Skip to main content

Automated Formulation of Reactions and Pathways in Nuclear Astrophysics: New Results

  • Conference paper
  • First Online:
  • 379 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2226))

Abstract

In this paper we describe some new results from ASTRA, a computational research aid for the formulation and analysis of process explanations in nuclear astrophysics. The program generates fusion and decay reactions for chemical elements by using its knowledge of quantum theory, and from these reactions constructs all theoretically possible reaction chains as process explanations for the nucleosynthesis of heavier elements. Earlier applications of ASTRA generated reactions of the elements and isotopes from hydrogen to oxygen, and found novel reactions and reaction chains for these elements. We have recently extended the system’s knowledge base for the elements from oxygen to sulphur. The new applications of ASTRA generated a series of hydrogen burning and helium burning reactions involving heavier elements such as fluorine, neon, sodium, magnesium, aluminium, silicon and sulphur. The program also generated a complete series of carbon, nitrogen and oxygen burning reactions. The new results of ASTRA lead to interesting details about the origin of the elements between oxygen and sulphur.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adelberger, E.G., et al. (1998). Solar fusion cross sections. Reviews of Modern Physics, vol. 70, No. 4. Pp 1266–1291.

    Article  Google Scholar 

  • Audouze, J., & Vauclair, S. (1980). An introduction to nuclear astrophysics. Holland: D. Riedel.

    Google Scholar 

  • Clayton, D.D. (1983). Principles of Stellar Evolution and Nucleosynthesis. Chicago: The University of Chicago Press.

    Google Scholar 

  • Cujec, B. & Fowler, W.A. (1980). Neglect of D, T, and 3He in advanced stellar evolution. The Astropysical Journal, 236: 658–660.

    Article  Google Scholar 

  • Feigenbaum, E. A., Buchanan, B.G., Lederberg, J. (1971). On generality and problem solving: A case study using the DENDRAL program. In Machine Intelligence (vol. 6). Edinburgh: Edinburgh University Press.

    Google Scholar 

  • Fowler, W.A. (1986). The synthesis of the chemical elements carbon and oxygen. In S.L. Shapiro & S.A. Teukolsky (Eds.), Highlights of modern astrophysics. New York: John Wiley & Sons.

    Google Scholar 

  • Fowler, W.A., Caughlan, G.R., and Zimmermann, B.A. (1967). Thermonuclear Reaction Rates. Ann. Rev. Astron. Astrphysics, 5, 525–570.

    Article  Google Scholar 

  • Fowler, W.A., Caughlan, G.R., and Zimmermann, B.A. (1975). Thermonuclear Reaction Rates. Ann. Rev. Astron. Astrphysics, 13, 69–112.

    Article  Google Scholar 

  • Harris, M.J., Fowler, W.A. Caughlan, G.R., and Zimmermann, B. (1983). Thermonuclear reaction rates. Ann. Rev. Astron. Astrophysics, 21, 165–176.

    Article  Google Scholar 

  • Hendrickson, J.B. (1995). Systematic synthesis design: The SYNGEN program. Working Notes of the AAAI Spring Symposium on Systematic Methods of Scientific Discovery (pp. 13–17). Stanford, CA: AAAI Press.

    Google Scholar 

  • Jones, R. (1986). Generating predictions to aid the scientific discovery process. Proceedings of the Fifth National Conference on Artificial Intelligence, pp. 513–517, Philadelphia: Morgan Kaufmann.

    Google Scholar 

  • Kippenhahn, R. and Weigert, A. (1994). Stellar Structure and Evolution. London: Springer-Verlag.

    Google Scholar 

  • Kocabas, S. (1991). Conflict resolution as discovery in particle physics. Machine Learning, 6, 277–309.

    Google Scholar 

  • Kocabas, S., & Langley, P. (1995). Integration of research tasks for modeling discoveries in particle physics. Working notes of the AAAI Spring Symposium on Systematic Methods of Scientific Discovery (pp. 87–92). Stanford, CA: AAAI Press.

    Google Scholar 

  • Kocabas, S. & Langley, P. (1998). Generating process explanations in nuclear astrophysics. Proceedings of the ECAI-98 Workshop on Machine Discovery (pp. 4–9), Brighton, UK.

    Google Scholar 

  • Kocabas, S. & Langley, P. (2000). Computer generation of process explanations in nuclear astrophysics. International Journal of Human-Computer Studies, 53, 1149–1164, Academic Press.

    Article  MATH  Google Scholar 

  • Kulkarni, D., & Simon, H.A. (1990). Experimentation in machine discovery. In J. Shrager & P. Langley (Eds.), Computational models of scientific discovery and theory formation. San Mateo, CA: Morgan Kaufmann.

    Google Scholar 

  • Lang, K.R. (1974). Astrophysical formulae: A compendium for physicists and astrophysicists. New York: Springer-Verlag.

    Google Scholar 

  • Langley, P. (1981). Data-driven discovery of physical laws. Cognitive Science, 5, 31–54.

    Article  Google Scholar 

  • Langley, P. (1998). The computer-aided discovery of scientific knowledge. Proceedings of the 1st International Conference on Discovery Science, Fukuoka, Japan: Springer.

    Google Scholar 

  • Langley, P., Simon, H.A., Bradshaw, G.L., & Zytkow, J.M. (1987). Scientific Discovery: Computational explorations of the creative processes. Cambridge, MA: MIT Press.

    Google Scholar 

  • Lee, Y., Buchanan, B.G., Mattison, D.R., Klopman, G., & Rosenkranz, H.S. (1995). Learning rules to predict rodent carcinogenicity. Machine Learning, 30, 217–240. Lide, D.R. (Ed.). (1999–2000). CRC handbook of chemistry and physics(80th ed.). Florida: CRC Press.

    Google Scholar 

  • Mitchell, F., Sleeman, D., Duffy, J.A., Ingram, M.D., & Young, R.W. (1997). Optical basicity of metallurgical slags: A new computer-based system for data visulisation and analysis. Ironmaking and Steelmaking, 24, 306–320.

    Google Scholar 

  • Rose, D. & Langley, P. (1986). Chemical discovery as belief revision. Machine Learning, 1, 423–451.

    Google Scholar 

  • Valdes-Perez, R.E. (1995). Machine discovery in chemistry: New results. Artificial Intelligence, 74, 191–201.

    Article  Google Scholar 

  • Williams, W.S.C. (1991). Nuclear and Particle Physics. Oxford: Clarendon Press. Zytkow, J.M., & Simon, H.A. (1986). A theory of historical discovery: The construction of componential models. Machine Learning, 1, 107–137.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kocabas, S. (2001). Automated Formulation of Reactions and Pathways in Nuclear Astrophysics: New Results. In: Jantke, K.P., Shinohara, A. (eds) Discovery Science. DS 2001. Lecture Notes in Computer Science(), vol 2226. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45650-3_17

Download citation

  • DOI: https://doi.org/10.1007/3-540-45650-3_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42956-2

  • Online ISBN: 978-3-540-45650-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics