
LOGML: Log Markup Language for Web Usage Mining

John R. Punin, Mukkai S. Krishnamoorthy, Mohammed J. Zaki
Computer Science Department

Rensselaer Polytechnic Institute, Troy NY 12180
Email: {puninj,moorthy,zaki}@cs.rpi.edu

ABSTRACT

Web Usage Mining refers to the discovery of interesting in-
formation from user navigational behavior as stored in web
access logs. While extracting simple information from web
logs is easy, mining complex structural information is very
challenging. Data cleaning and preparation constitute a
very significant effort before mining can even be applied. We
propose two new XML applications, XGMML and LOGML
to help us in this task. XGMML is a graph description lan-
guage and LOGML is a web-log report description language.
We generate a web graph in XGMML format for a web site
using the web robot of the WWWPal system. We gener-
ate web-log reports in LOGML format for a web site from
web log files and the web graph. We further illustrate the
usefulness of LOGML in web usage mining; we show the
simplicity with which mining algorithms (for extracting in-
creasingly complex frequent patterns) can be specified and
implemented efficiently using LOGML.

1. INTRODUCTION

Recently XML has gained wider acceptance in both com-
mercial and research establishments. In this paper, we sug-
gest two XML languages and a web data mining applica-
tion which utilizes them to extract complex structural in-
formation. Extensible Graph Markup and Modeling Lan-
guage (XGMML) is an XML 1.0 application based on Graph
Modeling Language (GML; see http://www.infosun.fmi.uni-
passau.de/Graphlet/GML/) which is used for graph descrip-
tion. XGMML uses tags to describe nodes and edges of a
graph. The purpose of XGMML is to make possible the ex-
change of graphs between different authoring and browsing
tools for graphs. The conversion of graphs written in GML
to XGMML is straight forward. Using Extensible Stylesheet
Language (XSL) with XGMML allows the translation of
graphs to different formats. In Section 2, we present de-
tails of XGMML.

Log Markup Language (LOGML) is an XML 1.0 application
designed to describe log reports of web servers. Web data
mining is one of the current hot topics in computer science.
Mining data that has been collected from web server logfiles,
is not only useful for studying customer choices, but also

helps to better organize web pages. This is accomplished
by knowing which web pages are most frequently accessed
by the web surfers. In section 2, we explain how the struc-
ture of a web site can be represented as a web graph using
XGMML. When mining the data from the log statistics,
we use the web graph for annotating the log information.
Further we produce summary reports, comprising of infor-
mation such as client sites, types of browsers and the usage
time statistics. We also gather the client activity in a web
site as a subgraph of the web site graph. This subgraph
can be used to get better understanding of general user ac-
tivity in the web site. In LOGML, we create a new XML
vocabulary to structurally express the contents of the logfile
information. In section 3, we discuss LOGML in detail. Sec-
tion 4 describes LOGML generator as an additional module
for the WWWPal system [7].

Recently web data mining has been gaining a lot of attention
because of its potential commercial benefits. For example,
consider a web log database at a popular site, where an ob-
ject is a web user and an attribute is a web page. The mined
patterns could be the sets or sequences of most frequently
accessed pages at that site. This kind of information can
be used to restructure the web-site, or to dynamically insert
relevant links in web pages based on user access patterns.
Furthermore, click-stream mining can help E-commerce ven-
dors to target potential online customers in a more effective
way, at the same time enabling personalized service to the
customers. Web mining is an umbrella term that refers to
mainly two distinct tasks. One is web content mining [8],
which deals with problems of automatic information filtering
and categorization, intelligent search agents, and personal-
ize web agents. Web usage mining [8] on the other hand
relies on the structure of the site, and concerns itself with
discovering interesting information from user navigational
behavior as stored in web access logs. The focus of this
paper is on web usage mining. While extracting simple in-
formation from web logs is easy, mining complex structural
information is very challenging. Data cleaning and prepa-
ration constitute a very significant effort before mining can
even be applied. The relevant data challenges include: elim-
ination of irrelevant information such as image files and cgi
scripts, user identification, user session formation, and in-
corporating temporal windows in the user modeling. After
all this pre-processing, one is ready to mine the resulting
database.

The proposed LOGML and XGMML languages have been
designed to facilitate this web mining process in addition

Web Graph
XGMML

G

B

E

A

C

D

Web Site

G

F

B

D E

A

C

A -> C -> D
A -> B

A -> C -> E -> G

Database

LOGML

Mining

Itemset
Mining

Tree
Mining

Sequence

ABCDEG

Frequent Subtrees

Frequent Sequences

Frequent Sets

Raw Logs (Multiple)

Figure 1: Web Usage Mining Architecture

to storing additional summary information extracted from
web logs. Using the LOGML generated documents the pre-
processing steps of mining are considerably simplified. We
also propose a new mining paradigm, called Frequent Struc-
ture Mining, to extract increasingly informative patterns
from the LOGML database. Our approach and its appli-
cation to real log databases are discussed further in Section
5. We provide an example to demonstrate the ease with
which information about a web site can be generated using
LOGML with style sheets (XSLT). Additional information
about web characterization can also be extracted from the
mined data.

The overall architecture of our system is shown in Figure 1.
The two inputs to our web mining system are 1) web site
to be analyzed, and 2) raw log files spanning many days,
months, or extended periods of time. The web site is used
to populate a XGMML web graph with the help of a web
crawler. The raw logs are processed by the LOGML gener-
ator and turned into a LOGML database. This processed
database contains log information that can be used to mine
various kinds of frequent pattern information such as item-
sets, sequences and subtrees. The LOGML database and
web graph information can also be used for web characteriza-
tion, providing detailed statistics on top k pages, addresses,
browsers, and so on.

It should be noted that association and sequence mining
have also been applied to web usage mining in the past.
Chen et al. [2] introduced the notion of a maximal forward
chain of web pages and gave an algorithm to mine them.
The WUM system [9] applies sequence mining to analyze
the navigational behavior of users in a web site. WUM
also supports an integrated environment for log prepara-
tion, querying and visualization. Cooley et al. [3] describe
various data preparation schemes for facilitating web min-
ing. Recent advances and more detailed survey on various

aspects of web mining spanning content, structure and us-
age discovery can be found in [5; 4]. Our work differs in
that our system uses new XML based languages to stream-
line the whole web mining process and allows multiple kinds
of mining and characterization tasks to be performed with
relative ease.

2. XGMML (EXTENSIBLE GRAPH MARK­
UP AND MODELING LANGUAGE)

A graph, G= (V,E), is a set of nodes V and a set of edges
E. Each edge is either an ordered (directed graph) or un-
ordered (undirected) pair of nodes. Graphs can be described
as data objects whose elements are nodes and edges (which
are themselves data objects). XML is an ideal way to repre-
sent graphs. Structure of the World Wide Web is a typical
example of a graph where the web pages are “nodes,” and
the hyperlinks are “edges.” One of the best ways to de-
scribe a web site structure is using a graph structure and
hence XGMML documents are a good choice for contain-
ing the structural information of a web site. XGMML was
created for use within the WWWPal System [7] to visual-
ize web sites as a graph. The web robot of W3C (webbot),
a component of the WWWPal System, navigates through
web sites and saves the graph information as an XGMML
file. XGMML, as any other XML application, can be mixed
with other markup languages to describe additional graph,
node and/or edge information.

Structure of XGMML Documents: An XGMML doc-
ument describes a graph structure. The root element is the
graph element and it can contain node, edge and att ele-
ments. The node element describes a node of a graph and
the edge element describes an edge of a graph. Additional

information for graphs, nodes and edges can be attached us-
ing the att element. A graph element can be contained in an
att element and this graph will be considered as subgraph of
the main graph. The graphics element can be included in a
node or edge element, and it describes the graphic represen-
tation either of a node or an edge. The following example is
a graph with just one node.

<?xml version="1.0"?>
<!DOCTYPE graph PUBLIC "-//DTD graph description//EN"

"http://www.cs.rpi.edu/∼puninj/XGMML/xgmml.dtd">
<graph directed="1" id="2">
<node id="1" label="Node 1"/>
</graph>

XGMML well formed documents can be part of other XML
documents using namespaces. The following example is a
graph inside of an XHTML document :

<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"
xmlns:xgmml="http://www.cs.rpi.edu/XGMML"
xsi:schemaLocation="http://www.w3.org/1999/Style/Transform

http://www.w3.org/1999/Style/Transform/xslt.xsd
http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml/xhtml.xsd
http://www.cs.rpi.edu/XGMML
http://www.cs.rpi.edu/∼puninj/XGMML/xgmml.xsd"

xml:lang="en">
<head>
<title>Graph Information</title>
</head>
<body>
<!-- XHTML Document here -->

<xgmml:graph directed="1" graphic="1" Layout="points">
<xgmml:node id="1" label="1" weight="0">
<xgmml:graphics type="circle" x="250" y="90" />

</xgmml:node>
<xgmml:node id="2" label="2" weight="0">
<xgmml:graphics type="circle" x="190" y="150" />

</xgmml:node>
<xgmml:edge source="1" target="2" weight="0" />

</xgmml:graph>
<!-- XHTML Document here -->
</body>
</html>

Resource Description Framework (RDF) is one way to de-
scribe metadata about resources. XGMML includes meta-
data information for a graph, node and/or edge using the
att tag. Example 3 is part of a graph describing a web
site. The nodes represent web pages and the edges repre-
sent hyperlinks. The metadata of the web pages is included
as attributes of a node. RDF and Dublin Core (DC) vo-
cabularies have been used to describe the metadata of the
nodes.

<?xml version="1.0"?>
<graph xmlns = "http://www.cs.rpi.edu/XGMML"

xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"
xsi:schemaLocation="http://www.cs.rpi.edu/XGMML
http://www.cs.rpi.edu/∼puninj/XGMML/xgmml.xsd"
directed="1" >

<node id="3" label="www.cs.rpi.edu/courses/" weight="5427">
<att>
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.0/">
<rdf:Description about="http://www.cs.rpi.edu/courses/"

dc:title="Courses at Rensselaer Computer Science
Department"
dc:subject="www@cs.rpi.edu; M.S. requirements; CSCI-1190
Beginning C Programming for Engineers; Courses; People;
Graduate Program; CSCI-4020 Computer Algorithms; CSCI-

2220-01 Programming in Java; Research; Course Selection
Guide; CSCI-4961-01, CSCI-6961-01 Advanced Robotics;
Programming in Java; CSCI-2400 Models of Computation"
dc:date="2000-01-31"
dc:type="Text"
>
<dc:format>
<rdf:Bag

rdf: 1="text/html"
rdf: 2="5427 bytes"

/>
</dc:format>

</rdf:Description>
</rdf:RDF>
</att>
</node>
....
<edge src="1" target="3" weight="0" label="SRC IMG X.jpg" />
<edge src="7" target="3" weight="0" label="SRC IMG ../X.jpg" />
</graph>

Valid XGMML Documents: A valid XGMML docu-
ment must be an well-formed XML document. A valid XG-
MML document additionally can be validated against an
XGMML DTD or XGMML Schema. The XGMML Schema
is based on the XML Schema Working Draft 22 September
2000. A valid XML document can have multiple schemas.
The namespace for XGMML is: www.cs.rpi.edu/XGMML
and the suffix for the XGMML elements is xgmml:. The ex-
amples above show two valid XML documents that can be
validated using several XML schemas including XGMML
Schema.

XGMML Elements and Attributes: The main ele-
ments of XGMML are: graph, node, edge, att and graphics.
The graph element is the root element of an XGMML valid
document. The graph element may not be unique in the
XGMML document. Other graphs can be included as sub-
graphs of the main graph. All XGMML elements have global
attributes that are id, name and label. The id attribute
is an unique number to identify the XGMML element. The
name is a string to identify the elements and the label is
a string used as a text representation of the elements. The
graph element has the directed attribute that is a boolean
value to express whether the graph is directed or not.

Nodes and edges can reference XGMML documents. For
example, a node may represent a graph that can be shown
when the user points inside the node. This behavior is simi-
lar to hyperlinks in HTML documents. XGMML uses XLink
framework to create hyperlinks either in nodes or edges.
The XLink attributes: type, role, title, show, actuate
and href, are added as attributes of the node and edge el-
ements. All these attributes are taken directly from the
XLink Working Draft.

The node element describes the properties of a node object.
The node can be rendered as a graphic object and also can
have additional meta information to be used for the applica-
tion program. The only elements allowed inside the node are
graphics and att. The graphic representation of the node
is reported on the graphics element. For example, a graph-
ical representation of a node can be a rectangle, a circle or
a bitmap. The additional meta information is reported on
the att element. For example, if a node is a representation
of a web page, useful metadata is the title, date of creation
and size of the web page.

The edge element describes the properties of an edge ob-
ject. For each edge element two node elements have to
be included in the graph element. An edge is between a
source node and a target node. The application program
must verify if the source node and target node are included
in the XGMML document. The weight attribute is used
to save the weight number for weighted graphs. The edge
element as the node element can have a graphical represen-
tation and additional metadata information. The graphics
element shows the graphical representation of an edge. For
example, a graphical representation of an edge can be a line
or an arc. An att element is used to attach additional meta
information related to an edge. For example, if an edge is a
representation of a hyperlink, useful metadata is the anchor
string and the type of the hyperlink (Typed Links) [11].

An att element is used to hold meta information about the
element that contains the att element. An att element
can contain other att elements, say to represent structured
metadata such as records, lists, etc. For example, the meta-
data of a person object A is name: John, ssn: 123456789
and e-mail: john@rpi.edu. To attach this metadata to a
node of a graph using the att element, the following lines
must be included in the node element:

<att type="list" name="person description">
<att name="name" value="John"/>
<att name="ssn" value="123456789"/>
<att name="e-mail" value="john@rpi.edu"/>
</att>

The graphics element defines the graphical representation
of a graph, a node or an edge. Line, center and att
elements are the only elements that can be contained in
a graphics element. Line element is defined between two
point elements and it is used to represent edges. A center
element is a special point element to represent the central
point of the graphical representation of a node. The att
element permits to add information to the graphical repre-
sentation. All these elements are inherited from GML.

3. LOGML (LOG MARKUP LANGUAGE)

Log reports are the compressed version of logfiles. Web mas-
ters in general save web server logs in several files. Usu-
ally each logfile contains a single day of information. Due
to disk space limitation, old log data gets deleted to make
room for new log information. Generally, web masters gen-
erate HTML reports of the logfiles and do not have problems
keeping them for a long period of time as the HTML reports
are an insignificant size. If a web master likes to generate
reports for a large period of time, he has to combine several
HTML reports to produce a final report. LOGML is con-
ceived to make this task easier. Web masters can generate
LOGML reports of logfiles and combine them on a regular
basis without much effort. LOGML files can be combined
with XSLT to produce HTML reports. LOGML offers the
flexibility to combine them with other XML applications, to
produce graphics of the statistics of the reports. LOGML
can also be combined with RDF to provide some metadata
information about the web server that is being analyzed.
LOGML is based on XGMML. LOGML document can be

seen as a snapshot of the web site as the user visits web
pages and traverses hyperlinks. It also provides a succinct
way to save the user sessions. In the W3C Working Draft
“Web Characterization Terminology & Definitions Sheet”,
the user session is defined as “a delimited set of user clicks
across one or more Web servers”.

Structure of LOGML Documents: A typical LOGML
document has three sections under the root element logml
element. The first section is a graph that describes the log
graph of the visits of the users to web pages and hyperlinks.
This section uses XGMML to describe the graph and its
root element is the graph element. The second section is
the additional information of log reports such as top visiting
hosts, top user agents, and top keywords. The third section
is the report of the user sessions. Each user session is a
subgraph of the log graph. The subgraphs are reported as a
list of edges that refer to the nodes of the log graph. Each
edge of the user sessions also has a timestamp for when the
edge was traversed. This timestamp helps to compute the
total time of the user session. LOGML files are large files;
example below shows part of a LOGML file.

<?xml version="1.0"?>
<logml xmlns="http://www.cs.rpi.edu/LOGML"

xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"
xsi:schemaLocation="http://www.cs.rpi.edu/LOGML
http://www.cs.rpi.edu/∼puninj/LOGML/logml.xsd"
start date="12/Oct/2000:05:00:05"
end date="12/Oct/2000:16:00:01">

<graph xmlns="http://www.cs.rpi.edu/XGMML"
xmlns:lml="http://www.cs.rpi.edu/LOGML"
xsi:schemaLocation="http://www.cs.rpi.edu/XGMML
http://www.cs.rpi.edu/∼puninj/XGMML/xgmml.xsd
http://www.cs.rpi.edu/LOGML
http://www.cs.rpi.edu/∼puninj/LOGML/logml.xsd"
directed="1">

<node id="234" label="http://www.cs.rpi.edu/∼puninj/JAVA/projects/lfarrw.gif"
lml:hits="1" weight="1">
<att name="title" value="No title"/>
<att name="mime" value="image/gif"/>
<att name="size" value="1291"/>
<att name="date" value="Sun Jun 11 02:14:28 2000"/>
<att name="code" value="200"/>
</node>
....
<edge source="191" target="234" label="SRC IMG lfarrw.gif" lml:hits="1" weight="1">
<att value="image"/>
</edge>
....
<edge source="550" target="561" lml:hits="1" weight="1" lml:indp="1"/>
....
</graph>
<hosts count="35">
<host name="vamos.inria.fr" access count="43" bytes="487397" html pages="43"/>
<host name="kbl-ternzn1200.zeelandnet.nl" access count="13" bytes="46354"
html pages="1"/>
....
</hosts>
<domains count="9">
<domain name="unknown" access count="25" bytes="388608" html pages="16"/>
<domain name="com" access count="21" bytes="229979" html pages="19"/>
....
</domains>
<directories count="30">
<directory name="http://www.cs.rpi.edu/∼puninj/XGMML" access count="21"
total count="49" bytes="1116521"/>
....
</directories>
<userAgents count="23">
<userAgent name="Mozilla/4.0 (compatible; MSIE 5.0; Windows 98; DigExt)"
access count="27" bytes="670815" html pages="9"/>
....
</userAgents>
<hostReferers count="14">
<hostReferer name="No Referer" access count="66" bytes="945527"/>
<hostReferer name="http://www.cs.rpi.edu" access count="41" bytes="701097"/>
....
</hostReferers>
<referers count="11">
<referer name="No referer" access count="66" bytes="945527"/>
access count="1" bytes="35272" target="8"/>
<referer name="http://informant.dartmouth.edu/" access count="1" bytes="1112"
target="2"/>

....
</referers>
<keywords count="10" search count="9">
<keyword name="java" count="3"/>
<keyword name="xhtml" count="2"/>
....
</keywords>
<summary
requests="132" sessions="6" bytes="1796173"

html pages="56" nhtml pages="17" inline objects="10" hyperlink html="7"
hyperlink nhtml="16"
html entry pages="55" nhtml entry pages="4" unique sites="35" unique host referers="8"
unique se referers="6"
unique external url referers="7" unique internal url referers="4" unique user agents="23"
requests hour="12.00" requests day="288.03" kbytes day="159.48" kbytes hour="3827.46"
searches="9" unique keywords="10">
<httpCode code="200" name="200 - OK " count="118" bytes="1793393" html pages="83"/>
<httpCode code="404" name="404 - Not Found" count="5" bytes="1722" html pages="5"/>
<httpMethod name="GET" count="131" bytes="1796173" html pages="95"/>
<httpMethod name="HEAD" count="1" bytes="0" html pages="1"/>
<httpCode name="HTTP/1.0" count="97" bytes="1399288" html pages="83"/>
<httpCode name="HTTP/1.1" count="35" bytes="396885" html pages="13"/>
<dateStat>
<monthStat month="10" hits="132" bytes="1796173" html requests="96"/>
<dayStat day="12" hits="132" bytes="1796173" html requests="96"/>
<hourStat hour="5" hits="12" bytes="15622" html requests="12"/>
<hourStat hour="6" hits="15" bytes="103280" html requests="14"/>
</dateStat>
</summary>
....
<userSessions count="2" max edges="100" min edges="2">
<userSession name="proxy.artech.com.uy" ureferer="No referer"
entry page="http://www.cs.rpi.edu/∼puninj/XGMML/" start time="12/Oct/2000:12:50:11"
access count="4">
<path count="3">
<uedge source="3" target="10" utime="12/Oct/2000:12:50:12"/>
<uedge source="3" target="21" utime="12/Oct/2000:12:51:41"/>
<uedge source="21" target="22" utime="12/Oct/2000:12:52:02"/>
</path>
</userSession>
<userSession name="207.234.33.12"
ureferer="http://search.excite.com/search.gw?search=XHTML"
entry page="http://www.cs.rpi.edu/∼puninj/TALK/head.html"
start time="12/Oct/2000:14:05:10" access count="3">
<path count="2">
<uedge source="2" target="7" utime="12/Oct/2000:14:05:24"/>
<uedge source="2" target="8" utime="12/Oct/2000:14:06:14"/>
</path>
</userSession>
</userSessions>
</logml>

LOGML Valid Documents: A LOGML valid docu-
ment is a well-formed XML document that can be validated
against a LOGML DTD or LOGML Schema. The names-
pace for LOGML is http://www.cs.rpi.edu/LOGML and the
suffix for LOGML elements is lml:.

LOGML Elements and Attributes: The root element
of a LOGML document is the logml element. The rest of
the elements are classified with respect to the three sections
of the LOGML document. The first section is the report of
the log graph and we use the XGMML elements to describe
this graph. The second section report the general statistics
of the web server such as top pages, top referer URLs, top
visiting user agents, etc. And, the last section reports the
user sessions.

The following global attributes are used by most of the
LOGML elements: id - unique number to identify the el-
ements of LOGML document. name - string to identify the
elements of LOGML document. label - text representation
of the LOGML element access count - number of times
the web server has been accessed. For example, the number
of times of a specific user agent accessed the web server.
total count - total number of times that an element is
found in a logfile. For example, the total count of a key-
word. bytes - number of bytes downloaded. html pages -
number of HTML pages requested from the web server. For
example, the number of html pages requested by a specific
site.

The XGMML elements that we use to describe the log graph
are graph, node, edge and att. We add the hits attribute
to the node and edge elements to report the number of vis-
its to the node (web page) and the number of traversals of
the edge (hyperlink). The att element is used to report
metadata information of the web page such as mime type
and size of the file. The elements of the second section are:
• hosts, host - This host list is composed by a container

hosts element whose attribute is the count of the host el-
ement inside of the hosts element. The host element is an
empty element and contains information about the visiting
site such as hostname, IP and number of bytes transferred
by the site.
• domains, domain - The domains element is a list of all
domains visiting the web server. The domain is the suffix
of the domain name of the sites. For example: edu is the
domain of the site www.cs.rpi.edu.
• directories, directory - The directories list contains
the top directories of the web site that have most requested
web pages. The directory is the prefix of the URI of the
web page. For example: The directory of the web page:
http://www.rpi.edu/dept/urp/find.html is http://www.rpi.edu
/dept/urp
• userAgents, userAgent - The list of user agents contains
all user agents (browsers and/or spiders) that have made
requests to the web server. The LOGML reader can refine
this list to compute the top platforms and top web browsers
since the User Agent name contains information about the
platform and name of web browser.
• referers, referer - The referers list contains two lists:
The list of the top external referers and the list of the top in-
ternal referers. The external referers are the referers whose
host are different than the web server. The host of the in-
ternal referers are the same as the web server.
• hostReferers, hostReferer - The host referers list con-
tains the top host referers of the web pages of the web server.
This list combines the number of accesses of the referers with
the same host.
• keywords, keyword - Keywords are the searching words
found in the URI referers of the search engines. Several
keywords lists can be reported. Each keywords list is asso-
ciated with a particular search engine.
• summary - The summary element contains a brief overview
of the essential information of the web server. This informa-
tion is very important for web masters to know the efficiency
of the web server. The summary attributes are: requests -
the total number of requests. sessions - the total number
of user sessions. bytes - the total number of bytes trans-
ferred. html pages - the total number of unique html pages.
nhtml pages - the total number of unique non html pages.
inline objects - the total number of unique inline objects.
Inline objects are the objects inside of a html page such as
images hyperlinks html - the total number of unique hyper-
links to html pages. hyperlinks nhtml - the total number
of unique hyperlinks to non html pages. html entry pages -
the total number of unique html pages that are entry pages
to the web site of the web server. nhtml entry pages - the
total number of unique non html pages that are entry pages
to the web site of the web server. unique sites - the to-
tal number of unique visiting sites. unique host referers
- the total number of the unique host. referers to the web
pages of the web server. unique se referers - the total
number of the unique search engines that access the web
server. unique external url referers - the total num-
ber of unique external URI referers to the web pages of
the web server. unique internal url referers - the to-
tal number of unique internal URI referers to the web pages
of the web server. unique user agents - the total num-
ber of the unique user agents that access the web pages of
the web server. requests hour - the number of requests
per hour. requests day - the number of requests per day.

kbytes hour - the number of kilobytes transferred per hour.
kbytes day - the number of kilobytes transferred per day.
searches - the total number of searching requests. unique-
keywords - the total number of unique keywords in the
searching requests.
• httpCode - The httpCode element gives the summary of
the HTTP status code of the requests.
• httpMethod - The httpMethod element gives the summary
of the HTTP methods used by the web clients to communi-
cate with the web server.
• httpVersion - The httpVersion element gives the sum-
mary of the HTTP version used by the web clients to com-
municate with the web server.
• dateStat, monthStat, dayStat and hourStat. - The
date elements give the summary of the statistics by date
of the requests.

The third section of the LOGML document reports the user
sessions and the LOGML elements are: • userSessions,
userSession - The userSessions element is the container
element for the set of the user sessions. Each user session is
described using the userSession, path and uedge elements
where a path is the collection of hyperlinks that the user
has traversed during the session.
• path - The path element contains all hyperlinks that the
user has traversed during the user session.
• uedge - The uedge element reports a hyperlink that has
been traversed during the user session. The source and the
target attributes are reference to nodes of the Log Graph
in the first section and the utime attribute is the timestamp
where the user traversed this hyperlink. Example below is
the report of one user session in a LOGML document:

<userSession name="proxy.artech.com.uy" ureferer="No referer"
entry page="http://www.cs.rpi.edu/∼puninj/XGMML/"

start time="12/Oct/2000:12:50:11" access count="4">
<path count="3">
<uedge source="3" target="10" utime="12/Oct/2000:12:50:12"/>
<uedge source="3" target="21" utime="12/Oct/2000:12:51:41"/>
<uedge source="21" target="22" utime="12/Oct/2000:12:52:02"/>
</path>
</userSession>

4. LOGML GENERATOR

We have written a simple LOGML Generator as part of our
WWWPal System. The LOGML Generator reads a com-
mon or extended log file and generates a LOGML file. The
LOGML Generator also can read the webgraph (XGMML
file) of the web site being analyzed and combine the infor-
mation of the web pages and hyperlinks with the log infor-
mation.

The information that we extract from the common log files
include host name or IP, date of the request, relative URI
of the requested page, HTTP version, HTTP status code,
HTTP method and the number of bytes transferred to the
web client. The extended log files additionally contain the
absolute URI of the referer web page and a string that de-
scribes the User Agent (web browser or web crawler) that
has made the request. This information is saved in a data
structure to generate the corresponding LOGML document.
The LOGML Generator also can output HTML reports mak-
ing this module a powerful tool for web administrators.

Several algorithms have been developed to find the user ses-
sions in the log files [3; 6; 12]. A simple algorithm uses the
IP or host name of the web client to identify a user. Speed-
Tracer System [12] also checks the User Agent and date of
the request to find the user session. Straight ways to find
user session requires “cookies” or remote user identification
[3]. The LOGML Generator algorithm, to find user sessions,
is very similar to the algorithm used by SpeedTracer System.

The LOGML Generator has a module called the User Man-
ager. The User Manager is invoked for each web log line that
is processed. It received the following information: current
date, URL of the requested page, URL of the referer, IP of
the user and user agent. The User Manager has access to
the container of the user sessions and the web graph of the
web site of the web logs so the User Manager can add user
sessions and get metadata information from the web graph
such as title, size and mime type of the web page.

These are the following steps that the User Manager takes
to create and finish user sessions :
• Check if any of the current user sessions has finished. A
user session is considered finished when the lapse time be-
tween the last request time of the user session and the cur-
rent request time is greater than a time window. This time
window is a parameter of the LOGML generator and from
experience we set the value to be 30 minutes. The User
Manager marks the finished user sessions so they can be re-
ported in the LOGML document.
• Check if the user agent is a spider. A Spider is being rec-
ognized by the name of the user agent or by the excessive
number of requests to the web site. Spider sessions are not
considered user sessions so the User Manager skips the re-
quests of the spiders.
• Check if the current requested page is an inline object.
User sessions are reported as a set of hyperlinks between
HTML pages so inline object are not reported in the user
session. We can expand the user sessions’ inline objects
using the log graph of the first section of the LOGML doc-
ument. The User Manager skips the inline object requests.
• Search for a user session in the table of user sessions. A
user session is identified by IP or domain name, and the
name of the user agent. If a user session is not found, a
new user session is created and stored in the table of user
sessions.
• Verify if the referer of the requested page is an external
or internal URL of the web site being analyzed. If the ref-
erer is external, it means that the requested page is an entry
page and a new possible user session has started. The User
Manager checks if the current user session has more than
two requests and it considers the user session. If the cur-
rent user session has just one request, the user session is
discarded.
• Add the new hyperlink (edge) to the graph of the user ses-
sion. Each edge is saved with the date (timestamp) where
the user has traversed this hyperlink. This timestamp is
used for Web usage mining purposes.

Once that the LOGML generator reads all the web log lines,
only those finished user sessions are reported in the LOGML
document. This is the general algorithm that the User Man-
ager uses to create, add and finish the user sessions.

int user session manager(WebStat ws, Date d, URL page,
URL referer, IP ip, UserAgent ua, WebGraph g)

{
User u;
check finished users(ws,d);
if(is spider(ua)) return IS SPIDER;
if(is inline object(g,page)) return IS INLINE OBJECT;
u = find user(ws,ip,ua); // find user in the users table
if(!u) // if user was not found, create a new user session

u = new user session(ws,d,ip,ua);
if(is external(referer)) {

finish user session(ws,u);
u = new user session(ws,d,ip,ua);

}
add hyperlink(u,page,referer,d);
return 0;

}

We use the Graph Visualizer of WWWPal System to display
the log graph of the LOGML document or any of the user
sessions that has been identified in the log files. Figure 2
shows part of the log graph of the Rensselaer News web
site (http://www.rpi.edu/web/News/). The numbers on the
edges are the times that a user has traversed that edge (hy-
perlink). The number in the nodes are the times that a
user has requested the corresponding web page. For visual-
ization purposes just the main nodes of the log graph have
been displayed.

5. LOGML FOR WEB DATA MINING

In this section, we propose solving a wide class of min-
ing problems that arise in web data mining, using a novel,
generic framework, which we term Frequent Structure Min-
ing (FSM). FSM not only encompasses important data min-
ing techniques like discovering associations and frequent se-
quences, but at the same time generalizes the problem to
include more complex patterns like tree mining and graph
mining. These patterns arise in complex domains like the
web. Association mining, and frequent subsequence min-
ing are some of the specific instances of FSM that have
been studied in the past [1; 13; 10; 15]. In general, how-
ever, we can discover increasingly complex structures from
the same database. Such complex patterns include frequent
subtrees, frequent DAGs and frequent directed or undirected
subgraphs. As one increases the complexity of the structures
to be discovered, one extracts more informative patterns.

The same underlying LOGML document that stores the web
graph, as well as the user sessions, which are subgraphs of
the web graph, can be used to extract increasingly complex
and more informative patterns. Given a LOGML document
extracted from the database of web access logs at a popular
site, one can perform several mining tasks. The simplest
is to ignore all link information from the user sessions, and
to mine only the frequent sets of pages accessed by users.
The next step can be to form for each user the sequence
of links they followed, and to mine the most frequent user
access paths. It is also possible to look at only the forward
accesses of a user, and to mine the most frequently accessed
subtrees at that site. Generalizing even further, a web site
can be modeled as a directed graph, since in addition to
the forward hyperlinks, it can have back references, creating
cycles. Given a database of user accesses (with full informa-
tion about their traversals, including forward and backward
links) one can discover the frequently occurring subgraphs.

In the rest of this section, we first formulate the FSM prob-
lem. We show how LOGML facilitates the creation of a
database suitable for web mining. We illustrate this with
actual examples from RPI logs (from one day). Using the
same example we also describe several increasingly complex
mining tasks that can be performed.

5.1 Frequent Structure Mining

FSM is a novel, generic framework for mining various kinds
of frequent patterns. Consider a database D of a collection
of structures, built out of a set of primitive items I. A
structure represents some relationship among items or sets
of items. For a given structure G, let S � G denote the
fact that S is a substructure of G. If S � G we also say
that G contains S. The collection of all possible structures
composed of the set of items I forms a partially ordered
set under the substructure relation �. A structure formed
from k items is called a k-structure. A structure is called
maximal if it is not a substructure of any other in a collection
of structures. We define the support of a structure G in a
database D to be the number of structures in D that contain
G. Alternately, if there is only one very large structure in
the database, the support is the number of times G occurs as
a substructure within it. We say that a structure is frequent
if its support is more than a user-specified minimum support
(min sup) value. The set of frequent k-structures is denoted
as Fk.

A structural rule is an expression X ⇒ Y , where X and Y
are structures. The support of the rule in the database of
structures is the joint probability of X and Y , and the confi-
dence is the conditional probability that a structure contains
Y , given that it contains X. A rule is strong if its con-
fidence is more than a user-specified minimum confidence
(min conf).

The frequent structure mining task is to generate all struc-
tural rules in the database, which have a support greater
than min sup and have confidence greater than min conf.
This task can be broken into two main steps: 1) Find all
frequent structures having minimum support and other con-
straints. This step is the most computational and I/O in-
tensive step, since the search space for enumeration of all
frequent substructures is exponential in the worst case. The
minimum support criterion is very successful in reducing the
search space. In addition other constraints can be induced,
such as finding maximal, closed or correlated substructures.
2) Generate all strong structural rules having minimum con-
fidence. Rule generation is also exponential in the size of the
longest substructure. However, this time we do not have to
access the database; we only need the set of frequent struc-
tures.

5.2 Database Creation from LOGML

We designed the LOGML language to facilitate web mining.
The LOGML document created from web logs has all the
information we need to perform various FSM tasks. For
structure mining from web logs, we mainly make use of two
sections of the LOGML document. As described above, the

Figure 2: Log graph of RPI News Website

first section contains the web graph; i.e., the actual structure
of the web site in consideration. We use the web graph
to obtain the page URLs and their node identifiers. For
example, the example below shows a snippet of the (node id,
URL) pairs (out of a total of 56623 nodes) we extracted from
the web graph of the RPI computer science department:

1 http://www.cs.rpi.edu/
4 http://www.cs.rpi.edu/guide/machines/
6 http://www.cs.rpi.edu/courses/
8 http://www.cs.rpi.edu/current-events/
10 http://www.cs.rpi.edu/grad/
12 http://www.cs.rpi.edu/People/
14 http://www.cs.rpi.edu/research/
16 http://www.cs.rpi.edu/undergrad/
31 http://www.cs.rpi.edu/guide/
...

For enabling web mining we make use of the third section
of the LOGML document that stores the user sessions or-
ganized as subgraphs of the web graph. We have complete
history of the user clicks including the time at which a page
is requested. Each user session has a session id (the IP or
host name), a path count (the number of source and destina-
tion node pairs) and the time when a link is traversed. We
simply extract the relevant information depending on the
mining task at hand. For example if our goal is to discover
frequent sets of pages accessed, we ignore all link informa-
tion and note down the unique source or destination nodes
in a user session. For example, let a user session have the
following information as part of a LOGML document:

<userSession name=’’ppp0-69.ank2.isbank.net.tr’’ ...>
<path count=’’6’’>
<uedge source=’’5938’’ target=’’16470’’
utime=’’24/Oct/2000:07:53:46’’/>
<uedge source=’’16470’’ target=’’24754’’
utime=’’24/Oct/2000:07:56:13’’/>
<uedge source=’’16470’’ target=’’24755’’
utime=’’24/Oct/2000:07:56:36’’/>
<uedge source=’’24755’’ target=’’47387’’
utime=’’24/Oct/2000:07:57:14’’/>
<uedge source=’’24755’’ target=’’47397’’
utime=’’24/Oct/2000:07:57:28’’/>
<uedge source=’’16470’’ target=’’24756’’
utime=’’24/Oct/2000:07:58:30’’/>

We can then extract the set of nodes accessed by this user:

#format: user name, number of nodes accessed, node list
ppp0-69.ank2.isbank.net.tr 7 5938 16470 24754 24755 47387

47397 24756

After extracting this information from all the user sessions
we obtain a database that is ready to be used for frequent
set mining, as we shall see below. On the other hand if
our task is to perform sequence mining, we look for the
longest forward links, and generate a new sequence each
time a back edge is traversed. Using a simple stack-based
implementation all maximal forward node sequences can be
found. For the example user session above this would yield:

#format: user name, sequence id, node position, node accessed
ppp0-69.ank2.isbank.net.tr 1 1 5938
ppp0-69.ank2.isbank.net.tr 1 2 16470
ppp0-69.ank2.isbank.net.tr 1 3 24754
ppp0-69.ank2.isbank.net.tr 2 1 5938
ppp0-69.ank2.isbank.net.tr 2 2 16470
ppp0-69.ank2.isbank.net.tr 2 3 24755
ppp0-69.ank2.isbank.net.tr 2 4 47387
ppp0-69.ank2.isbank.net.tr 3 1 5938
ppp0-69.ank2.isbank.net.tr 3 2 16470
ppp0-69.ank2.isbank.net.tr 3 3 24755
ppp0-69.ank2.isbank.net.tr 3 4 47397
ppp0-69.ank2.isbank.net.tr 4 1 5938
ppp0-69.ank2.isbank.net.tr 4 2 16470
ppp0-69.ank2.isbank.net.tr 4 3 24756

For frequent tree mining, we can easily extract the forward
edges from the user session (avoiding cycles or multiple par-
ents) to obtain the subtree corresponding to each user. For
our example above this yields the following record (note: the
tree is encoded as a string, using a depth-first traversal of
the nodes; a -1 indicates a back edge).

#format: user name, number of nodes, node list in tree
ppp0-69.ank2.isbank.net.tr 7 5938 16470 24754 -1 24755 47387

-1 47397 -1 -1 24756 -1 -1

For a more complex mining task like graph mining, once
again the appropriate information can be directly produced
from the LOGML user sessions.

G

F

B

D E

A

C

A

B C

D E F

A

C

A

B C

F

B

A

C

G

E

C

D F

C

User3 User4User1 User2 User5 User6

Original Site Graph

Figure 3: LOGML Document: Web Site Graph and User Sessions

Set Database

User1

User2

User3

User4

User6

User5

A C D E F

C E G

A B C

C D F

A B C F

A B C
F1

F2

F3

A

33 64

B C F

AB AC

ABC

3

BC

3

CF

343

Minsup = 3

Figure 4: Frequent Set Mining

Database

User2

User1

User4

User5

User3

BUser6

A

C

A

C

F

C

E

G

A

C

C

F

A A

C

F

A

D

C C

A

E

A

B

A

B

C

D

F1
A

33

B C F

Minsup = 3

9 9

F2
A->C

3

A->B C->F

3 6

Figure 5: Frequent Sequence Mining

3 3

B C

C

F

B

A

C

3

F3

A B C F

3

43

364

F1

F2

A A

B C

Figure 6: Frequent Tree Mining

Original Site Graph

G

F

B

E

A

C

An Example Subgraph

G

F

B

D E

A

C

Figure 7: A General User Graph

We will illustrate various instances of the FSM paradigm
in web mining using the example in Figure 3, which pic-
torially depicts the original web graph of a particular web
site. There are 7 pages, forming the set of primitive items
I = {A,B,C,D,E, F,G} connected with hyperlinks. Now
the LOGML document already stores in a systematic man-
ner the user sessions, each of them being a subgraph of the
web graph. The figure shows the pages visited by 6 users.
We will see below how this user browsing information can
be used for mining different kinds of increasingly complex
substructures, starting with the frequently accessed pages,
to the frequently traversed paths, to the frequent subtrees,
and so on.

5.3 Web Data Mining

Frequent Sets: This is the well known association rule
mining problem[1; 13]. Here the database D is a collection

of transactions, which are simply subsets of primitive items
I. Each structure in the database is a transaction, and �
denotes the subset relation. The mining task, then, is to
discover all frequent subsets in D. These subsets are called
itemsets in association mining literature.

Consider the example web logs database shown in Figure 4.
For each user (in Figure 3) we only record the pages accessed
by them, ignoring the path information. The mining task is
to find all frequently accessed sets of pages. Figure 4 shows
all the frequent k-itemsets Fk that are contained in at least
three user transactions; i.e., min sup = 3. ABC, AF and
CF , are the maximal frequent itemsets.

We applied the Charm association mining algorithm [16] to
a real LOGML document from the RPI web site (one day’s
logs). There were 200 user sessions with an average of 56
distinct nodes in each session. It took us 0.03s to do the

mining with 10% minimum support. An example frequent
set found is shown below:

Let Path=http://www.cs.rpi.edu/∼sibel/poetry
FREQUENCY=22, NODE IDS = 25854 5938 25649 25650 25310 16511

Path/poems/nazim hikmet/turkce.html
Path/sair listesi.html
Path/frames/nazim hikmet 1.html
Path/frames/nazim hikmet 2.html
Path/links.html
Path/nazim hikmet.html

Frequent Sequences: The problem of mining sequences
[10; 15] can be stated as follows: An event is simply an
itemset made up of the items I. A sequence is an ordered
list of events. A sequence α is denoted as (α1 → α2 →
· · · → αq), where αi is an event; the symbol → denotes a
“happens-after” relationship. We say α is a subsequence (not
necessarily consecutive) of another sequence β, denoted as
α � β, if α is completely contained within β.

The structure database D consists of a collection of se-
quences, and � denotes the subsequence relation. The min-
ing goal is to discover all frequent subsequences. For exam-
ple, consider the sequence database shown in Figure 5, by
storing all paths from the starting page to a leaf (note that
there are other ways of constructing user access paths; this
is just one example). With minimum support of 3 we find
that A → B, A → C, C → F are the maximal frequent
sequences.

We applied the SPADE sequence mining algorithm [15] to
an actual LOGML document from the RPI web site. From
the 200 user sessions, we obtain 8208 maximal forward se-
quences, with an average sequence size of 2.8. It took us
0.12s to do the mining with minimum support set to 0.1%
(or a frequency of at least 8). An example frequent sequence
found is shown below:

Let Path=http://www.cs.rpi.edu/∼sibel/poetry
FREQUENCY = 21, NODE IDS = 37668 -> 5944 -> 25649 -> 31409

Path/ ->
Path/translation.html ->
Path/frames/nazim hikmet 1.html ->
Path/poems/nazim hikmet/english.html

Frequent Trees: We denote an ordered, labeled, and
rooted tree as T = (Vt, Et), where Vt is the vertex set, andEt
are the edges or branches. We say that a tree S = (Vs, Es)
is a subtree of T , denoted as S � T , if and only if Vs ⊆ Vt,
and for all edges e = (v1, v2) ∈ Es, v1 is an ancestor of v2

in T . Note that this definition is different from the usual
definition of a subtree. In our case, we require that for any
branch that appears in S, the two vertices must be on the
same path from a root to some leaf. For example, in Figure 3
the tree S, with V = {C,G} and E = {CG} is a subtree of
the site graph.

Given a database D of trees (i.e., a forest) on the vertex
set I, the frequent tree mining problem [14] is to find all
subtrees that appear in at least min sup trees. For example,
for the user access subtrees shown in Figure 3, we mine
the frequent subtrees shown in Figure 6. There are two
maximal frequent subtrees, (V = {C,F}, E = {CF}) and
(V = {A,B,C}, E = {AB,AC}) for min sup = 3.

We applied the TreeMinerV algorithm [14] to the same RPI
LOGML file used above. From the 200 user sessions, we ob-
tain 1009 subtrees (a single user session can lead to multiple
trees if there are multiple roots in the user graph), with an
average record length of 84.3 (including the back edges, -1).
It took us 0.37s to do the mining with minimum support set
to 5% (or a frequency of at least 50). An example frequent
subtree found is shown below:

Let Path=http://www.cs.rpi.edu/~sibel/poetry
Let Poet = Path/poems/orhan_veli
FREQUENCY = 65, NODE IDS = 16499 31397 37807 -1 37836 -1 -1 25309

Path/orhan_veli.html
/ \
/ \

Poet/turkce.html Path/frames/orhan_veli_2.html
/ \

/ \
Poet/golgem.html Poet/gunes.html

Other Generalizations: It is instructive to compare the
patterns returned by the above three tasks from a common
web logs database. We started by ignoring all link infor-
mation to obtain frequent sets of pages. We then found the
frequent paths, and finally the frequently traversed subtrees.
These tasks were arranged according to increasing order of
complexity (and thus increasing execution time), but at the
same time in increasing order of information conveyed to
the user. For example, in frequent set mining, we only know
that the pages A, B, and C were frequently accessed. Se-
quence mining gives us partial sequence information about
the order in which pages are traversed, e.g., A → B. But
in tree mining, we obtain full knowledge about the relation-
ships between the three pages; e.g. A is the root with two
children B and C. Not only can one mine such patterns, but
it is relatively easy in our framework based on the LOGML
document information to apply constraints on the patterns
as well. For example, a web site analyst might want to know
only those patterns that occur within a short time window,
or those that occur after long gaps between accesses, etc.
All this information can directly be extracted from the edge
times in the user sessions.

There are many other generalizations that are possible. For
example, we can generalize the tree mining problem to di-
rected acyclic graphs, and more generally to directed and
undirected graphs. Continuing the web mining example, a
general web site can be modeled as a directed graph, since
in addition to the forward hyperlinks, it can have back ref-
erences, creating cycles. Figure 7 shows an example web
graph. Given a database of user accesses (with full infor-
mation about their traversal, including both forward and
backward links) one might be able to discover the frequently
occurring subgraphs, such as the one shown.

Experiments: We ran detailed experiments on logs files
collected over 1 month at the RPI computer science depart-
ment. Experiments were run on a 450Mhz Pentium II pro-
cessor with 256MB memory, running Linux 6.0. The logs
touched a total of 27343 web pages within our department’s
web site. After processing the LOGML database with 34838
user graphs, we had as many transactions for association
mining, with 8.24 items per transaction on average. For the
sequence database, from the same LOGML file, we gener-
ated 165276 sequences, where the average sequence (or page

0

0.5

1

1.5

2

2.5

0.10.20.30.40.50.60.70.80.91

T
o
ta

l
T

im
e

 (
s
e

c
)

Minimum Support (%)

100

1000

10000

100000

1e+06

0.10.20.30.40.50.60.70.80.91

N
u
m

b
e
r

o
f

F
re

q
u

e
n

t
P

a
tt
e

rn
s

Minimum Support (%)

4

6

8

10

12

14

16

18

20

0.10.20.30.40.50.60.70.80.91

M
a
x
im

u
m

 P
a
tt

e
rn

 L
e

n
g
th

Minimum Support (%)

Figure 8: Association Mining: a) Total Time, b) Number of Patterns, and c) Max. Pattern Length

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0.05 0.04 0.03 0.02

T
o

ta
l
T

im
e
 (

s
e
c
)

Minimum Support (%)

1000

2000

3000

4000

5000

6000

7000

8000

0.05 0.04 0.03 0.02

N
u
m

b
e
r

o
f
F

re
q

u
e

n
t

P
a
tt

e
rn

s

Minimum Support (%)

5

6

7

8

9

10

0.05 0.04 0.03 0.02

M
a

x
im

u
m

 P
a

tt
e

rn
 L

e
n

g
th

Minimum Support (%)

Figure 9: Sequence Mining: a) Total Time, b) Number of Patterns, and c) Max. Pattern Length

0

1

2

3

4

5

6

7

5 2.5 1 0.75 0.5 0.35

T
o
ta

l
T

im
e
 (

s
e

c
)

Minimum Support (%)

0

500

1000

1500

2000

2500

5 2.5 1 0.75 0.5 0.35

N
u
m

b
e
r

o
f
F

re
q
u
e
n
t
P

a
tt
e

rn
s

Minimum Support (%)

2

3

4

5

6

7

8

5 2.5 1 0.75 0.5 0.35

M
a
x
im

u
m

 P
a
tt
e
rn

 L
e
n
g
th

Minimum Support (%)

Figure 10: Tree Mining: a) Total Time, b) Number of Patterns, and c) Max. Pattern Length

reference) length was 2.6. Finally for tree mining, we ob-
tained 59691 trees (stored in string format) from the 34838
user graphs, with an average of 20.1 items per tree (includ-
ing -1’s). Note that we can have more trees than the number
of user graphs, since a user can have multiple entry points
into a web site, and each such entry point (i.e., a page with
no parent or with an external parent) serves as the root of
a new subtree for the same user.

Figure 8 shows the total time taken for mining association
rules for various minimum support values. It also shows
the total number of frequent sets found and the maximum
pattern length. For example, at 0.1% minimum support, we
found more than 130,000 patterns in just 2.2 seconds; the
maximum set length was 20!

Figure 9 shows the total time taken, total number of pat-
terns found, and maximum sequence length, for mining fre-
quent sequences for various minimum support values. For
example, at 0.015% minimum support, we found more than
7,000 patterns in just 4.7 seconds; the maximum sequence
length was 10.

Finally Figure 10 shows the total time taken, number of
patterns, and maximum subtree length, for mining frequent
subtrees for various minimum support values. For example,
at 0.35% minimum support, we found about 2,300 trees in
6.5 seconds; the maximum subtree had 8 nodes.

These results lead to several interesting observations that
support the mining of complex patterns from web logs. For
example, if one performs only itemset mining, one discovers
many long patterns. Sequence mining takes longer time but
the patterns are likely to be more useful, since they contain
path information. One has to lower the support compared
to set mining, since the same set of nodes can lead to many
maximal forward sequences. However, tree mining, tough
it takes more time than sequence mining, produces rela-
tively fewer patterns which are even more informative. As
in sequence mining, an itemset can contain contain several
subtrees, since there is exactly one itemset per user session,
but there could be several subtrees from the same session.
Furthermore, one frequent subtree many correspond to sev-
eral maximal forward sequences (as many as the number of
leafs in the tree).

Raw Logs LOGML LOGML Breakdown
Source Regular Compressed Regular Compressed #Requests #Sessions Webgraph UserSessions Other
RPI1(14Jun01) 52,428,686 5,544,951 19,850,273 2,103,298 275726 5891 88.3% 8.3% 3.4%
RPI2(15Jun01) 52,428,742 5,457,778 19,485,594 2,063,934 275061 5436 88.2% 8.4% 3.4%
CS1 (28Jun01) 10,506,256 1,065,771 4,633,113 520,290 51950 2153 74.6% 16.7% 8.7%
CS2 (29Jun01) 10,323,505 1,089,098 5,269,929 580,146 49378 2063 75.8% 16.6% 7.6%

Table 1: Size of Raw Log Files versus LOGML Files (Size is in Bytes)

Size of LOGML Documents: Since raw log files can
be large, there is a concern that the LOGML files will be
large as well. Table 1 shows the observed size of raw log
files compared to the LOGML documents (with and with-
out compression), the number of requests and user sessions,
and the breakdown of LOGML files for the CS department
(www.cs.rpi.edu) and RPI web site (www.rpi.edu). For ex-
ample, for RPI1 (logs from 14th June, 2001) there were
about 275,000 request for different nodes comprising 6,000
user sessions. The LOGML file is more than 2.5 times
smaller than the raw log file. The same trends are observed
for the other sources.

The potential benefits of LOGML for web usage mining be-
come prominent when we consider the breakdown of the
LOGML files. For the RPI site we find that about 88% of
the LOGML file is used to store the webgraph, while the user
sessions occupy only 8% (the other elements to store statis-
tics, etc. use up 3.4% space). For the CS department site,
we find that the webgraph takes about 75% space, while the
user sessions occupy 17%. In general, the webgraph is not
likely to change much from one day to the next, and even if
it does, one can always store a master webgraph spanning
several days or months separately. Then on a per day basis
we need only store the user sessions (and the other LOGML
sections if desired). For example for the RPI site this would
require us to store 174,573 bytes per day, while for the CS
site is comes to 86,888 bytes per day for storing only the user
sessions (with compression). Thus, not only does LOGML
facilitate web usage mining, it also can drastically reduce
the amount of daily information that needs to be stored at
each site.

6. CONCLUSION

In this paper, we defined two new XML languages, XGMML
and LOGML, and a web usage mining application. XGMML
is a graph file description format, and an ideal candidate to
describe the structure of web sites. Furthermore XGMML
is a container for meta-data information. LOGML, on the
other hand, is an extension of XGMML to collect web us-
age. LOGML is not only a preprocessor for our data mining
applications, but also useful for web characterization and
report generation.

Future work includes mining user graphs (structural infor-
mation of web usages), as well as visualization of mined data
using WWWPal system [7]. To perform web content min-
ing, we need keyword information and content for each of
the nodes. Obtaining this information will involve analyz-
ing each of the web pages and collecting relevant keywords.
Work is under way to accomplish this task.

The LOGML 1.0 and XGMML 1.0 draft specifications, with
their respective DTDs, Schemas and other details are avail-
able online at:

http://www.cs.rpi.edu/∼puninj/LOGML/
http://www.cs.rpi.edu/∼puninj/XGMML/

7. REFERENCES

[1] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I.
Verkamo. Fast discovery of association rules. In Advances in
Knowledge Discovery and Data Mining, AAAI Press, 1996.

[2] M. Chen, J. Park, and P. Yu. Data mining for path traversal
patterns in a web environment. In International Conference
on Distributed Computing Systems, 1996.

[3] R. Cooley, B. Mobasher, and J. Srivastava. Data preparation
for mining world wide web browsing pattern. Knowledge and
Information Systems, 1(1), 1999.

[4] R. Kosala and H. Blockeel. Web mining research: A survey.
SIGKDD Explorations, 2(1), June 2000.

[5] B. Masand and M. Spiliopoulou, editors. Advances in Web
Usage Mining and User Profiling. LNAI 1836. Springer Ver-
lag, July 2000.

[6] P. Pirolli, J. Pitkow, and R. Rao. Silk from a Sow’s Ear:
Extracting Usable Structure from the Web. In Conference
on Human Factors in Computing Systems, Apr. 1996.

[7] J. Punin and M. Krishnamoorthy. WWWPal System - A
System for Analysis and Synthesis of Web Pages. In WebNet
98 Conference, Nov. 1998.

[8] R. Cooley, B. Mobasher, and J. Srivastava. Web Mining:
Information and Pattern Discovery on the World Wide Web.
In 8th IEEE Intl. Conf. on Tools with AI, 1997.

[9] M. Spiliopoulou and L. Faulstich. WUM: A Tool for Web
Utilization Analysis. In EDBT Workshop WebDB’98, LNCS
1590. Springer Verlag, Mar. 1998.

[10] R. Srikant and R. Agrawal. Mining sequential patterns:
Generalizations and performance improvements. In 5th Intl.
Conf. Extending Database Technology, Mar. 1996.

[11] M. Thüring, J. Hannemann, and J. Haake. Hypermedia and
cognition: Designing for comprehension. Communications of
the ACM, 38(8):57–66, Aug. 1995.

[12] K. Wu, P. Yu, A. Ballman. Speed Tracer: Web usage mining
and analysis tool. Internet Computing, 37(1):89, 1997.

[13] M. J. Zaki. Scalable algorithms for association mining.
IEEE Transactions on Knowledge and Data Engineering,
12(3):372-390, May-June 2000.

[14] M. J. Zaki. Efficiently mining trees in a forest. Tech. Report
01-7, CS Dept., Rensselaer Polytechnic Institute, July 2001.

[15] M. J. Zaki. SPADE: Efficient algorithm for mining frequent
sequences. Machine Learning Journal, 42(1), Jan 2001.

[16] M. J. Zaki and C.-J. Hsiao. ChARM: An efficient algorithm
for closed association rule mining. Technical Report 99-10,
CS Dept., Rensselaer Polytechnic Institute, October 1999.

