are, roughly speaking, SLDNF-trees of (Lloyd 1987). Q is the root of the main tree.

Any node with a non-ground negative literal selected is a leaf of a tree, such a node

is marked floundered. Whenever a ground negative literal ¬A is selected in a node

N then there exists a subsidiary tree with the root A. The whole SLDNF-tree may

be viewed as a tree of trees, in which the tree with the node N is the parent of the

subsidiary tree with the root A.

The leaves of each tree can be marked failed or success, with the expected mean-

ing. So if a leaf N is neither marked failed nor success then a negative literal ¬A

is selected in N , moreover A is non-ground or the subsidiary tree for A neither

succeeds nor finitely fails. A tree succeeds if it has a success leaf. A tree finitely fails

if it is finite and all its leaves are marked failed.

The SLDNF-tree succeeds (finitely fails) if the main tree does. To each success

leaf of the main tree there corresponds a computed answer substitution θ for Q

(and a computed answer Qθ), defined as expected.

4.4.1 Proof method

In this section we introduce a method for proving program completeness. Then

we briefly discuss completeness of the method and provide a comparison with an

operational proof method.

Definition 4.19

We say that a program P is complete for a query Q w.r.t. a specification spec =

(specS, specC) if

(i) specS ∪ specC′ |= Q′′ implies comp(P ) |=3 Q,

(ii) specS ∪ specC′ |= ¬Q′ implies comp(P ) |=3 ¬Q.
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Program P is complete w.r.t. spec if it is complete for any query Q.16

We say that a program P is SLDNF-complete for a query Q w.r.t. a specification

spec = (specS, specC) if

(i) specS∪ specC′ |= Q′′σ implies that some SLDNF-tree for Q succeeds with an

answer Qθ more general than Qσ,

(ii) specS ∪ specC′ |= ¬Q′ implies that some SLDNF-tree for Q finitely fails.

From the soundness of SLDNF-resolution it follows that SLDNF-completeness

implies completeness.

For Herbrand specifications completeness implies correctness:

Proposition 4.20

If a program P is complete w.r.t. a Herbrand specification spec = (specS, specC)

then

1. spec is proper, and

2. P is correct w.r.t. spec.

Proof

1. If spec is not proper then there exists a ground atom A ∈ specC \ specS. By

Definition 4.19, comp(P ) |=3 A and comp(P ) |=3 ¬A; contradiction.

2. Assume P is not correct w.r.t. spec. So for some query Q we have comp(P ) |=3 Q

and specS∪specC′ 6|= Q′, or comp(P ) |=3 ¬Q and specS∪specC′ 6|= ¬Q′′. In the first

case we have specS ∪ specC′ |= ¬Q′θ for some ground Qθ and, by Definition 4.19,

comp(P ) |=3 ¬Qθ; contradiction. Similarly in the second case, specS ∪ specC′ |=

Q′′θ and comp(P ) |=3 Qθ; contradiction.

To show that the proposition does not hold for non-Herbrand specifications,

consider a preinterpretation J , the set S = { t ∈ |J | | t is a value in J of a ground

term}, and an element u ∈ |J | \ S. Let I = { p(t) | t ∈ S }. Program { p(X)←} is

complete w.r.t. (I, I) and w.r.t. (I, I ∪{p(u)}), the latter specification is not proper.

The program is however not correct w.r.t. any of these specifications. We consider

completeness w.r.t. non-proper specifications as a rather pathological case.

The following theorem gives sufficient conditions for program completeness.

Theorem 4.21 (Completeness, normal programs)

Assume that the set of function symbols is infinite. Let P be a program, Q a query

and spec = (specS, specC) a specification such that

1. P is correct w.r.t. spec, and

2. there exists an SLDNF-tree for Q such that its main tree is finite and all the

leaves of the main tree are marked failed or success.

Then P is SLDNF-complete and complete for Q w.r.t. spec = (specS, specC).

16 These notions can be expressed in terms of the 4-valued logic by using the fact that spec ∪
specC′ |= Q′′ is equivalent to I4

C
(spec) |=4 Q, and specS ∪ specC′ |= ¬Q′ is equivalent to

I4
C
(spec) |=4 ¬Q.
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Condition 2. implies that each ¬A selected in the main tree is ground and the

subsidiary tree for A succeeds or fails. Notice that the SLDNF-tree may be infinite

or contain floundering nodes. However the “important part” of it is finite and

without floundering and can be computed under some search strategy in a finite

number of steps. (When a success is obtained in a subsidiary tree, traversing this

tree can be abandoned.) Remember that the selection rule in the tree is arbitrary,

this includes delay mechanisms. If due to delays no literal is selected in a node of

the main tree then condition 2. is not satisfied. It is a kind of floundering, the node

is a leaf marked neither failed nor success.17

The proof uses the following lemma.

Lemma 4.22
Assume that the set of function symbols is infinite. Let t, t1, . . . , tn be terms such

that t is not an instance of any ti. Then there exists an instance of t which is not

unifiable with any ti.

Proof
Let v1, . . . , vk (k ≥ 0) be the variables of t. Let f1, . . . , fk be distinct function

symbols (of arity ≥ 0) not occurring in t, t1, . . . , tn and c be a constant. Let ui =

fi(c, . . . , c), for i = 1, . . . , k, be terms. Consider a substitution θ = {v1/u1, . . . , vk/uk}.

Assume that s = tθ is unifiable with some ti. As s is ground, tθ = tiσ for some

substitution σ. Terms u1, . . . , uk occur (as subterms) in σ (since they occur in tiσ).

Let us replace each occurrence of term uj in σ by the variable vj , obtaining σ′, and

remove all the pairs of the form vj/vj from σ′, obtaining a substitution σ′′. Then

t = tiσ
′′, contradiction with the assumption of the lemma. So s = tθ is not unifiable

with any ti.

Now we can present a proof of Theorem 4.21.

Proof
Assume that conditions 1. and 2. hold. Let T be the SLDNF-tree for Q satisfying 2.

(i) Let specS∪specC′ |= ¬Q′. We show that T finitely fails. Assume that it does not.

Then T succeeds with some answer Qθ. By correctness we have specS ∪ specC′ |=

Q′θ. Contradiction (with specS ∪ specC′ |= ¬Q′).

(ii) Let specS ∪ specC′ |= Q′′σ. We want to show that T contains an answer more

general than Qσ. Assume the contrary. Let Q1, . . . , Qn (n ≥ 0) be the answers of

T, Qσ is not an instance of any of them. By Lemma 4.22, there exists Qσθ which

is not unifiable with any of Q1, . . . , Qn.

Consider the SLDNF-tree U for Qσθ under the same selection rule18 as T. The

nodes of U are instances of corresponding nodes of T. The main tree of U is finite

and all its leaves are marked failed or success. Any answer of U is an instance of some

Qi and of Qσθ. So no such answer exists and U finitely fails. Hence specS∪specC′ |=

¬Q′′σθ. Contradiction.

17 Formally, the tree is not an SLDNF-tree, as a selection rule has to select a literal in every
non-empty query.

18 We omit tedious formalization of this notion.
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We conclude this section by discussing completeness of the method and comparing

it with the method of (Pedreschi and Ruggieri 1999).

A program P may be complete w.r.t. a specification without satisfying condition

2. of Theorem 4.21 (e.g. a query may succeed but the main tree may be infinite). In

such cases the method of proving completeness is inapplicable. However the method

is trivially complete for Herbrand specifications and programs which terminate

without floundering for the considered queries (formally: satisfy condition 2. of

the theorem). This is because completeness w.r.t. a Herbrand specification implies

correctness w.r.t. the same specification (Proposition 4.20). Hence condition 1. of

Theorem 4.21 holds.

The operational proof method for total correctness of Pedreschi and Ruggieri

(1999) was discussed in Section 4.3.4. Total correctness includes completeness.

From the discussion after Definition 4.13 it follows immediately that the verifi-

cation condition of that method implies completeness of P (in the sense of Def-

inition 4.19) for ground atomic queries from Pre with respect to specification

spec = ((H\Pre)∪Post, Pre∩Post). It also implies termination for such queries

and, by Proposition 4.14, correctness of P w.r.t. spec. Thus the completeness can

be shown by our method, as the conditions of Theorem 4.21 hold (for all ground

atomic queries which are requested by spec to succeed or fail). Remember however

that our approach requires a separate termination proof.

This shows that for ground atomic queries the method of this section is stronger

than that of (Pedreschi and Ruggieri 1999) (as far as program completeness in the

sense of Definition 4.19 is concerned). It is also strictly stronger, as it applies to

programs that loop or flounder under Prolog selection rule, but do not under some

other one.19

4.4.2 Example completeness proof

Let us illustrate our method of proving completeness of normal programs by ap-

plying it to a program defining the subset relation with an additional requirement

that a subset must be a list without repetitions. The example is rather lengthy, as

our intention was to present a detailed proof.

Example 4.23

Let P be the following program:

subs([ ], L)←

subs([H |T ], LH)← select(H,LH,L), subs(T, L),¬member(H,T )

select(H, [H |L], L)←

select(H, [X |L], [X |LH ])← select(H,L,LH)

The definition and specification of member are the same as in Example 4.7. A

19 A wider class of queries is dealt with by Theorem 5.10 of (Pedreschi and Ruggieri 1999). It
provides a criterion implying condition (i) of Definition 4.19 of completeness. Also in this case
the criterion implies that a completeness proof by our method exists.
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Herbrand specification for P is spec = (specS, specC), where

specS = sSm ∪ sSsel ∪ sSsubs, specC = sCm ∪ sCsel ∪ sCsubs

sSsel = {select(e, l,m) | l is a list → e ∈ l ∧m is a list ∧ l ≈ [e|m]}

sCsel = {select(e, l,m) | l and m are lists such that

l = [e1, . . . , ei, e, ei+1, . . . ek], m = [e1, . . . , ei, ei+1, . . . ek], 0 ≤ i ≤ k}

sSsubs = {subs(l,m) | m is a list→ listd(l) ∧ l ⊆ m}

sCsubs = {subs(l,m) | m is a list ∧ listd(l) ∧ l ⊆ m}

Here l ≈ m means that lists l and m contain the same elements and listd(l) means

that l is a list with distinct elements.

Let spSC = specS ∪ specC′. To prove condition (a) for the second clause of

predicate subs/2, assume that

spSC |= select(h, lh, l)∧ subs(t, l) ∧ ¬member′(h, t). (A)

We show that subs([h|t], lh) ∈ sSsubs. So let lh be a list. From (A) it follows that:

(1) select(h, lh, l) ∈ sSsel hence h ∈ lh and l is a list such that lh ≈ [h|l];

(2) subs(t, l) ∈ sSsubs hence listd(t) and t ⊆ l, thus [h|t] ⊆ lh, by (1);

(3) member(h, t) 6∈ sCm hence h 6∈ t (since t is a list), thus listd([h|t]), by (2).

We obtain [h|t] ⊆ lh and listd([h|t]), this completes the proof of condition (a) for

the most complex clause of P .

Let us now prove condition (b) for predicate subs/2. We show that

spSC ∪ spec= |= subs′(S,M)→

S = [ ] ∨ ∃H,T, L (S = [H |T ] ∧ select′(H,M,L) ∧ subs′(T, L) ∧ ¬member(H,T )).

Let s,m be elements of the universe such that spSC |= subs′(s,m), i.e.

subs(s,m) ∈ sCsubs. So m is a list, s is a list of distinct elements and s ⊆ m.

The case of s = [ ] is obvious. Otherwise s = [h|t]. Since h ∈ s and s ⊆ m,

m = [m1, . . . ,mi−1, h,mi+1, . . . ,mk]. Take [m1, . . . ,mi−1,mi+1, . . . ,mk] as l. Ob-

viously select(h,m, l) ∈ sCsel. From listd([h|t]) we have listd(t) and h 6∈ t. Thus

member(h, t) 6∈ sSm. Also subs(t, l) ∈ sCsubs, as [h|t] ⊆ m. Thus the right hand

side of the implication holds.

The remaining part of the proof of conditions (a), (b) is easier and is skipped

here. It follows that P is correct w.r.t. spec.

Consider a query Q = subs(L,M), where L is a variable and M a ground list.

Once it is shown that for such queries P terminates without floundering (under

some selection rule and search strategy), it follows that P is complete for such

queries. This means that for a given set all its subsets will be computed (i.e. all the

permutations of the corresponding lists).

Assume that we do not have a termination proof and request all answers to

a query Q from an interpreter with run-time checks for floundering. Then if the

execution terminates, we know that all the answers for Q required by the specifica-

tion have been produced. This happens in the case of our example program P and

Prolog. ✷
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4.5 Example

In this section we illustrate our method of proving correctness and completeness

of normal programs by a larger example. We have chosen a program calculat-

ing the transitive closure of a given relation and its toy application to search-

ing airway connections satisfying given requirements. Transitive closure is used

as an example in many papers on proving program properties, e.g. (Apt 1995;

Ferrand and Deransart 1993; Malfon 1994).

For our example we choose rather arbitrary approximate specifications. The pur-

pose is to illustrate how just some of a program’s properties can be proven. We

also show how the method applies in case of extending a program by adding new

predicates.

Information about the flights is given by predicate direct/3;

direct(from, to,flight(time, price)) denotes that there exists a direct flight

from from to to, time of the flight is equal to time and its cost is price. We assume

that time and price are natural numbers.

Let FLIGHTS be the following program:

good conn(X ,Y ,Req)← connect(X ,Y ,Dxy), satisfies(Dxy,Req)

connect(X ,Y ,Dxy)← connect(X ,Y ,Dxy, [X ])

connect(X ,Y , [D ],V )← direct(X ,Y ,D)

connect(X ,Z , [D |Dyz ],V )←

direct(X ,Y ,D),

¬member(Y ,V ),

connect(Y ,Z ,Dyz , [Y |V ])

% satisfies(ListOfFlightsInfo,Requirements),where

% Requirements = req(MaxNoOfTransfers ,MaxTotalCost ,MaxFlightTime)

satisfies(List , req(MaxTr ,MaxTotalCost ,MaxFlightTime)) ←

analyze(List ,NoOfTransfers ,TotalCost ,MaxFlightTime),

lesseq(NoOfTransfers ,MaxTr),

lesseq(TotalCost ,MaxTotalCost)

% analyze(ListOfFlightsInfo,NumberOfTransfers ,Cost ,MaxFlightTime)

analyze([ ],−1, 0,MaxFlightTime)←

analyze([flight(Time,Price)|List ],NoOfTransfers ,Cost ,MaxFlightTime) ←

lesseq(Time,MaxFlightTime),

analyze(List ,NoOfTrL,ListCost ,MaxFlightTime),

add(ListCost ,Price,Cost),

add(NoOfTrL, 1 ,NoOfTransfers)

We omit here the definition of direct/3 and definitions of (built-in) predicates

lesseq/2 and add/3. The definition of member/2 is the same as in the previous

examples.

Predicate direct/3 defines a directed graph: direct(x , y, info) means that there

is an edge from x to y labelled by info. We assume that there is no loop, i.e. an
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edge (direct flight) from x to x. Following (Ross and Wright 2003) by a path we

will understand a non-empty sequence of edges satisfying standard condition: the

terminal vertex of each edge is the initial vertex of the next. A cycle is a path

(x1, x2), . . . , (xn, x1), n ≥ 1, such that x1, . . . , xn are distinct vertices. A graph

that contains no cycle is called acyclic. A path is acyclic if the graph consisting of

the vertices and edges of the path is acyclic.

We begin with proving correctness and completeness of FLIGHTS with respect

to the specification such that its first part (specS) is constructed from the following

sets of ground atoms (which may be called predicate specifications). Let G denote

the labelled graph defined by direct/3, and N ,Z the sets of natural and integer

numbers, respectively.

specSgood conn = { good conn(x, y, req(k, c, t)) | there exists in G a path

from x to y such that the total cost of the connection

does not exceed c, c ∈ N}

specSconnect/3 = { connect(x, y, d) | there exists in G a path from x to y

and d is the sequence (list) of its edge labels }

specSconnect/4 = { connect(x, y, d, v) | connect(x, y, d) ∈ specSconnect/3 }

specSsatisfies = { satisfies(list, req(maxTrans,maxCost,maxT ime)) |

list is a list of elements of the form flight(ti, pi) such

that the total sum of pi’s does not exceed maxCost,

pi,maxCost ∈ Z }

specSanalyze = { analyze(list, noT rans, totalCost,maxF lightT ime) |

list is a list of elements of the form flight(ti, pi),

such that the total sum of pi’s is equal to totalCost,

pi, totalCost ∈ Z }

specSdirect = { direct(x, y, f light(t, p)) | there exists an edge in G

(a direct flight) from x to y labelled flight(t, p),

t, p ∈ N }

specSlesseq = { lesseq(X,Y ) | x ≤ y, x, y ∈ Z }

specSadd = { add(x, y, z) | x + y = z, x, y, z ∈ Z }

specSmember = {member(x, l) | l is a list→ x ∈ l }

Let us notice that specSdirect, specSlesseq and specSadd are exact specifications.

The remaining ones are approximate: they allow cyclic paths and abstract from

the number of transfers and the flight times, and from the form of the last argu-

ment of connect/4; the approximate specification of member is taken from previous

examples.

The second part of specification (specC) is constructed from the following sets
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of ground atoms:

specCgood conn = { good conn(x, y, req(k, c, t)) | there exists in G an

acyclic path from x to y denoting a connection such that:

the number of transfers does not exceed k,

its total cost does not exceed c,

the time of each flight does not exceed t,

k, c, t ∈ N }

specCconnect/3 = { connect(x, y, d) | there exists in G an acyclic path

from x to y such that d is the sequence (list) of its

edge labels }

specCconnect/4 = { connect(x, y, d, v) | there exists in G an acyclic path

from x to y, d is the sequence (list) of its edge labels

and v is a list containing no internal node of the path }

specCsatisfies = { satisfies(list, req(maxTrans,maxCost,maxT ime)) |

list is a non-empty list of elements of the form flight(ti, pi),

the length of list does not exceed maxTrans + 1,

the total sum of pi’s does not exceed maxCost,

each ti does not exceed maxT ime,

maxTrans,maxCost,maxT ime, ti, pi ∈ N }

specCanalyze = { analyze(list, noT rans, totalCost,maxT ime) |

list is a list of elements of the form flight(ti, pi) such that:

the length of list is equal to noTrans + 1,

the total sum of pi’s is equal to totalCost,

each ti does not exceed maxT ime,

noTrans ∈ Z, totalCost,maxT ime, ti, pi ∈ N }

specCdirect = specSdirect

specClesseq = specSlesseq

specCadd = specSadd

specCmember = {member(x, l) | l is a list ∧ x ∈ l }

Specifications specCconnect/3 and specCconnect/4 are approximate, as they include

only acyclic paths while the program also finds paths being concatenation of an

acyclic path from x to y with a cycle from y to y (furthermore they require the

fourth argument of connect to be a list). Specifications specCsatisfies , specCanalyze

and specCmember are also approximate (as some numbers are required to be in N ,

the last argument of analyze may be not a number, the last argument of member

not a list, etc.). The remaining specifications above are exact.

Notice that in the description of specCgood conn the expression “an acyclic path”

may be replaced by “a path”, as each path with the described properties can be

transformed into an acyclic path with these properties by removing the cycles.
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Consider Herbrand specification spec = (specS, specC), where

specS = specSdirect ∪ specSgood conn ∪ specSconnect/3 ∪

specSconnect/4 ∪ specSsatisfies ∪ specSanalyze ∪

specSlesseq ∪ specSadd ∪ specSmember

specC = specCdirect ∪ specCgood conn ∪ specCconnect/3 ∪

specCconnect/4 ∪ specCsatisfies ∪ specCanalyze ∪

specClesseq ∪ specCadd ∪ specCmember

We would like to prove that FLIGHTS is correct with respect to the above

specification spec. Thus we have to show that conditions (a) and (b) of Theorem 4.6

are satisfied. To prove condition (a) for predicate good conn we have to show that:

specS |= good conn(X,Y,R)← connect(X,Y,D) ∧ satisfies(D,R)

Let x, y, d, r be ground terms such that specSconnect/3 |= connect(x, y, d) and

specSsatisfies |= satisfies(d, r). This means that there exists in G a path from x

to y and d is the sequence of its edge labels, so d is a non-empty list of elements

of the form flight(t, p). Moreover r is of the form req(k, c, t) and the sum of all p’s

does not exceed c. Hence specSgood conn |= good conn(x, y, r).

To prove condition (b) for predicate good conn we have to show that:

specC |= good conn(X,Y,R)→ ∃D (connect(X,Y,D) ∧ satisfies(D,R))

For predicates connect/3 and connect/4 we have to prove the following implica-

tions:

specS |= connect(X,Y,Dxy)← connect(X,Y,Dxy, [X ])

specC |= connect(X,Y,Dxy)→ connect(X,Y,Dxy, [X ])

specS |= connect(X,Y, [D], V )← direct(X,Y,D)

specS ∪ specC′ |= connect(X,Z, [D|Dyz], V )← direct(X,Y,D)∧

¬member′(Y, V ) ∧ connect(Y, Z,Dyz, [Y |V ])

specS ∪ specC′ ∪ spec= |= connect′(X,Z,L, V )→ (∃DL = [D] ∧ direct′(X,Z,D))

∨ (∃Y ∃D ∃Dyz L = [D|Dyz] ∧ direct′(X,Y,D) ∧

¬member(Y, V ) ∧ connect′(Y, Z,Dyz, [Y |V ]))

Let us prove the last implication. Assume that specCconnect/4 |= connect(x, z, l, v).

It means that (in G) there exists an acyclic path from x to z and l is the list

of its edge labels. If l consists of exactly one edge it must be an edge from x to

z (labelled d), thus there is a direct flight from x to z. So the following holds:

l = [d] and specC |= direct(x, z, d). Let l consists of more than one element. So

l = [d1, d2, . . . , dk], where k > 1 and di is a label of the i-th edge of the path

from x to z. The first edge of that path goes from x to a node y, let d be its

label (d = d1) and let dyz = [d2, . . . , dk]. So the following holds: l = [d|dyz] and

specC |= direct(x, y, d). From specCconnect/4 |= connect(x, z, l, v) it also follows

that v is a list such that y 6∈ v, so specSmember |= ¬member(y, v). To complete this

proof we have to show that specC |= connect(y, z, dyz, [y|v]). We already know that

there exists an acyclic path from y to z (a subpath of the path from x to z), dyz is

the list of edge labels of that (sub)path and v is a list such that each internal node
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of the path from x to z is not its element. It remains to show that also y is not

an internal node of the subpath from y to z, but this follows immediately from the

assumption on the acyclicity of the entire path from x to y. This ends the proof of

that implication.

We leave to the reader the details of proofs of the remaining implications, as

well as proofs of conditions (a) and (b) for the remaining predicates. It follows that

FLIGHTS is correct w.r.t. spec. Thus we know that if good conn(x, y, req(k, c, t))

is a computed answer then there exists a connection from x to y and its cost

is not greater than c. Moreover if a query good conn(x, y, req(k, c, t)) fails then we

know that specCgood conn |= ¬good conn(x, y, req(k, c, t)) and there does not exist a

connection fulfilling the requirements on the number of transfers, cost and maximal

flight time.

From Theorem 4.21 (on proving completeness) it follows, for instance, that if a

query good conn(x, Y, req(k, c, t)) (where Y is a variable) terminates without floun-

dering then all places (vertices) y are found such that there exists a connection from

x to y satisfying the requirements (i.e. specCgood conn |= good conn(x, y, req(k, c, t))).

Let us extend FLIGHTS by adding a new predicate bad conn defined as follows:

bad conn(X,Y,Req)← ¬good conn(X,Y,Req)

Let specn = (specSn, specCn), where

specSn = specS ∪ specSbad conn specCn = specC ∪ specCbad conn

specSbad conn = { bad conn(x, y, r) | if r = req(k, c, t) and k, c, t ∈ N then

there does not exist in G a path from x to y

denoting a connection such that:

the number of transfers does not exceed k,

its total cost does not exceed c,

the time of each flight does not exceed t }

specCbad conn = { bad conn(x, y, r) | there does not exist in G a path

from x to y }

Notice that specSbad conn and specCbad conn also contain atoms of the form

bad conn(x, y, r) where x or y is not a vertex of the graph. As explained previ-

ously, in the description of specSbad conn “a path” may be replaced by “an acyclic

path”. Specification specSbad conn is exact and specCbad conn is approximate.

We have to prove the following new implications concerning predicate bad conn:

specSbad conn ∪ specCgood conn |= bad conn(X,Y,R)← ¬good conn(X,Y,R)

specCbad conn ∪ specSgood conn |= bad conn(X,Y,R)→ ¬good conn(X,Y,R)

As before we leave the details of the proofs to the reader. The rest of implica-

tions remains the same, and hence previous proofs remain valid. Thus the extended

program is correct w.r.t. the specification specn.

So if bad conn(x, y, r) is a computed answer then there does not exist a connection

from x to y satisfying r. After having proved that the program terminates and does

not flounder for ground queries of the form bad conn(x, y, r), we will also know that
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the program is complete for such queries w.r.t. specn. Hence bad conn(x, y, r) will

succeed for any x, y such that there does not exist a connection from x to y.

To end with, suppose we are interested just in direct connections and choose the

following (approximate) specification:

specCnbad conn = { bad conn(x, y, req(0, c, t)) | there does not exist in G

an edge from x to y labelled flight(s, p) such that

p ≤ c, c, t, p, s ∈ N }

This specification refers to the number of transfers (more precisely, to connec-

tions without transfers) whereas the specification specS abstracted from this. In

order to prove correctness of the extended program w.r.t. a specification containing

specCngood conn instead of specCgood conn, we have to strengthen specS (modifying

specSgood conn, specSsatisfies and specSanalyze) and prove again the corresponding

conditions. For example a new specification for predicate good conn/3 could be:

specSngood conn = { good conn(x, y, req(k, c, t)) | there exists in G a path

from x to y of length not greater than k+1, the total

cost of the connection does not exceed c, k, c ∈ N }

Specifications specSsatisfies and specSanalyze should be strengthened analogously

(by taking into account the total length of the list and the fact that if the costs in

the connection list are in N then the total cost is in N ) and the proof should be

accordingly modified.

Every (logic) programmer should have, at least in her mind, intended meaning

for all the used predicates. Specification spec = 〈specS, specC〉 is a formalization

of such intended meaning. It is important that in most cases the specification is

approximate (specS 6= specC); specifying exactly the meaning of the program is

usually too cumbersome and unnecessary. We believe that the methods advocated

in this paper are a formalization of informal reasoning performed by a competent

programmer to convince herself about correctness of a program.

5 Related work

In this section we present a brief overview of related work.

Due to our approach to specifications, we do not need any explicit notion of pre-

condition, type information, or domain of a procedure. Such notions are used in

most other approaches (Bossi and Cocco 1989; Apt 1997; Pedreschi and Ruggieri 1999;

Deville 1990) in order to deal with “ill-typed” atoms, for which the behaviour of the

program is of no interest. For similar purposes Naish (2000) introduces a 3-valued

approach to definite programs.

An approach related to ours is the annotation method of Deransart (Deransart 1993,

Section 4; Boye and Ma luszyński 1997, Section 4) for proving definite program cor-

rectness. It can be seen as refinement of the natural method of Section 3.1, where

one proves more (but smaller) implications than those to be proved in the natural

method.

A method for proving completeness of definite programs, similar to ours, was
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presented in (Deransart and Ma luszyński 1993). Both approaches are compared in

Section 3.3.

Comparison with the operational method (Bossi and Cocco 1989; Apt 1997; Pedreschi and Ruggieri 1999)

for correctness of definite programs is given in Section 3.2. The operational method

can be generalized to correctness of normal programs (Apt 1995; Pedreschi and Ruggieri 1999);

we present a comparison in Section 4.3.4. We show that the correctness proving ap-

proaches presented in this paper are stronger than the corresponding operational

ones (as far as properties of program answers are concerned); moreover our approach

for normal programs is strictly stronger. The method of (Pedreschi and Ruggieri 1999)

includes proving completeness of normal programs. In Section 4.4.1 we show that

it is strictly weaker than the method of Theorem 4.21. Also, the methods presented

in this paper are, in our opinion, simpler than the operational ones. In particu-

lar, in the approach of (Pedreschi and Ruggieri 1999) one has to prove correctness,

completeness and termination together. Due to this one cannot use approximate

specifications.

The comparisons formally show that it is not necessary to refer to operational

semantics in reasoning about declarative properties of programs. Naish (1996)

presents a similar opinion; he advocates a declarative view for a class of program

properties which are often treated as operational.

A related early work is (Deville 1990). It presents a method to develop Prolog

programs. Their correctness and completeness follows from construction. However

the construction process consists of many stages and is rather complicated.

Our approach to normal programs considers their 3-valued semantics, in contrast

to (Deville 1990; Apt 1995; Pedreschi and Ruggieri 1999) where 2-valued semantics

is used. The 3-valued completion semantics more precisely corresponds to the op-

erational semantics mainly used in practice (negation as finite failure and SLDNF-

resolution). Introducing 3-valued semantics does not result in any difficulties: our

proof methods use only the standard 2-valued logic.

An important approach to proving properties of normal programs was proposed

by Stärk (1997). It deals with normal programs, executed under Prolog selection

rule. Success, failure and termination are described by an inductive theory, called

the inductive extension of a program. The theory can be seen as a refinement of the

notion of program completion. The program’s properties of interest are expressed

as formulae and one has to prove that they are consequences of the theory. This

is opposite to our approach where properties are expressed as specifications and

appear to the left of |=, while a program (or a theory similar to program completion)

appears to the right of |=.

Some properties, like “for any k there exists l such that P |= p(k, l)”, are express-

ible in the approach of (Stärk 1997) but cannot be expressed as interpretations in

our approach. To deal with such properties we need to use specifications which are

theories, not interpretations; we expect that our approach is also applicable to such

specifications.

The approach of (Stärk 1997) includes clean termination and is equipped with a

tool to mechanically verify the proofs. It is however bound to Prolog selection rule.

The involved induction scheme is rather complicated; the scheme seems difficult
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to use without computer support. The purpose of our work is different: we are

interested in the declarative semantics and in basic methods, which can be widely

understood by programmers and used – possibly in an informal form – in practical

reasoning about actual programs.

Ferrand and Deransart (1993) presented a method of proving correctness of nor-

mal programs. (Their terminology is different; what they call “partial complete-

ness” is, in our terminology, correctness for negative atomic queries.) In contrast to

our work they deal with the well-founded semantics (van Gelder et al. 1991). Their

specifications are thus Herbrand interpretations. The validation conditions of their

method consist of conditions equivalent to those of Theorem 4.6, and of additional

requirement involving existence of a certain well-founded ordering of atoms.

Malfon (1994) presented methods of proving program completeness for three

kinds of semantics, given by the well-founded model, the least fixpoint of ΦP , and by

ΦP ↑ω. (Notice that the latter is not the Kunen semantics considered in this paper.)

Similarly to the previous case, the proposed sufficient conditions for completeness

are (equivalent to) the conjunction of our conditions for correctness and a condition

involving a well-founded ordering. The latter depends on the considered semantics.

6 Conclusions

This paper advocates declarative reasoning about logic programs. We show how

to prove correctness and completeness of definite and normal logic programs in

a declarative way, independently from any operational semantics. This makes it

possible to separate reasoning about “logic” from reasoning about “control”. The

method for proving correctness of definite programs is not new, however its useful-

ness has not been appreciated. The methods for completeness and for correctness

of normal programs are a contribution of this work.

We refer to two specifications; one for correctness and one for completeness. This

makes it possible to specify the program semantics approximately, thus simplifying

the specifications and the proofs. In this paper specifications are interpretations,

but the approach seems applicable to specifications being theories.

The semantics of normal programs is 3-valued. We do not however explicitly refer

to 3-valued logic. Instead, a pair of 2-valued specifications plays a role of a 4-valued

specification for correctness and a 3-valued specification for completeness. Also, we

use a 2-valued characterization of the 3-valued completion semantics, which may

be of separate interest.

Approximate specifications are convenient not only when one deals with pro-

gram correctness and completeness. We show how approximate specifications can

be used to generalize and simplify the proof method of (Apt and Pedreschi 1993)

for termination of normal programs.

Some authors suggest referring to operational semantics, in particular to the form

of call patterns under LD- (LDNF-) resolution, when reasoning about correctness.

We claim that our approach is simpler. We show formally that whatever can be

proved using the operational approach, can be proved in the approach advocated
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here (as far as properties of program answers are concerned). For normal programs

our approach is strictly stronger, for definite programs the two approaches are

equivalent.

The operational methods additionally prove some properties of the operational

semantics, which are outside of the scope of our approach. Obviously, when such

properties are of interest, operational methods are indispensable. Their importance

should not be neglected. But as long as we are interested in properties of computed

answers (correctness and completeness), and not in some details of computations

(like call patterns), the declarative approach is sufficient. Termination is an im-

portant operational property, which in contrast to correctness and completeness

depends on the selection rule. But even for termination most approaches, like the

method of (Apt and Pedreschi 1993), do not explicitly refer to call patterns (except

for the initial query).

If it were necessary to resort to operational semantics in order to prove basic pro-

gram properties then logic programming would not deserve to be called a declarative

programming paradigm. This work shows that this is not the case.

We believe that the presented proof methods are simple and natural. We claim

that they are a formalization of a style of thinking in which a competent logic

programmer reasons (or should reason) about her programs. We believe that these

methods, possibly treated informally, are a valuable tool for actual everyday rea-

soning about real programs. We believe that they should be used in teaching logic

programming.
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