
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Model Generation with Boolean Constraints

Koshimura, Miyuki
Department of Intelligent Systems, Faculty of Information Science and Electrical Engineering,
Kyushu University

Fujita, Hiroshi
Department of Intelligent Systems, Faculty of Information Science and Electrical Engineering,
Kyushu University

Hasegawa, Ryuzo
Department of Intelligent Systems, Faculty of Information Science and Electrical Engineering,
Kyushu University

https://doi.org/10.15017/1515730

出版情報：九州大学大学院システム情報科学紀要. 6 (2), pp.157-160, 2001-09-26. 九州大学大学院シ
ステム情報科学研究院
バージョン：
権利関係：



       Model Generation with Boolean Constraints 

 Miyuki  KOSHIMURA*  ,  Hiroshi  FUJITA*  and  Ryuzo  HASEGAWA* 

                    (Received June 15, 2001)

Abstract: We present a simple method for eliminating redundant searches in model generation. 
The method employs Boolean Constraints which are conjunctions of ground instances of clauses 
having participated in proofs. Boolean Constraints work as sets of lemmas with which duplicate 
subproofs and irrelevant model extensions can be eliminated. The method has been tentatively 
implemented on a constraint logic programming system. We evaluated effects of the method by 

proving some typical problems taken from the TPTP problem library. 

Keywords: Theorem proving, Constraint solver, Folding-up, Proof condensation

 1. Introduction 

 The model generation procedure tries to con-

struct Herbrand models for a given clause set and 

determines its satisfiability. It maintains a set M of 

ground atoms called a model candidate, finds vio-
lated clauses that are not satisfied under M, then 

extends M to satisfy them, and repeats this process 

until a model is found or all model candidates are 
rejected. 

 There are two types of redundancy in model gen-

eration: One is that the same subproof tree may be 

generated at several descendant nodes after a case-
splitting occurs. Another is caused by unnecessary 

model candidate extensions with irrelevant clauses. 

We embedded both folding-up 3) and proof conden-

sation 5) into model generation for eliminating these 

redundancies by analyzing dependency in a proof 2). 

The embedded function examines the structure of 

proof in order to append a solved subproof-tree to 
an open branch. 

 This paper presents yet another method to elimi-

nate the redundancies on the basis of semantical in-

formation. If the current model candidate conflicts 

with a set of instances of clauses that have par-

ticipated in model generation so far, we can reject 

the model candidate without further exploration. 

We call the set a Boolean Constraint. It is worth 

noting that the Boolean Constraint consists of only 

ground instances of clauses and all atoms in model 
candidates are ground. Therefore, a conflict test is 

essentially propositional theorem proving. 

 In this work, we utilize a constraint solver 7) on 

Boolean expressions for the test, though we could u-

tilize model generation itself or other proving meth-

ods in principle. The main reason for utilizing the

* Department of Intelligent Systems

constraint solver is that it can compute a simple 
(canonical) form of the Boolean Constraint which 
is incrementally updated as the proof progresses. 
Since the constraint solver reduces the Boolean 
Constraint as simple as possible, it can detect the 
conflict efficiently. 

 2. Model Generation 
Throughout this paper, a clause -,AiV...V-,AnV 

B1 V ... V B, is represented in implicational form: 
A1 A . A An -4 Bi V.. . V Bin, where Ai (1 <i < n) 
and B3 (1 <j < m) are atoms; the left hand side 
of "-+" is said to be the antecedent; and the right 
hand side of "-+" the consequent. 

 A clause is said to be positive if its antecedent 
is T (n = 0), and negative if its consequent is 
1 (m = 0); otherwise it is mixed (n 0, m 0). 
A clause is said to be violated under a set M of 

ground atoms if the following condition holds with 
some ground substitution a: Vi(1 < i < n)Aia E 
MA VA]. <j < m)Bja cz' M. 

 A model generation proof procedure is sketched 
in Fig. 1. Given a set S of clauses, MG tries to 
construct a model by extending the current model 
candidate M so as to satisfy violated clauses under 
M (model extension). When a negative clause is vi-
olated under M, MG rejects M because there is no 
way of extending M (model rejection). If no clause 
is violated under M, we conclude M is a model of 
S, that is, S is satisfiable (model finding). 

Consider the following set of clauses Si: 

Cl: T —> p(a) V p(c) C2 : p(a) -4 q(b) 
C3 : p(X) A q(Y) 

r(X, Y) V r(X, X) V r(Y, X) 
C4 : p(X)Aq(Y)-+ 

r(s(X), Y) V r(X, X) V r(Y, X) 
C5 : p(X) A r(s(X), Y) r(Y, s(X))



Fig.1 Model generation procedure.

 C6 : r(s(X),  Y)  A  r(Y,  s(X))  —> r(X,  X) 
C7 : r(X, X) -* r(s(X), X) V r(X, s(X)) 
C8 : p(X) A q(Y) A r(Y, X) —> r(X, X) 
C9 : r(s(X), X) -+ 1 
C10 : r(X, s(X)) —+ 1 Cu1 : p(c) -+ 1 
Figure 2 shows a proof-tree for Si. The in-

ner nodes of a proof-tree except the root node are 
labeled with atoms used for model extension. A 
branch or a path from the root to a node corre-
sponds to a model candidate. A leaf labeled with 1 
indicates that the corresponding model candidate 
has been rejected. Si is unsatisfiable because all 
leaves of its proof-tree are labeled with 1. 

  The procedure MG in Fig. 1 can be proved sound 
and complete in the sense that MG examines only 
models containing the model candidate M4). 
Theorem I Let S be a set of clauses and M be a 
set of ground atoms. Then MG(M) return unsat-
isfiable if and only if there is no model containing 
M. 
  Let BC be a set of ground instances of violated 
clauses in S that have been used for model rejection 
and extension. If BC U M is unsatisfiable, S U M 
is unsatisfiable. In this case, according to Theo-
rem 1, we can reject M without further proving. 
This rejection mechanism can reduce search spaces 
by orders of magnitude. Figure 3 shows a model 
generation procedure in which the rejection mech-
anism is embedded. The framed parts are embed-
ded ones. We call the procedure model generation 
with Boolean Constraints because BC is essentially 
the conjunction of propositional clauses and can be 
treated as a Boolean expression. 

 Initially, the set BC is set to the empty set ((1)). 
BC is updated whenever ground instances of claus-
es are used for model extension or model rejec-

Fig.4 Eliminating redundant branches.

tion ((3),(4)). BC is used for model rejection pri-
or to performing normal model rejection and ex-
tension ((2)). This rejection works as folding-up 
to eliminate duplicates subproofs. BC is also used 
for model rejection testing whenever each extension 
MG(M U {B2a}) is finished ((5)). This rejection 
test works as proof condensation to avoid unneces-
sary model extensions. 

Figure 4 shows a proof tree for Si obtained by 
model generation with Boolean Constraints. The 
mark * indicates a branch pruned by operation (2), 
while the mark x indicates that by operation (5). 

BC becomes BC1 = {C1, C2, C3a1, C40-1, C50-1, 
C6a1, C70-2, C9a2, C10Q2} after the second branch 
from the left has been rejected where a1 = {X <— 
a, Y- b} and a2 = {X t— a}. Then, 
the next model candidate M1 to be solved is 

{p(a), q(b), r(a, b), r(a, a)}. However, since BC1 U 
M1 is unsatisfiable, M1 is rejected. After the 
model extension under r(b, a) with clause C8a2



 Fig.2 A normal proof-tree of Si.

Fig.3 Model generation with Boolean Constraint.

has been performed, BC becomes BC2 = BC1 U 
{C8a2}. The corresponding model candidate M2 
is {p(a), q(b), r(a, b), r(b, a), r(a, a)}. In this case, 
BC2 U M2 is unsatisfiable as well, so that M2 is 
rejected. 

On the other hand, BC2 U {p(a),q(b)}, that is, 
BC2 U M3 is unsatisfiable. Therefore, the explo-
ration of r(a, a) and r(b, a) below q(b) can be elim-
inated. Thus, we obtain a proof-tree which has 12 
inner nodes while the normal proof-tree shown in 
Fig. 2 has 23 inner nodes.

 3. Implementation 

 The method is implemented on top of a constraint 

logic programming system B-Prologn which sup-

ports constraint solvers over trees, Boolean, finite-
domains and sets. We manipulate a set BC of 

ground instances of clauses through the constraint 
solver. Thus, BC is maintained within the con-
straint solver. When updating BC (Fig. 3(3) (4)), 
we tell (-iAia V ... V —,Ana) = TRUE or (—,A10 V 
... V --Ana V B1a V ... V Brno-) = TRUE to the



 Table-1 Comparison of experimental results. 

            (Sun Ultra 60 450MHz)

constraint solver. On the other hand, when testing 
whether a conflict occurs (Fig. 3(2) (5)), we ask 
the constraint solver "Is A = TRUE possible for all 
A E M?" If they become all TRUE, BC U M is 
satisfiable, otherwise, it is unsatisfiable. 

 Table 1 compares the proving performance on 

several typical problems taken from the TPTP li-
brary 6). The problems were run on a SUN Ultra 60 

(450MHz, 1GB, Solaris2.7) workstation with a time 
limit of 10 minutes and a space limit of 240MB. All 

problems exhibit the pruning effect of Boolean Con-
straint. Especially, all the 12 problems are solved 
with Boolean Constraints although 8 of 12 could not

be solved without Boolean Constraints.

 4. Future Work 

 In the current implementation, the most time 
consuming task is the conflict test (Fig. 3 (2) (5)). 
The cost of this task may be reduced by using Bina-
ry Decision Diagrams (BDDs). We are considering 

two approaches using BDD: One is to replace the 
constraint solver with BDD. Another is to use a 
BDD for representing a proof tree of model genera-
tion 1). 

 In the latter, all model candidates are simul-

taneously represented as the paths ending with a 
truth node in a BDD. With this representation, 
model candidates conflicting with the Boolean Con-
straint are automatically eliminated by standard B-
DD functions. Thus, the conflict test can be ig-
nored. However, an implementation of the latter 

approach is more difficult than that of the former 
because BDD may create more model candidates 
than the model generation procedure, and it would 
be necessary to select a minimal one for efficiency. 
We are now developing a prototype for the former. 

               References 

1) R. Hahnle. BDDs for Representation of Model Candi-
   dates in MGTP. a private talk at Kyushu University, 

   September 1998. 
2) M. Koshimura and R. Hasegawa. Proof Simplification for 

   Model Generation and Its Applications. In M. Parigot 
   and A. Voronkov, editors, Proceedings of 7th Interna-

   tional Conference, LPAR2000, volume 1955 of Lecture 
   Notes in Artificial Intelligence, pages 96-113. Springer, 

   November 2000. 
3) R. Letz, K. Mayr, and C. Goller. Controlled Integration 

   of the Cut Rule into Connection Tableau Calculi. Jour-
   nal of Automated Reasoning, 13(3):297-337, December 

   1994. 
4) I. Niemela. A Tableau Calculus for Minimal Model 

   Reasoning. In P. Miglioli, U. Moscato, D. Mundici, 
   and M. Ornaghi, editors, 5th International Workshop, 

TABLEA UX'96, volume 1071 of Lecture Notes in Arti-
   ficial Intelligence, pages 278-294. Spriger, May 1996. 

5) F. Oppacher and E. Suen. HARP: A Tableau-Based The-
   orem Prover. Journal of Automated Reasoning, 4(1):69-

   100, March 1988. 
6) G. Sutcliffe and C. Suttner. The TPTP Problem Library 

-CNF Release v1.2.1. Journal of Automated Reasoning, 
   21(2):177-203, October 1998. 

7) N.-F. Zhou. B-Prolog User's Manual (Version 5.0), 
   2000. http://www.probp.com.


