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Abs t r ac t . Starting from the way the inter-cellular communication takes 
place by means of protein channels and also from the standard knowl­
edge about neuron functioning, we propose a computing model called a 
tissue P system, which processes symbols in a multiset rewriting sense, in 
a net of cells similar to a neural net. Each cell has a finite state memory, 
processes multisets of symbol-impulses, and can send impulses ("excita­
tions") to the neighboring cells. Such cell nets are shown to be rather 
powerful: they can simulate a Turing machine even when using a small 
number of cells, each of them having a small number of states. Moreover, 
in the case when each cell works in the maximal manner and it can excite 
all the cells to which it can send impulses, then one can easily solve the 
Hamiltonian Path Problem in linear time. A new characterization of the 
Parikh images of ETOL languages are also obtained in this framework. 

1 Introduction 

This paper can be seen at the same time as a contribution to neural networks 
(of a symbolic type), to membrane computing (with cells arranged in "tissues"), 
to finite au tomata networks (working not with strings, but with multisets of 
symbols), to multiset processing, to (distributed) au tomata and language the­
ory. The motivation is two-fold: the inter-cellular communication (of chemicals, 
energy, information) by means of complex networks of protein channels (see, 
e.g., [1], [11]), and the way the neurons co-operate, processing impulses in the 
complex net established by synapses (see, e.g., [1], [2]). 

The common mathematical model of these two kinds of symbol-processing 
mechanisms is the net of finite s tate devices, and this is the type of computing 
mechanisms we are going to consider: networks of finite-automata-like processors, 
dealing with symbols, according to local states (available in a finite number for 
each "cell"), communicating through these symbols, along channels ("axons") 
specified in advance. Note tha t the neuron modelling was the start ing point of 
the theory of finite au tomata ([13], [10]), tha t symbol processing neural networks 
have a rich (and controversial) history (see [5] and its references), and tha t 
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networks of string-processing finite automata have appeared in many contexts 
([6], [9], [12], etc), but our models are different in many respects from all these 
previous models. 

Having in mind the bio-chemical reality we refer to, a basic problem concerns 
the organization of the bunch of symbols available in each node, and the easiest 
and most natural answer is: no organization. Formally, this means that we have 
to consider multisets of symbols, sets with multiplicities associated with their 
elements. In this way, we need a kind of finite automata dealing with multisets 
of symbols, a topic which falls into an area of (theoretical) computer science not 
very much developed, although some recent (see, e.g., [7]), or not so recent (see, 
e.g., [4]) approaches can be found in the literature. Actually, most of the vivid 
area of membrane computing (P systems) [15] is devoted to multiset processing 
(details at h t tp : / / b io in fo rma t i c s .b io .d i sco .un imib . i t / p sys t ems) . 

The computing models we propose here, under the name of tissue P systems, 
in short, tP systems, consist of several cells, related by protein channels. In order 
to preserve also the neural intuition, we will use the suggestive name of synapses 
for these channels. Each cell has a state from a given finite set and can process 
multisets of objects, represented by symbols from a given alphabet. The standard 
rules are of the form sM —> s'M', where s, s' are states and M, M' are multisets 
of symbols. Some of the elements of M' may be marked with the indication "go", 
and this means that they have to immediately leave the cell and pass to the cells 
to which we have direct links through synapses. This communication (transfer 
of symbol-objects) can be done in a replicative manner (the same symbol is sent 
to all adjacent cells), or in a non-replicative manner; in the second case we can 
send all the symbols to only one adjacent cell, or we can distribute them, non-
deterministically. One more choice appears in using the rules sM —> s'M': we can 
apply such a rule only to one occurrence of M (that is, in a sequential, minimal 
way), or to all possible occurrences of M (a parallel way), or, moreover, we can 
apply a maximal package of rules of the form sMj —> s'M(, 1 < i < k, that is, 
involving the same states s, s', which can be applied to the current multiset (the 
maximal mode). By the combination of the three modes of processing objects and 
the three modes of communication among cells, we get nine possible behaviors 
of our machinery. 

A way to use such a computing device is to start from a given initial con­
figuration (that is, initial states of cells and initial multisets of symbol-objects 
placed in them) and to let the system proceed until reaching a halting config­
uration, where no further rule can be applied, and to associate a result with 
this configuration. Because of the nondeterminism, starting from one given ini­
tial configuration we can reach arbitrarily many different halting configurations, 
hence we can get arbitrarily many outputs. Another possibility is to also provide 
inputs, at various times of a computation, and to look for the outputs related to 
them. Here we will consider only the first possibility, of generative tP systems, 
and the output will be defined by sending symbols out of the system. To this 
aim, one cell will be designated as the output one, and in its rules sM —> s'M' 
we will also allow that symbols from M' are marked with the indication "out"; 
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such a symbol will immediately leave the system, contributing to the result of 
the computation. 

At the first sight, such a machinery (a finite net of finite state devices) seems 
not to be very powerful, e.g., as compared with Turing machines. Thus, it is 
rather surprising to find that tP systems with a small number of cells (two or 
four), each of them using a small number of states (resp., at most five or four) 
can simulate any Turing machine, even in the non-cooperative case, that is, only 
using rules of the form sM —> s'M' with M being a singleton multiset; moreover, 
this is true for all modes of communication for the minimal mode of using the 
rules, and, in the cooperative case, also when using the parallel or the maximal 
mode of processing objects. When the rules are non-cooperative and we use them 
in the maximal mode, a characterization of Parikh images of ETOL languages 
is obtained, which completes the study of the computing power of our devices 
(showing that in the parallel and maximal cases we dot not get computational 
universality). 

The above mentioned results indicate that our cells are "very powerful"; as 
their power lies in using states, hence in remembering their previous work, a 
natural idea is to consider tP systems with a low bound on the number of states 
in each cell. In view of the previously mentioned results, tP systems with at 
most 1, 2, 3, or 4 states per cell are of interest. We only briefly consider this 
question here, and we show that even reduced tP systems as those which use 
only one state in each cell can be useful: using such a net we can solve the 
Hamiltonian Path Problem in linear time (this is a direct consequence of the 
structure of a tP system, of the maximal mode of processing objects, and of the 
power of replicating the objects sent to all adjacent cells); remember that HPP 
is an NP-complete problem. 

The power of tP systems with a reduced number of states per component 
remains to be further investigated. Actually, many other natural research topics 
can be considered, with motivations from automata and language theory (vari­
ants, power, normal forms), neural networks (learning, dynamic sets of neurons, 
dynamic synapses), computability (other NP-complete problems treated in this 
framework), dynamic systems (reachable configurations), etc. 

2 Some Mathematical Prerequisites 

The computability notions we use here are standard and can be found in many 
books, so we specify only some notations. 

A multiset over a set X is a mapping M : X —> N; for a G X, we say 
that M(a) is the multiplicity of a in M. Here we work only with multisets over 
finite sets X. For two multisets Mi, M2 over some set X we write Mi C M2 
if and only if Mi (a) < M2(a) for all a G X (we say that Mi is included in 
M2). The union of Mh M2 is the multiset Mi U M2 : X —> N defined by 
(Mi U M2){a) = Mi (a) + M2(a), for all a G X. If Mi C M2, then we also define 
the difference multiset M2-Ml:X —> N by (M2 - Mi)(a) = M2(a) - Mi (a), 



for all a G X. For Y C X and M a multiset over X, we define the projection on 
M(a), ifaeY, 

y b y p n , ( M ) ( a ) = l ( ) > o t h e r w i g e 

For a given alphabet V, V* is the language of all strings over V, including the 
empty string, denoted by A. The Parikh mapping associated with V is denoted 
by <?y. A multiset M over an alphabet V can be represented by a string w G V* 
such tha t Hfv(w) gives the multiplicities in M of the symbols from V; obviously, 
all permutat ions of w are representations of the same multiset. For a family FA 
of languages, we denote by PsFA the family of Parikh images of languages in 
FA. By CF, CS, RE we denote the families of context-free, context-sensitive, 
and recursively enumerable languages, respectively. 

3 Tissue P Systems 

We now pass to the definition of our variant of membrane (P) systems, which 
can also be considered as a model of a symbolic neural net. We introduce it in 
the general form, then we will consider variants of a restricted type. 

A tissue P system, in short, a t P system, of degree m > 1, is a construct 

II = (E, < r i , . . . , am, syn, iout), where 

1. E is a finite non-empty alphabet (of chemical objects, but we also call them 
excitations/impulses); 

2. syn C {1, 2, . . ., m} x { 1 , 2 , . . . , m} (synapses among cells); 
3- iout € { 1 , 2 , . . . , m} indicates the output cell; 
4. <7i , . . . , am are cells, of the form <Tj = (Qi, s^o, Wj,o, -Pi), 1 < i < m, where: 

(a) Qi is a finite set (of states); 
(b) Sj o € Qi is the initial state; 
(c) w^o € -B* is the initial multiset of impulses; 
(d) Pj is a finite set of rules of the form sw —> s'xygozout, where s, s' e Qi, 

w,x e E*, ygo G (i?x{gro})* and zout G (i?x{ow£})*, with the restriction 
tha t Zout = A for all i € {1, 2 , . . . , m } different from iout. 

A t P system as above is said to be cooperative if it contains at least a rule 
sw —> s'w' such tha t \w\ > 1, and non-cooperative in the opposite case. 

Any m-tuple of the form (s\w\,..., smwm), with Sj G Qi and Wj G -B*, for all 
1 < i < m, is called a configuration of 7T; (s^owi^o, • • •, Sm,owm,o) is the initial 
configuration of 7T. 

Using the rules from the sets P i ; 1 < i < m, we can define transitions among 
configurations. To this aim, we first consider three modes of processing the stimuli 
and three modes of transmitting excitations from a cell to another one. Let 
us denote Ego = {(a,go) | a G E}, Eout = {(a,out) | a G E}, and Etot = 
EUEgoU E^. For s,s' e Qi,x e E*,y e E*tot, we write 

sx =>min s'y iff sw —> s'w' G Pi, w C x, and y = (x — u>) U w/, 

sx ^^>p a r s'y iff sw —> s'w' G Pi, w C x, w + 2 x i 



for some k > 1, and y = (x — wk) U w'k, 

SX =>max s'y iff S » l ->• s ' ^ i , • • • , SWk ->• s'w'k £ Pi, k > 1, 

such that w\ . . .Wk C i , ( / = (x — wi . .. Wk) U w^ . .. «;£., 

and there is no sw —> s'w' G Pi such that w\... wj.w C x. 

In the first case, only one occurrence of the multiset from the left hand side 
of a rule is processed (replaced by the multiset from the right hand of the rule, 
at the same time changing the state of the cell), in the second maximal 
change is performed with respect to a chosen rule, in the sense that as many as 
possible copies of the multiset from the left hand side of the rule are replaced 
by the corresponding number of copies of the multiset from the right hand side, 
while in the third maximal change is performed with respect to all rules 
which use the current state of the cell and introduce the same new state after 
processing the impulses. 

We also write sx —>a sx, for s G Qi,x € E*, and a G {min,par,max}, if 
there is no rule sw —> s'w' in Pi such that w C x. This encodes the case when a 
cell cannot process the current impulses in a given state (it can be "unblocked" 
after receiving new impulses from its ancestors). 

The multiset w' from a rule sw —> s'w' contains symbols from E, but also 
symbols of the form (a, go) (or, in the case of cell iout, of the form (a, out)). Such 
symbols will be sent to the cells related by synapses to cell <Tj where the rule 
sw —> s'w' is applied, according to the following modes: 

— repl: each symbol a, for (a, go) appearing in w', is sent to each of the cells 
o~j such that (i,j) € syn; 

— one: all symbols a appearing in w' in the form (a, go) are sent to one of 
the cells o-j such that (i,j) G syn, nondeterministically chosen; more ex­
actly, in the case of modes par and max of using the rules, we first perform 
all applications of rules, and after that we send all obtained symbols to a 
unique descendant of the cell (that is, we do not treat separately the impulses 
introduced by each rule, but all of them in a package); 

— spread: the symbols a appearing in w' in the form (a, go) are non-determi-
nistically distributed among the cells o-j such that (i,j) G syn. 

In order to formally define the transition among the configurations of II we 
need some further notations. For a multiset w over Etot, we denote by go(w) the 
multiset of symbols a G E appearing in w in the form (a, go), and by out(w) 
the multiset of symbols a G E, appearing in w in the form (a, out). Clearly, 
go(w)(a) = w((a,go)) and out(w)(a) = w((a, out)), a G E. Moreover, for a node 
i in the graph defined by syn we denote ant(i) = {j | (j, i) G syn} and succ(i) = 
{J I (hj) € syn} (the ancestors and the successors of node i, respectively). 

Now, for two configurations C\ = (siwi,..., smwm), Ci = (s^w//,..., s^w^J 
we write C\ =$-a p C<2, for a G {min,par, max}, (3 G {repl, one, spread}, if there 
are w[,..., w'm in Elot such that SjWj =>a s^w^, 1 < i < m, and 

— for /? = repl we have w'( = prE{w'i) U [}jeant{i) go(w'j); 



— for (3 = one we have w'( = prE(w'i) U {JjeI. go(w'A, where It is a subset 
of ant(i) such that the set ant(i) was partitioned into I\,...,Im; at this 
transition, all non-empty sets of impulses of the form U76/ 9°(w'j)i 1 < ^ < 
m, should be sent to receiving cells (added to multisets w'/, 1 < I < m); 

— for (3 = spread we have w'{ = pr^(w^) — go(w'i)Uzi, where zi is a submultiset 
of the multiset Uieantfi) 9°(w'j) such that z i , . . . , zm are multisets with the 
property [JJLi zj = [Jjeant(i) 9°(w'j)> a n ( i such that all z\,..., zm are sent to 
receiving cells (added to multisets w[', 1 < I < m). 

Note that in the case of the cell o~iout we also remove all symbols a G E appearing 
in w^ in the form (a, out). 

During any transition, some cells can do nothing: if no rule is applicable to 
the available multiset of impulses in the current state, then a cell waits until new 
impulses are sent to it from its ancestor cells. 

A sequence of transitions among configurations of the tP system II is called 
a computation of II. A computation which ends in a configuration where no 
rule in no cell can be used, is called a halting computation. Assume that dur­
ing a halting computation the tP system II sends out, through the cell o~iout, 
the multiset z. We say that the vector HSE(Z), representing the multiplicities of 
impulses from z, is computed (or generated) by II. We denote by Na^{II)^a G 
{min,par, max}, (3 G {repl, one, spread}, the set of all vectors of natural num­
bers generated by a tP system II, in the mode (a, (3). The family of all sets 
Nafi(II), generated by all cooperative tP systems with at most m > 1 cells, 
each of them using at most r > 1 states, is denoted by NtPmir(Coo, a, (3); when 
non-cooperative tP systems are used, we write NtPmir(nCoo, a, (3) for the cor­
responding family of vector sets. When one (or both) of the parameters m, r are 
not bounded, then we replace it (them) with *, thus obtaining families of the 
form NtPm^{^,a,[3),NtP^^r{^,a, (3), etc. 

We have 18 families of the form NtP*^^, a, (3), but, as we will see below, 
not all of them are different. 

4 An Example 

Before investigating the power and the properties of tP systems, let us examine 
an example, in order to clarify and illustrate the previous definitions. Consider 
the rather simple tP system: 

III = ({a},0"i,0"2,0"3,syra, 1), 

<7i = ({s}, s, a, {sa —> s(a, go), sa —> s(a, out)}), 

°2 = ({s}, s, A, {sa -> s(a, go)}), 
a3 = ({«}, s, A, {sa -> s(a, go)}), 

syn = {(1,2), (1,3), (2,1), (3,1)}. 

The reader can easily check that we have: 

Na,repi{IIi) = {(n) I n ^ 1}; f°r a € {min, max}, 



JVpar,repl(i7l) = {(2™) | n > 0 } , 

Na,p{II{) = {(1)}, for a G \min,par,max\,l3 € {one, spread]. 

Indeed, in the non-replicative mode of communication, no further symbol is 
produced, hence we only generate the vector (1). In the replicative case, the 
symbols produced by the rule sa —> s(a, go) from cell 1 are doubled by com­
munication. When the rules are used in the parallel mode, then all symbols are 
processed at the same time by the same rule, which means that all symbols 
present in the system are doubled from a step to the next one, therefore, the 
powers of 2 are obtained. When the rules are used in the minimal mode, the 
symbols are processed or sent out one by one, hence all natural numbers can be 
obtained. In the maximal mode, we can send copies of a at the same time to 
cells 2 and 3, and outside the system, hence again any number of symbols can 
be sent out. 

5 The Power of t P systems 

The following relations are direct consequences of the definitions. 

Lemma 1. (i) For all 1 < TO < TO', 1 < r < r', 7 G {Coo,nCoo},a G {min,par, 
max}, and (3 G {repl, one, spread}, we have: 

NtPm>r(^,aJJ) C NtPm,y(>y,a,p) C NtP,-,(^,aJ3) C PsRE, 

NtPmjT(nCoo, a, /?) C NtP„hr{Coo, a, /?). 

(ii) For all tP systems II, cooperating or not, where each cell has at most one 
successor, and for all a G {min,par, max} we have 

Na,repi{n) = Na^one{n) = NajSprea(i(ii). 

As it is standard when considering a new computing device, we compare the 
power of tP systems with that of Turing machines and restricted variants of 
them. Refined classifications of the power of such machines are provided by the 
Chomsky and the Lindenmayer hierarchies. We start by considering the minimal 
mode of using the rules in a tP system, and this turns out to be computationally 
universal, a fact which makes natural the comparison with (Parikh images of) 
Chomsky families, in particular, PsRE. In a subsequent section we will con­
sider the parallel and the maximal modes of using the rules, and this will make 
necessary the comparison with (Parikh images of) Lindenmayer families. 

5.1 Comparison with Chomsky Families 

Rather surprising, if we take into consideration the apparently weak ingredients 
of our models, when using the mode rain of applying the rules, even the non-
cooperative tP systems turn out to be computationally universal. (As expected, 
the same result holds true also when using cooperative rules, in all modes rain, 
par, max.) In proving such results we try to keep as reduced as possible both 
the number of cells and the maximal number of states used by the cells. 



T h e o r e m 1. PsRE = NtP2fi("f,min, (3) for all 7 G {Coo,nCoo}, (3 G {repl, 
one, spread}. 

At the price of using two more cells, we can decrease the number of used 
states (the proof is omit ted). 

T h e o r e m 2. PsRE = NtP^^/min, (3) for all 7 G {Coo,nCoo}, (3 G {one, 
spread}. 

If we use cooperative rules, then we can further decrease both the number 
of cells and of states. Moreover, we can characterize PsRE for all modes rain, 
par, max of processing the impulses, and this completes the s tudy of the cooper­
ative case. 

T h e o r e m 3 . PsRE = NtP2i2(Coo,a, (3) for all a G {min,par}, (3 G {repl, 
one, spread}. 

We do not know whether or not the results in Theorems 1, 2, and 3 are 
optimal in the number of cells and of states. 

5.2 C o m p a r i s o n w i t h L indenmayer Famil ies 

The maximal mode of using the rules in a t P system resembles the parallel mode 
of rewriting the strings in an L system, and this makes the following results 
expected. 

T h e o r e m 4. (i) PsEOL C NtPi2(nCoo,max, (3) for all (3 G {repl, one, 
spread}, (ii) PsETOL C NtP\^{nCoo, max, (3) for all (3 G {repl, one, spread}. 

For t P systems working in the min mode, we need further additional cells 
(and states) in order to simulate EOL and ETOL systems. 

T h e o r e m 5. PsEOL C NtP2^{nCoo, min, (3) for all (3 G {repl, one, spread}. 

In the case of ETOL systems we needed one more cell and one more state 
(but we do not know whether or not this result can be improved). 

T h e o r e m 6. PsETOL C NtP%^{nCoo, min, (3) for all (3 G {repl, one, spread}. 

Interestingly enough, the converse of assertion (ii) from Theorem 4 is also 
true, even in the following more general form (and this settles the s tudy of modes 
par and max: they do not lead to computational universality). 

T h e o r e m 7. NtP*t*(nCoo, a, (3) C PsETOL, for all a G {par, max} and (3 G 
{repl,one, spread}. 

Together with assertion (ii) from Theorem 4 we get the following characteri­
zation of PsETOL, which precisely describes the power of the mode max in the 
non-cooperative case. 



T h e o r e m 8. NtP1A(nCoo,max, (3) C NtPlfi{nCoo,max, (3) C NtPlfi{nCoo, 
max, j3) = NtPm^r{nCoo, max, (3) = NtP*^{nCoo,max, (3) = PsETOL, for all 
m > 1, r > 3. 

A more precise characterization of families NtPmir(nCoo,par, (3), (3 G {repl, 
one, spread}, remains to be found (but we already know tha t such systems only 
generate Parikh images of ETOL languages). 

6 Solving H P P in Linear Time 

The architecture of t P systems and their way of working (especially the fact tha t 
in the maximal mode of using the rules we can process all impulses which may 
be processed in such a way tha t the same next s tate is obtained, irrespective 
which rules are used, and the fact tha t in the replicative mode one can send 
the same impulses to all successors of a cell) have an intrinsic computational 
power. More precisely, problems related to paths in a (directed) graph can be 
easily solved by a t P system, just by constructing a net with the synapses graph 
identical to the graph we deal with, constructing all paths in the graph with 
certain properties by making use of the maximal mode of applicating the rules 
and of the replicative communication, and checking the existence of a pa th with 
a desired property. 

We illustrate this power of t P systems with the Hamiltonian Pa th Problem 
(HPP) , which asks whether or not in a given directed graph G = (V, U) (where 
V = {ai,..., am} is the set of vertices, and U C V x V is the set of edges) there 
is a pa th start ing in some vertex a$n, ending in some vertex aout, and visiting 
all vertices exactly once. For simplicity, in what follows we assume tha t aj„ = a\ 
and aout = am. It is know tha t the H P P is a NP-complete problem, hence it is 
one of the problems considered as intractable for the sequential computers (for 
the Turing machines). 

Having a graph G = (V, U) as above, we construct the t P system II = 
(E,a1,...,am,U,m), with 

E = {[z;k] | ze V*,0 < \z\ < m , 0 < k < m}, 

at = ({s},s,[X;0},{s[X;0} ^ s([l;l],go)}), 

o~i = ({s}, s, A, {s[z; k] ->• s([zi; k + 1], go) \ z £ V*, 1 < \z\ < m - 2, 

\z\i = 0,1 < k < m — 2}), for each i = 2, 3 , . . . , m — 1, and 

°~m = ({s}> SJ \ {s[z\ m ~ 1] —^ s([zm; m], out) \ z G V*, \z\ = m — 1}). 

It is easy to see tha t NmaXirepi(II) ^ 0 if and only if H P P has a solution for 
the graph G: the paths in G grow simultaneously in all cells of II, because of the 
max mode of using the rules (each cell has only one state, hence all rules can be 
used at the same time). Moreover, the cell am can work only after m — 1 steps 
and a symbol is sent out of the net at the step m. Thus, it is enough to watch 
the t P system at step m and if any symbol is sent out, then H P P has a solution, 
otherwise we know tha t such a solution does not exist. (Note tha t the symbol 
sent out describes a Hamiltonian pa th in G.) 
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