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Abstract. We propose a preprocessing method for Web mining which,
given semi-structured documents with the same structure and style, dis-
tinguishes useless parts and non-useless parts in each document without
any knowledge on the documents. It is based on a simple idea that any
n-gram is useless if it appears frequently. To decide an appropriate pair
of length n and frequency a, we introduce a new statistic measure al-
ternation count. It is the number of alternations between useless parts
and non-useless parts. Given news articles written in English or Japanese
with some non-articles, the algorithm eliminates frequent n-grams used
for the structure and style of articles and extracts the news contents and
headlines with more than 97% accuracy if articles are collected from the
same site. Even if input articles are collected from different sites, the
algorithm extracts contents of articles from these sites with at least 95%
accuracy. Thus, the algorithm does not depend on the language, is robust
for noises, and is applicable to multiple formats.

1 Introduction

Data mining is a research field to develop tools that find useful knowledge from
databases [3, 4, 14]. In this field, databases is assumed to have explicit and static
structures. On the other hand, resources on the WWW do not have such struc-
tures. Web mining is a field of mining from such resources and text mining is
mining from unstructured or semi-structured documents. We consider Web or
text mining from semi-structured documents. A semi-structured document have
tree structures, such as HTML/XML files, BiBTeX files, etc [1].

Since resources on the Web are widely distributed and heterogeneous, it is
important to collect documents and clean them. When we collect a large amount
of documents, we use hyperlinks for efficiency. For example, search engines pro-
vide hyperlinks. Since a hyperlink is not created by the collecter, we can not
assume that collected documents are well cleaned. Some of them are written in
different languages and are far from the desired topic. Thus, Web mining algo-
rithms and preprocessors should be robust for noise and should be applicable to
any natural and markup languages.



Usual mining algorithms assume that collected documents are written in the
same language and preprocess them with some knowledge, such as the gram-
mar of HTML to remove tags, stop word lists [10], stemming technique [15],
morpheme analysis, etc. They depends on natural and markup languages. Some
algorithms require additional input documents as background knowledge. In ad-
dition to an input set of documents, the algorithm in [5] requires another set of
documents in order to remove substrings highly common to both sets.

In this paper, we present an algorithm that cleans collected documents with-
out any knowledge on them. From input documents, this algorithm finds a set
of frequent n-grams. Using this set, we can eliminate tags or directives, and
stereotyped expressions in the documents because they are common to the col-
lected documents and so useless. Eliminating or finding useless parts contrasts
with usual mining algorithms which find useful knowledge such as association
rules [3], association patterns [4], word association patterns [5], and episode
rules [14].

An input for our algorithm is a set of semi-structured documents which
contain the same structure and style such as static Web pages in the same site
or dynamic pages generated with search facility. Since the number of Web sites
providing search facilities is increasing [7], the number of Web pages applicable
to our algorithm is large. In such pages, there exist frequent substrings, such as
the name of the site, navigation and advertisement links, etc. Moreover, there
exist common tags or directives which structure texts because they have the
same structure and style. If we see such pages, we usually put our mind on the
variable part and ignore invariable parts. In this sense, substrings to describe
the same structure and style in such pages are useless.

We treat a document as just a string and define any frequent n-grams are
useless. An n-gram is just a string with length n, so that our algorithm does
not depend on natural and markup languages. Once an appropriate pair (n, a),
which is called a cut point, of a length n and frequency a is decided, we divide
each of documents into two parts using the pair as follows: if the frequency of an
n-gram is in the top a percent of the frequencies of all n-grams, then the n-gram
is useless.

To decide an appropriate pair (n, a), we introduce a new statistic measure
alternation count. It is the number of changes between useless parts and non-
useless parts in a document. For a set D of documents, alternation count of D
is the sum of all alternation counts. An alternation count shows how many
times useless (or non-useless) parts appear in documents. A large alternation
count splits a document into too small pieces. In this case, structures of each
document are destroyed. Therefore, our algorithm searches cut points from (2, 1)
while the alternation count of the current cut point is decreasing. The algorithm
stops if the alternation count becomes to be greater than the current one when
it increases n or a by one.

We define an optimal cut point (n, a) which attains a locally minimum alter-
nation count and develop an algorithm that finds an optimal cut point. It runs
in O(n2N + nN log N) time, where N is the total length of input and n is the



length of an optimal cut point. Experimentally, n is less than 30 and n � N , so
the time complexity is approximately O(N log N).

We present experimental results using news articles as input for the algo-
rithm. The articles are written in English or Japanese. For articles collected
from the same site, the algorithm detects the tag regions of HTML files and
highly common expressions in the articles as useless. It extracts the news con-
tents as non-useless parts with more than 97% accuracy even if non-articles
are contained as noise data. Therefore, the algorithm does not depend on the
language and is robust for noises.

To evaluate experimental results, we manually define non-useless parts of
articles for each data set. Comparing the manually defined division with the
division by the algorithm, the accuracy is defined to be the number of letters
categorized to the same part (useless or non-useless) to the total length of the
input.

We also evaluate the accuracy for documents collected from different sites
with any combination of English and Japanese sites. The algorithm extracts
contents of articles from these sites with at least 95% accuracy. Since the algo-
rithm simply counts n-gram frequencies, a extremely small set of articles would
be ignored in a combination with large data sets. However, some expriments
show that the algorithm detects the contents of articles in such a small set as
well as those in a large set.

This paper is organized as follows. In the next section, basic notations are
given and then the key notion, the alternation count, is introduced. In Section 3,
we present an algorithm that divides a document of given documents into useless
and non-useless parts. Complexity required by the algorithm is presented in
Section 3.1. Experimental results are shown in Section 4.

2 Alternation Count and Optimal Cut Point

2.1 Preliminaries

The set Σ is a finite alphabet. Let x = a1 · · ·an (ai ∈ Σ for each i) be a string
over Σ. We denote the length of x by |x|. An n-gram is a string whose length
is n. For an integer 1 ≤ i ≤ |x|, we denote by x[i] the ith letter of x. Let x and y
be two strings. The concatenation of x and y is denoted by x ·y or simply by xy.
We denote x = y if |x| = |y| and x[i] = y[i] for each 1 ≤ i ≤ |x|.

For a string x, if there exist strings u, v, w ∈ Σ∗ such that x = uvw, we say
that v is a substring of x. An occurrence of v in x is a positive integer i such
that x[i] · · ·x[i + |v| − 1] = v. Using the occurrence and the length of v, v is also
denoted by x[i..i + |v| − 1].

If Σ = {0, 1}, then a string over Σ is called a binary string. For i ∈ Σ and
x ∈ Σ∗, [x]i denotes the number of i’s in x. For two binary strings x and y with
the same length, bitwise “and” and “exclusive-or” operations defined as follows.
x&y is a binary string with length |x| such that x&y[i] = 1 if x[i] = y[i] = 1
and x&y[i] = 0 otherwise. x^y is also a binary string with length |x| such that



x^y[i] = 1 if x[i] �= y[i] and x^y[i] = 0 otherwise. For example, if x = 01101 and
y = 11100, then x&y = 01100, x^y = 10001, [x&y]0 = 3, and [x^y]1 = 2.

Let x be a string (not limited to be binary) and W = {v1, . . . , vn} be a set
of substrings of x. A range string of W on x, denoted by rx(W ), is a binary
string with length |x| such that rx(W )[j] = 0 if i ≤ j ≤ i + |vk| − 1 for some
occurrence i of vk (1 ≤ k ≤ n) and rx(W )[j] = 1 otherwise. A successive 0’s
on the range string shows intervals on x covered by the substrings in W . For
example, let x = accbaacbc and W = {cb, ba}. Then rx(W ) = 110001001.

2.2 Alternation Count

In this section, we introduce the key notion alternation count. We consider semi-
structured documents with the same structure and style such as static pages
of one site and dynamic pages created by a search facility. In such documents,
there exists frequent substrings for the structure and style and many users are
not interested in them. Therefore, we define useless parts of documents as follows.

Definition 1. Let D be a set of strings. Then, a substring of a string in D is
said to be useless when it appears frequently in D.

We treat a semi-structured document as just a string. Note that we do not define
“importance”, “siginificance”, or “usefulness” like other researchs on text and
Web mining.

Next, we consider how many times a substring appears we can say that it
does “frequently”. The measure for it is new notion alternation count. It is, given
a string and a set of substrings of the string, the number of changes from a part
of the string covered by given substrings to the other part, and vice versa.

Definition 2. Let x be a string and W be a set of substrings of x. Then, the
alternation count of W on x, which is denoted by Ax(W ), is the number of
boundaries between different value’s (0 and 1) on the range string rx(W ).

Example 1. Let x = accbaacbc and W = {cb, ba}. Then Ax(W ) = 4 because
x = accbaacbc (a part of underlined letters is cb or ba) and rx(W ) = 110001001.

The above definition is easily extended to a set of strings instead of a single
string x. The alternation count of W on a set D of strings is the sum of alter-
nation counts of x ∈ D and denoted by AD(W ).

2.3 Optimal Cut Point

Our algorithm is required to receive a set of semi-structured documents and
divide them into two parts of substrings — useless parts and non-useless parts.

Since we treat a semi-structured document as just a string, an input for
our algorithm is a set D = {x1, x2, . . . , xn} of strings. To express useless or non-
useless parts, we use a set of substrings of xi ∈ D. Thus, our algorithm is required
to receive D and decide W such that consecutive 0’s on rxi(W ) (i = 1, 2, . . . , n)
cover substrings on xi for the structure and style.



Frequent substrings (black) appears both parts.

Useless (gray) and non-useless (white) parts

string
substring for structure and style

frequent substring

Fig. 1. Two strings are the same. The above one shows that where are substrings for
the structure and style. The other one shows that the frequent substrings (black parts)
fails to cover gray parts

The most simple method to find frequent substrings of D is to enumerate
all substrings of D and decide a boundary between frequent substrings and
non-frequent ones according to some measure. However, W constructed by this
method may contain short substrings and they appears in non-useless parts as
well as useless parts. And, the method requires a large time complexity because
there exist O(N2) substrings for a string with length N .

Instead of this, we make the algorithm to decide the appropriate length
of substring as well as the appropriate frequency. In other word, we use n-
grams instead of substrings with any length. In our algorithm, the frequency is
expressed by a percentage. A pair (n, a) of a length and a frequency decides W
such that W is the set of the top a percent frequent n-grams in D. In the sequel,
we denote AD(W ) by AD(n, a). The pair (n, a) is called a cut point of D. An
n-gram is said to be frequent on a cut point (n, a) if the n-gram in W decided
by (n, a).

Since an appropriate cut point depends on input documents, we make the
algorithm to it automatically. First, we consider what is an appropriate cut
point. Two strings in Fig. 1 show the same string. The above string shows that
substrings for the structure and style are colored with gray. An appropriate (n, a)
covers gray parts with frequent n-grams. The below string shows that frequent
n-grams appear in both gray and white parts. In this case, the alternation count
is larger than the ideal alternation count and substrings for the structure and
style are destroyed.

Since short substrings seems not to construct structures and styles, they
appear everywhere. Therefore, an alternation count may be large if n is too
small. An alternation count also may be large if a is smaller than the ideal one
since increasing a connects separate frequent n-grams. If n or a is greater than
the corresponding ideal one, the alternation count also become large. Thus, an



appropriate cut point if both n and a are enough large and the pair (n, a) attains
a locally minimum alternation count.

A path is a sequence of cut points (n1, a1), (n2, a2), . . . , (nk, ak) such that (1)
either ni+1 = ni +1 or ai+1 = ai +1 for each i = 1, 2, . . . , k−1, (2) AD(ni, ai) >
AD(ni+1, ai+1) for each i = 1, 2, . . . , k− 1, and (3) AD(nk, ak) < AD(nk +1, ak)
and AD(nk, ak) < AD(nk, ak + 1). A cut point (n, a) is optimal if there exists a
path from (2, 1) to (n, a). Note that, there exist some optimal cut points.

The trivial initial cut point is (1, 1). However, 1-gram is too short to describe
the structure and style of documents. Thus, we define the initial cut point is
(2, 1).

Using above notions, we define that eliminating useless parts is, given a set D
of strings, to find an optimal cut point of D.

3 Algorithm

In this section, we describe FindOptimal that finds an optimal cut point (n, a)
(see Fig. 3). From the initial cut point (2, 1), the algorithm compares alternation
counts on the next two cut points with the currnet one. It stops when alternation
counts on both next two cut points are greater than the current one.

The algorithm does not remove any tags or directives of semi-structured
documents. It only modifies documents according to the following conventional
preprocessing rules: tabs and newlines are treated as a space, and consecutive
spaces are compressed into one space. An input for the algorithm is a set of
strings preprocessed according to the above rules.

FindOptimal uses two subroutines alternation (see Fig. 2) and countsort.
The subroutine countsort receives an integer n and a set D of strings, then
counts all n-grams in D and sorts them by the number of their occurrences.
The subroutine keeps the n-grams and the numbers of their occurrences in a
hash table. It returns an array of the counted substrings sorted in the decreasing
order.

The subroutine alternation receives a set D of strings, an array O of strings,
a length n, and a percentage a. The variable W used in alternation keeps the
first a/100 strings in the sorted array O which is an output of countsort. Us-
ing W , the subroutine construct a range string r and then counts the boundaries,
which is the alternation count on (n, a).

The main algorithm FindOptimal (see Fig. 3) receives a set D of strings. It
counts the alternation count on the current cut point and also counts alternation
counts on next two candidates, (n, a +1) and (n + 1, a). After comparison alter-
nation counts on these three cut points, it decides the next cut point. If both
AD(n, a + 1) and AD(n + 1, a) are small than AD(n, a), the algorithm selects
the cut point providing a smaller alternation count. If there is no next cut point
providing a smaller alternation count than the current one, then it returns the
currnet cut point as an optimal cut point.



function alternation (var D: set of strings;

O: array of strings, n: integer ; a: integer): integer;
var

i: integer;

s, x: string;

W: hash table;

r: array [1..|x|] of integers;

begin

x := string concatenated all strings in D;

for i := 1 to |x| do r[i] := 1;

W := substrings

from the first substring to the a/100-th substring in O;

for i := 1 to |x| do begin

s := x[i..i + n] ;

if s ∈ W then

r[i..i + n] := 0 ;

end {for}
count boundaries between r[i] = 0 and r[i] = 1;

return the boundaries;

end ;

Fig. 2. The subroutine returns the alternation count of D on (n, a)

3.1 Complexity

In this section, we discuss the time complexty required by FindOptimal. Let D
be an input set of strings and N be the total length of D.

First, we estimate the complexity required by the subroutine countsort. It
is required O(1) time to add a new n-gram to a hash table or to check if a
given n-gram is already stored in the hash table. Since the subroutine counts all
substrings with the same length, there exist at most O(N) n-grams. Therefore,
countsort needs O(N) time to construct the hash table and O(N log N) time
to sort n-grams. Thus, countsort runs in O(N log N) time.

Next, we consider the subroutine alternation. Let (D, O, n, a) be an input
for the subroutine. O(N) time is required to construct a hash table W . In the
last for loop, check if s ∈ W requires O(1) using the hash table W and writing 0
on r[i..i + n] requires O(n) time. Therefore, this loop is completed in O(nN)
time. Counting boundaries is done in O(N) by scanning r from left to right.
Thus, the subroutine runs in O(nN) time.

Finally, we estimate the time complexity of FindOptimal. Let (nf , af) be
the final output of FindOptimal. FindOptimal calls countsort n f − 1 times
and alternation at most 3(nf + af − 2) + 1 times because it passes through
nf + af − 2 cut points from the initial cut point (2, 1) to (nf , af ). Thus, the
routine runs in the following time:

O(nfN log N + (nf + af)nfN)
= O(nfN log N + n2

fN + afnfN)



procedure FindOptimal (var D: set of strings);

{FindOptimal finds an optimal cut point.}
var n, a: integer;

{n and a keep the current length and percentage, respectively.}
var val0, val1, val2: integer;

var Ocur, Onext: array of strings;

begin

n := 2; a := 1 ; {initialize n and a.}
Ocur := countsort(D, n);
val0:=alternation(D, Ocur, n, a) ;

{val0 keeps the alternation count on the current (n, a).}
while (n ≤ max{|d| | d ∈ D}) and (a < 100) do begin

if countsort(D, n + 1) is not done then

Onext := countsort(D, n + 1);

val1:=alternation(D, Ocur, n, a + 1);

val2:=alternation(D, Onext, n + 1, a);
{val1 and val2 keep the alternation counts on next candidates.}
if (val0 ≤ val1) and (val0 ≤ val2) then

goto OUTPUT ;

else if (val0 > val1) and ( val1 < val2) then begin

a := a + 1 ;

val0 := val1 ;

end

else if ((val0 > val2) and (val2 ≤ val1)) then begin

n := n + 1 ;

val0 := val2 ;

Ocur := Onext ;

end

end ; {while}
OUTPUT :

report (n, a) ;

end ;

Fig. 3. The main algorithm FindOptimal outputs an optimal cut point using two sub-
routines countsort and alternation



= O(n2
fN + nfN log N),

where af is a non-negative constant less than 100. Our experimental results show
that nf is less than 30 and n � N (see Section 4). Thus, the time complexity is
approximately O(N log N).

4 Experiments

We use news articles as input for FindOptimal. An article we use is written in
English or Japanese. It is provided as an HTML file which has the headline and
the body of it.

We have two types of experiments depending on the the number of sites from
which we collect articles: articles from the same site (see Section 4.2) and articles
from different sites (see Section 4.3).

4.1 Evaluation

To evaluate an outputed cut point, we utilize two approaches. We modify HTML
files in which any frequent n-gram on the cut point is colored with gray like
accbaacbc. A colored letter corresponds to 0 on the range string 110001001.

The other approache is to calculate accuracy, recall, and precision using a
binary string called a correct string. We can conclude that FindOptimal outputs
an appropriate cut point if a range string rx(n, a) is similar to the corresponding
correct string.

Let D be an input for FindOptimal and x be a string concatenated all strings
in D. A correct string c is a binary string with length |x| such that, for 1 ≤ i ≤ |c|,
c[i] ∈ {0, 1} is decided according to manually specified pairs of delimiters. Let
(l, r) be a pair of delimiters and u be a substring of c. Then, u = 11 · · · 1 if lur
be a substring of x, u = 00 · · ·0 otherwise. A substring surrounding with the
pair is the headline or the body of an article in our experiments. The positions
corresponding to the substring are filled with 1 in the correct string.

We define that the body and the headline of an article are not useless, ex-
tract manually left and right delimiters from each data set, and construct cor-
rect strings using pairs of delimiters. Then, using two binary string, the correct
string c and the range string r, we define that accuracy is [c^r]0/|r|, recall is
[c&r]1/[c]1, and precision is [c&r]1/[r]1. The accuracy is the ratio of positions i
such that c[i] = r[i] to the total length of input documents.

4.2 Articles from the Same Site

In this section, two sets of documents are considered. One is a set of 76 articles
obtained from “The Washington Post (http://www.washingtonpost.com/)”.
This set is denoted by WPOST. All pages linked from the URL are collected
and then non-article pages are removed manually. Articles in any categories are
included, and so do any other data sets in this paper. The total size of WPOST



<HTML><HEAD> <style type=”text/css”>���1370��� <META NAME=
”edition” CONTENT=”M2”> <META NAME=”document name” CON-
TENT=”A31243-2001Jan22”> <META NAME=”source” CONTENT=”Post”>
<META NAME=”section” CONTENT=”DM”> <META NAME=”page”
CONTENT=”E01 ”> <META NAME=”column” CONTENT=””> <META
NAME=”slug” CONTENT=”BANK23”> <META NAME=”timestamp” CON-
TENT=”07:08 AM”> <META NAME=”category” CONTENT=”BIZ”> <META
NAME=”wordcount” CONTENT=”0”> <META NAME=”sourceNumber”
CONTENT=”6”> <!–plsfield:title–> <TITLE>McColl Shuts Books on
an Era (washingtonpost.com)</TITLE> </HEAD>���15200��� <!–
plsfield:headline–> <FONT FACE=”Arial,Helvetica” SIZE=”+1”><B>McColl
Shuts Books on an Era</B></FONT> <!–plsfield:stop–>���2050���

<A HREF=”/cgi-bin/gx.cgi/AppLogic+FTContentServer?
pagename=wpni/email&articleid=A31243-2001Jan22&node=business”><B>E-
Mail This Article</B></A><BR></FONT></TD> ���470���<A
HREF=”/ac2/wp-dyn/A31243-2001Jan22?language=printer”><B>
Printer-Friendly Version</B></A><BR></FONT></TD> <TD
WIDTH=”8” HEIGHT=”1”><SPACER TYPE=”block” WIDTH=”8”
HEIGHT=”1”></TD></TR> <TR><TD COLSPAN=”4”
WIDTH=”226” HEIGHT=”8”><SPACER TYPE=”block” WIDTH=”226”
HEIGHT=”8”></TD></TR></TABLE> </TD></TR> <TR><TD
WIDTH=”228” HEIGHT=”1”><SPACER TYPE=”block” WIDTH=”226”
HEIGHT=”1”></TD></TR></TABLE> </TD></TR></TABLE>
<FONT SIZE=”2”> <!–plsfield:byline–> <I>By Kathleen Day</I><BR> <!–
plsfield:credit–> Washington Post Staff Writer<BR> <!–plsfield:disp date–> Tues-
day, January 23, 2001; Page E01 <BR> </FONT> </P> <!–plsfield:description–>
<P><P></P> <P><P>The expected resignation tomorrow of Hugh McColl
as head of Bank of America symbolically marks the end of an era in banking,
where for two decades mergers have been an engine of growth and the idea
that bigger is better has been gospel.</P> <P><P> His departure from the
nation’s largest consumer bank comes less than a year after his fierce crosstown
competitor in Charlotte, Edward C.���4580��� ”They have a mutual respect
for each other,” said Virginia Stone Mackin, spokeswoman for First Union, who
until a few years ago worked at Bank of America.</P> <P><P> McColl
was among the first to call Crutchfield when he was diagnosed with cancer,
she said. And the two have been known to spent the evening talking after
bumping into one another at parties or the country club.</P> <!–plsfield:end–>
<P><CENTER> &copy; 2001 The Washington Post Company </CENTER></P>
<P><CENTER> <A HREF=”/wp-dyn/business/A32068-2001Jan22.html”><img
src=”http://a188.g.akamaitech.net/f/188/920/1d/www.washingtonpost.com/wp-
srv/images/arrow previous.gif” width=”14” height=
”12” border=”0”> ���8700��� <A HREF=
”http://www.washingtonpost.com/wp-srv/maps/mit foto.map”><IMG SRC=
”http://a188.g.akamaitech.net/f/188/920/1d/www.washingtonpost.com/wp-
srv/images/channelnav news.gif” WIDTH=”760” HEIGHT=
”16” BORDER=”0” ALT=”channel navigation” ISMAP=
”true”></A><BR></TD> </TR><TR> <TD></TD> <TD><IMG SRC=
”http://a188.g.akamaitech.net/f/188/920/1d/www.washingtonpost.com/wp-
srv/globalnav/images/spacer.gif” WIDTH=”428” HEIGHT=”1” BORDER=”0”
ALT=” ”></TD> <TD></TD> <TD></TD> </TR></FORM></TABLE>
<FONT SIZE=”-2”><BR></FONT> </TD></TR></TABLE>
</BODY></HTML>

Fig. 4. An HTML file of WPOST where frequent n-grams on (24, 10) are colored with
gray



<html> <head> <title> Yomiuri On-Line/���5250���<font size=”+2”><b>
小泉 首 相 、今 国 会 へ の 補 正 予 算 案 提 出 を 否定 </b></font><br> <img
src=”/g/d.gif” width=”1” height=”5”><br> <img src=”/g/db.gif” width=”465”
height=”1”><br><img src=”/g/d.gif” width=”1” height=”15”><br> <!– photo
start –> <!– NO PHOTO –> <!– photo end –> <!– honbun start –> <p> 　小泉首
相は一日、首相官邸で記者団に対し、景気対策として二〇〇一年度補正予算案を今国会に提出する
可能性について、「考えていない」と否定した。 </p> <p> 　首相はこれまで、従来の公共事業
中心の景気対策には否定的な立場をとっている。また、財政再建に向け、国債発行額を毎年三十兆
円以下に抑える考えも示しており、補正予算編成への消極姿勢も、こうした基本方針を反映したも
のだ。 </p> <p> 　さらに、政府・与党が緊急経済対策に盛り込んだ、財政出動を伴う可能性の
ある「銀行保有株式取得機構」にも、首相は「早急につくるのではなく、もう少し専門家に意見を聞
き、より充実したものにすべきだ」と、慎重に内容を検討する意向を示している。 </p> (5 月 1
日 21: 19)<br> <!– honbun end –> <div align=”right”><img src=”/gif6/arw.gif”
width=”11” height=”11”>���5800��� <LAYER SRC=”/srcfiles/specials.htm”
VISIBILITY=hidden ONLOAD=”moveToAbsolute(specials.pageX, specials.pageY);
visibility=true;”></LAYER> </body> </html>

Fig. 5. An HTML file of YOMIURI where frequent n-grams on (27, 10) are colored
with gray

is about 3.2M Bytes (average 42K Bytes), the minimum size of the articles is
31K Bytes, and the maximum size is 65K Bytes.

Given WPOST, FindOptimal outputs (24, 10) as an optimal cut point. Fig. 4
is an HTML file in WPOST where frequent n-grams on (24, 10) are colored with
gray. Some letters are omitted because the file is too large. A number surrounded
by three boxes �, such as ���5250���, denotes the approximative number of
omitted letters. The color of omitted letters is the same as the color of the boxes
and the number. In Fig. 4, the longest black substring completely equals to the
body of the article except for the last period. Short black strings are substrings
of the headline, which appear twice, or a substring of the file name in which this
article is contained. A file name is unique in this set, so that a part of the file
name is remains not to be colored.

The accuracy, recall, and precision on WPOST is 0.975, 0.939, and 0.872,
respectively. The precision is relatively lower because unique substrings are in-
cluded in the header of an HTML file such as a part of the file name.

The other set consists of articles written in Japanese. They are collected
from “Yomiuri On-Line (http://www.yomiuri.co.jp/)”. This is constructed by
collecting all linked pages from all categories. For example, economic articles are
collected from http://www.yomiuri.co.jp/02/index.htm. This set is denoted
by YOMIURI. The number of the articles in YOMIURI is 198, the total size of
YOMIURI is about 2.7M Bytes (average 13.4K Bytes), the minimum size of the
articles is 297 Bytes, and the maximum size is 39K Bytes.

YOMIURI includes non-article files as noise data. The shortest file is not an
article file. Moreover, files whose size are smaller than 12K Bytes are top pages
of categories. Such files have only hyperlinks to articles. The number of noises
in YOMIURI is 14 and its size is about 36K Bytes.

Given YOMIURI, FindOptimal outputs (8, 10) as an optimal cut point. The
accuracy, recall, and precision on YOMIURI is 0.992, 0.808, and 0.991, respec-
tively.



Fig. 5 is a modified HTML file. Black parts are parts of the headline and the
body of the article. The headline is at the second line and the content starts after
“<!-- honbun start -->” which means the start of the body. Short colored
substrings in the body are “<p>” tags with the beginnings or ends of sentences.
These substrings decrease the recall. Ends of sentences appear frequently in a
Japanese sentence and beginnings are frequent expressions in articles such as
“prime minister (Koizumi)”.

4.3 Articles from Different Sites

We use “Los Angeles Times (http://www.latimes.com/)” and “The Sankei
Shimbun (http://www.sankei.co.jp/)” in addition to sites described in Sec-
tion 4.2. Two sets of articles collected from the URLs are denoted by LATIMES
and SANKEI, respectively. Articles in LATIMES and SANKEI are written in
English and Japanese, respectively.

In this section, the following data sets are considered. Any combination of
English and Japanese sites is included.

WP-LA articles from WPOST (30 articles 2.36M Bytes) and LATIMES (40
articles 2.44M Bytes)

SA-YO articles from SANKEI (23 articles 86K Bytes) and YOMIURI (198
articles 2.7M Bytes)

SA-LA articles from SANKEI (23 articles 86K Bytes) and LATIMES (150 ar-
ticles 4.5M Bytes)

Note that the size of data set SANKEI is too small.
Table 1 shows outputs of FindOptimal and evaluation values. A cell x(y, z)

of an evaluation value shows the total value x on all articles and two evaluation
values y and z on each site articles. The total value is not the average of the
corresponding two single sites. It is calculated by just counting letters of all
articles from both sites. That is, if two evaluation values of single site are x1/y1

and x2/y2, then the total evaluation is (x1 + x2)/(y1 + y2). Therefore, in data
sets SA-YO and SA-LA, the evaluation values are dominated by those of the
large data set, YOMIURI or LATIMES, respectively.

Table 1. Evaluation values for different sites data

Data Set Optimal Accuracy Recall Precision

WP-LA (28, 17) 0.965 (0.969, 0.962) 0.802 (0.906, 0.679) 0.894 (0.859, 0.954)
SA-YO (19, 13) 0.994 (0.892, 0.997) 0.889 (0.697, 0.930) 0.987 (0.965, 0.990)
SA-LA (23, 6) 0.959 (0.914, 0.961) 0.958 (0.992, 0.954) 0.755 (0.796, 0.749)

Articles of the same site have the same formats. Data sets in Table. 1 have
different formats since documents are collected from different sites. FindOptimal
detects different formats as useless parts with high accuracy. Especially, it detects
useless parts of articles in SANKEI despite of its small size.



4.4 Discussion

Many text mining algorithms assume that frequent patterns, substrings, rules,
etc. are important. But, in this paper, frequent n-gram is defined to be useless.
FindOptimal avoid treating an important keyword as a useless substring in the
following way. FindOptimal increases the length n and frequency a from the
initial cut point (2, 1). Therefore, a frequent n-gram turns out to be long. In
fact, n = 24 when WPOST is the input. We think that an important keyword
is not so long and a substring for the structure and style is relatively long.
Even if some important keywords are long, it merely happens that they appear
frequently. Thus, the algorithm does not judge an important keyword to be
useless.

This simple idea sometimes does not work well if the size of given input
documents are not enough. For example, in YOMIURI data set, there exist some
news files of Mr. Tsuta’s death. He was a famous high-school baseball manager.
In these news files, the substring “a former manager of the baseball club at
Tokushima prefectural high-school” appears frequently. In Japanese, the length
of the substing is 11, and the length of the cut point found by FindOptimal is 8.
So, FindOptimal treats the substring to be useless although the substring is not
for the structure or style of the documents. This type of errors does not happen
when enough articles are given to FindOptimal because the frequency of such
long substring become to be relatively low.

Note that useless parts do not consist of only tag sequences. For example,
articles in YOMIURI have the same string in <title> tag and the string is
detected as a useless part. On the other hand, the title of an article in WPOST
is the same as the headline of the article and the title is detected as a non-useless
part.

5 Conclusion

We introduced a new static value alternation count and developed an algorithm
that divides each document of given documents into two parts, useless parts and
non-useless parts. It is based on a simple assumption that frequent n-grams are
not useful. We defined an optimal cut point to decide an appropriate pair (n, a)
of length n and frequency a.

The algorithm does not depend on natural and markup languages because it
counts substrings of inputs instead of words or other grammatical units. Exper-
imental results show that the algorithm is robust for noise. Moreover, if input
documents are collected from different sites and have different formats, an out-
puted cut point divides documents of both sites into useless and non-useless
parts with hight accuracy.

We only showed experiments on news articles provided as HTML files. It is a
future work to use other types of data sets such as dynamic pages, static pages
except for news, files written in other markup language, etc.

It is an interesting future work to use some knowledge on grammars of the
markup language. For example, when the algorithm enumerates n-grams, if a



delimiter such as “<”, “>”, “.”, and “?”, is contained in an n-gram, they must
be at the beginning or end of the n-gram. This may improve accuracies.

As an application of the algorithm, we developed a record extraction system
SCOOP [16]. A record extraction is an important application of Web mining [6,
9, 12]. SCOOP utilized FindOptimal as the preprocessor and knowledge that
a delimiter of a record (or field) ends with “>” and begins with “<”. Ginve
an output of FindOptimal, SCOOP searches delimiters only near boundaries of
non-useless parts and outputs the most frequent pair of substrings as a delimiter
if it is unique on each record.

Another challenging future work is to apply our algorithm to genome info-
matics. The longest common subsequence problem is, given two string, to find a
longest common subsequence of them [2, 8]. The problem for k (k ≥ 2) strings
is known as multiple sequence alignment, which is a major problem in genome
infomatics [11]. If k is not fixed, multiple sequence alignment is known to be
NP-complete [13]. Both multiple sequence alignment and our problem are to ex-
tract parts common to a given set of strings. A difference between two problems
is that each common part should have particular length in our setting, that is,
our algorithm does not work well if common parts are too short.
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