Skip to main content

Learner’s self-assessment: a case study of SVM for information retrieval

  • Conference paper
  • First Online:
  • 731 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2256))

Abstract

The paper demonstrates that the predictive capabilities of a typical kernel machine on the training set can be a reliable indicator of its performance on the independent test set in the region where scores are larger than 1 in magnitude. We present initial results of a number of experiments on the popular Reuters newswire benchmark and the NIST handwritten digit recognition data set. In particular, we demonstrate that the values of recall and precision estimated from the training and independent test sets are within a few percent of each other for the evaluated benchmarks. Interestingly, this holds for both separable and non-separable data cases, and for training sample sizes an order of magnitude smaller than the dimensionality of the feature space used (e.g. using ≈2000 samples versus ≈20000 features for Reuters data). A theoretical explanation of the observed phenomena is also presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273–297, 1995.

    MATH  Google Scholar 

  2. N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines and other kernel-based learning methods. Cambridge Uni. Press, Cambridge, 2000.

    Google Scholar 

  3. S. Dumais, J. Platt, Heckerman D., and M. Sahami. Inductive learning algorithms and representations for text categorization. In Seventh International Conference on Information and Knowledge Management, 1998.

    Google Scholar 

  4. F. Girosi, M. Jones, and T. Poggio. Regularization theory and neural networks architectures. Neural Computation, 7(2):219–269, 1995.

    Article  Google Scholar 

  5. T. Jaakkola and D. Haussler. Estimating the Generalization Performance of an SVM Efficiently. In Proc. of the Seventh International Conference on Machine Learning, San Francisco, 1999. Morgan Kaufman.

    Google Scholar 

  6. T. Joachims. Estimating the Generalization Performance of an SVM Efficiently. In P. Langley, editor, Seventh Int. Conf. on Machine Learning, pages 431–438, Morgan Kaufman, 2000.

    Google Scholar 

  7. M. Kerns. A bound on error of cross validation using the approximation and estimation rates, with consequences for the training-test split. Neural Computation, 9:1143–1162, 1997.

    Article  Google Scholar 

  8. G. Kimeldorf and G. Wahba. A correspondence between Bayesian estimation of stochastic processes and smoothing by splines. Ann. Math. Statist., 41:495–502, 1970.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Kowalczyk. Maximal margin perceptron. In P. Bartlett, B. Schölkopf, D. Schuurmans, and A. Smola, editors, Advances in Large Margin Classifiers, pages 61–100, Cambridge, MA, 2000. MIT Press.

    Google Scholar 

  10. A. Kowalczyk. Sparsity of data representation of optimal kernel machine and leave-one-out estimator. In T.G. Dietterich T.K. Leen and V. Tresp, editors, Advances in Neural Information Processing Systems 13, Cambridge, MA, 2001. MIT Press.

    Google Scholar 

  11. M. Opper and O. Winther. Gaussian process classification and svm: Mean field results and leave-one out estimator. In A. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 301–316, Cambridge, MA, 2000. MIT Press.

    Google Scholar 

  12. B. Raskutti, H. Ferrá, and A. Kowalczyk. Second Order Features for Maximising Text Classification Performance. In Proceedings of the Twelfth European Conference on Machine Learning ECML01, 2001.

    Google Scholar 

  13. V. Vapnik. The Nature of Statistical Learning Theory. Springer Verlag, New York, 1995.

    MATH  Google Scholar 

  14. V. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

    MATH  Google Scholar 

  15. V. Vapnik and O. Chapelle. Bounds on error expectation for svm. In A. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 261–280, Cambridge, MA, 2000. MIT Press.

    Google Scholar 

  16. S. M. Weiss, C. Apte, F. Damerau, D.E. Johnson, F. J. Oles, T. Goetz, and T. Hampp. Maximizing text-mining performance. IEEE Intelligent Systems, 14, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kowalczyk, A., Raskutti, B. (2001). Learner’s self-assessment: a case study of SVM for information retrieval. In: Stumptner, M., Corbett, D., Brooks, M. (eds) AI 2001: Advances in Artificial Intelligence. AI 2001. Lecture Notes in Computer Science(), vol 2256. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45656-2_22

Download citation

  • DOI: https://doi.org/10.1007/3-540-45656-2_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42960-9

  • Online ISBN: 978-3-540-45656-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics