
Please do not remove this page

Simplifying the development of intelligent
agents
Winikoff, M.; Padgham, Lin; Harland, James
https://researchrepository.rmit.edu.au/esploro/outputs/conferenceProceeding/Simplifying-the-development-of-intelligent-agents/9921858085801341/
filesAndLinks?index=0

Winikoff, M., Padgham, L., & Harland, J. (2001). Simplifying the development of intelligent agents. AI 2001:
Advances in Artificial Intelligence, 557–566. https://doi.org/10.1007/3-540-45656-2_48

Published Version: https://doi.org/10.1007/3-540-45656-2_48

Document Version: Accepted Manuscript

Downloaded On 2024/04/19 13:30:08 +1000
© 2001 Springer-Verlag Berlin Heidelberg New York
Repository homepage: https://researchrepository.rmit.edu.au

Please do not remove this page

https://researchrepository.rmit.edu.au/esploro/outputs/conferenceProceeding/Simplifying-the-development-of-intelligent-agents/9921858085801341/filesAndLinks?index=0
https://researchrepository.rmit.edu.au/esploro/outputs/conferenceProceeding/Simplifying-the-development-of-intelligent-agents/9921858085801341
http://doi.org/doi:https://doi.org/10.1007/3-540-45656-2_48
https://researchrepository.rmit.edu.au


Simplifying the Development of Intelligent Agents

Michael Winikoff, Lin Padgham, and James Harland

RMIT University, Melbourne, AUSTRALIA
{winikoff,linpa,jah }@cs.rmit.edu.au ,

http://www.cs.rmit.edu.au/˜ {winikoff,linpa,jah }

Abstract. Intelligent agents is a powerful Artificial Intelligence technology which
shows considerable promise as a new paradigm for mainstream software devel-
opment. However, despite their promise, intelligent agents are still scarce in the
market place. A key reason for this is that developing intelligent agent software
requires significant training and skill: a typical developer or undergraduate strug-
gles to develop good agent systems using the Belief Desire Intention (BDI) model
(or similar models). This paper identifies the concept set which we have found to
be important in developing intelligent agent systems and the relationships be-
tween these concepts. This concept set was developed with the intention of be-
ing clearer, simpler, and easier to use than current approaches. We also describe
briefly a (very simplified) example from one of the projects we have worked on
(RoboRescue), illustrating the way in which these concepts are important in de-
signing and developing intelligent software agents.
Keywords: AI Architectures, distributed AI, multiagent systems, reactive con-
trol, software agents.

1 Introduction

Intelligent agents is a powerful Artificial Intelligence technology which shows consid-
erable promise as a new paradigm for mainstream software development. Agents offer
new ways of abstraction, decomposition, and organisation that fit well with our natural
view of the world and agent oriented programming is often considered a natural suc-
cessor to object oriented programming [6]. It has the potential to change the way we
design, visualise, and build software in that agents can naturally model “actors” – real
world entities that can show autonomy and proactiveness. Additionally, social agents
naturally model (human) organisations ranging from business structure & processes to
military command structures. A number of significant applications utilising agent tech-
nology [5] have already been developed, many of which are decidedly non-trivial.

An intelligent agent is one which is able to make rational decisions, i.e., blending
proactiveness and reactiveness, showing rational commitment to decisions made, and
exhibiting flexibility in the face of an uncertain and changing environment.

Despite their promise, intelligent agents are still scarce in the market place1. There is
a real technical reason for this: developing intelligent agent software currently requires
significant training and skill. Our experience (and the experience of others) is that a

1 Although abuse of buzzwords is, alas, all too common.

E79927
Typewritten Text
Citation: Winikoff, M, Padgham, L and Harland, J 2001, 'Simplifying the development of intelligent agents', in AI 2001: Advances in Artificial Intelligence, Adelaide, Australia, 10-14 December 2001. 

E79927
Typewritten Text

E79927
Typewritten Text



2

typical developer or final-year undergraduate student struggles to develop good agent
systems using the Belief Desire Intention (BDI) model (or similar models).

Decker [3] discusses problems that undergraduate students have in approaching
agent oriented development. These include a lack of suitable background in AI (plan-
ning and goal oriented programs), poor software engineering skills, and a lack of ex-
perience at dealing with concurrent and distributed programming/debugging, and with
communication protocols.

We have found the key problem to be that students cannot clearly identify the nec-
essary pieces to break the program into and thus tend to build monolithic plans which
try to handle all contingencies internally, rather than create an appropriate collection of
plans which can be applied in different contexts. They also have significant difficulty
with interfacing the agent to its environment. Other reasons why developing intelligent
agent systems is difficult include:

– Immature tool support: There is a lack of good debugging tools and of tools which
integrate an internal agent architecture with suitable middleware & infrastructure.
Additionally, many tools are research prototypes and lack efficiency, portability,
documentation, and/or support.

– The need for processes and methodologies: Programmers are familiar with design-
ing object oriented systems. However, the design of agent oriented systems differs
in a number of ways. For example, identifying roles, goals, and interaction patterns.

– Design guidelines and examples: Designing a collection of plans to achieve a goal
is different to designing a single procedure to perform a function. This difference is
fundamental – developing intelligent agents is a different programming paradigm
and needs to be learnt and taught as such.

– Complex concepts such as intentions are difficult to explain; this isn’t helped by a
lack of agreement on concepts and inconsistent terminology.

– Lack of a suitable2 text book: much of the work on intelligent agents is scattered
across many research papers (sometimes collected into volumes).

In the process of working on a number of agent programs, teaching students and
assisting them to build agent programs, and developing and running workshops for
academia and industry3, we have developed an initial process of agent design and de-
velopment for BDI systems.4 This process is explained more fully in the technical report
[8] and is still being refined and developed.

This paper identifies the concept set which we have found to be important in de-
veloping intelligent agent systems and the relationships between these concepts. These
of course rely heavily on the standard Belief Desire Intention (BDI) concepts [9, 10]
though we have found it necessary to clarify some of the differences between just what
these concepts are in the initial philosophical work [1], the logical theories [2, 9, 13] and
the implementations such as PRS, dMars and JACK. We have also found it important

2 Suitable: Aimed at undergraduates or professional developer and contains enough detail to
answer the question “How would I actually go about building an intelligent agent?”.

3 Workshops have been developed and delivered in association with Agent Oriented Software
4 Using primarily dMars from the Australian Artificial Intelligence Institute, and more recently

JACK from Agent Oriented Software.



3

to place some emphasis on the concepts of percepts and actions which appear in many
generic models of agents (e.g. [12]) and which are very important in the interfacing of
the agent deliberation to the external environment. We have found a need to separate
more clearly between events and goals than is done in dMars or JACK and to provide
greater support within the execution engine for reasoning about goals than is usually
done in BDI agent systems [14].

Our work in general is focussed on multi-agent systems although this paper concen-
trates on the concepts required for the internals of each intelligent agent - a necessary
pre-requisite for multi-agent systems with teams or societies containing such agents.

2 Background: The BDI Model

The BDI model [9, 10] is a popular model for intelligent agents. It has its basis in philos-
ophy [1] and offers alogical theorywhich defines the mental attitudes of Belief, Desire,
and Intention using a modal logic; asystem architecture; a number of implementations
of this architecture(e.g. PRS, JAM, dMars, JACK); andapplicationsdemonstrating the
viability of the model. The central concepts in the BDI model are:

Beliefs: Information about the environment;informative.
Desires: Objectives to be accomplished, possibly with each objective’s associated pri-

ority/payoff;motivational.
Intentions: The currently chosen course of action;deliberative.
Plans: Means of achieving certain future world states. Intuitively, plans are an abstract

specification of both the means for achieving certain desires and the options avail-
able to the agent. Each plan has (i) a body describing the primitive actions or sub-
goals that have to be achieved for plan execution to be successful; (ii) an invocation
condition which specifies the triggering event5, and (iii) a context condition which
specifies the situation in which the plan is applicable.

The BDI model has developed over about 15 years and there are certainly strong
relationships between the theoretical work and implemented systems. The paper [10]
describes an abstract architecture which is instantiated in systems such as dMars and
JACK and shows how that is related to the BDI logic. However, the concepts we have
found useful for development within these systems do not necessarily match the con-
cepts most developed in the theoretical work. Neither are they necessarily exactly the
concepts which have arisen within particular implemented systems such as JACK. An
additional complication is small differences between similar concepts, such as Desires
and Goals, which receive differing emphasis in different work at different times.

Desires are understood to be things the agent wants to achieve. They play an impor-
tant role in the philosophical foundations, but the logical theory deals primarily with
Goals, which are assumed to be a consistent set of desires. At the implementation level
the motivational concept is reduced to events – goals are implicit and the creation of
a new goal is treated as an event which can trigger plans. Events are ignored in the
theoretical framework although they play a key role in implementations. In the theo-
retical model plans are simply beliefs or intentions. However in the implementations

5 Some events are considered as goal-events.



4

plans are a central concept. Some key differences between the philosophy, theory, and
implementation viewpoints of BDI are shown in the table below.

Philosophy: Belief Desire Intention
Theory: Belief Goal Intention

Implementation: Relational DB (or arbitrary object)Event Running Plan

3 Concepts for Intelligent Agents

We describe the set of concepts which we have come to use in developing intelligent
agent applications. We believe that these are necessary and sufficient for building the
sort of applications appropriately approached using BDI agents, and we hope that they
are simple, and clearly explained. The work to develop a formal semantic framework
for these concepts, thus developing closer links between a theoretical framework and
an implemented development platform, is work in progress.

Percepts

Action

Choose
an action

a ∈ As

Fig. 1.Agents are Situated

We build up our description of an intelligent agent
by beginning with a basic, and universally agreed upon
(see for example [12]), property of agents: they are situ-
ated (see figure 1). Thus, we haveactionsandpercepts.
Internally, the agent is making adecision: from the set
of possible actionsAs it is selecting an action (or ac-
tions) to perform (a ∈ As). Loosely speaking, where
the description of the agent’s internal workings contains
a statement of the form “[select] X ∈ Y ” then we have
a decision being made. Thus the type of decisions being
made depend on theinternal agent architecture.

An action is something which an agent does, such as
movenorthor squirt. Agents are situated, and an action
is basically an agent’s ability to effect its environment. In their simplest form actions
are atomic and instantaneous and either fail or succeed. In the more general case actions
can be durational (encompassing behaviours over time) and can produce partial effects;
for example a failedmoveto action may well have changed the agent’s location. In
addition to actions which directly affect the agent’s environment, we also want to con-
sider “internal actions”. These correspond to an ability which the agent has which isn’t
structured in terms of plans and goals. Typically, the ability is a piece of code which
either already exists or would not benefit from being written using agent concepts, for
example image processing in a vision sub-system.

A percept is an input from the environment, such as the location of a fire and an
indication of its intensity. The agent may also obtain information about the environment
through sensing actions.

A decision: The essence of intelligent agents is rational decision making. There are
a number of generic, non-application-specific questions which intelligent agents must
answer, such as:Whichaction shall I perform now?Whichgoal do I work on now?How
shall I attempt to realise this goal?Whereshall I go now (for mobile agents)? Andwho
shall I interact with (for social agents)?



5

Mechanisms to answer these kinds of questions are core intelligent agent processes.
They result in decisions which must fulfil rationality conditions, in that we expect that
decisions be persistent and only be revisited when there is a good reason for doing so.
It is also important that the answer to the questions not be trivial: if an agent only has a
single goal at a time and a single means of realising this goal then we have reduced the
agent to the special case of a conventional program and there is no scope for decision
making or for flexible, intelligent behaviour.

Note that although the concept of a decision is fundamental to intelligent agents, it
is not always necessary to represent the decisions explicitly. For example, the decision
regarding choice of goal could be represented using a “current goal” variable which is
updated when a decision is made.

Percepts

Action

Events

GoalsActions

Fig. 2. Proactive Agents have
Goals, Reactive Agents have
Events

We now consider the internal workings of
the agent (see figure 2). We want our intelligent
agents to be bothproactiveandreactive. A proac-
tive agent is one which pursues an agenda over
time. The agent’s proactiveness implies the use
of goals and modifies the agent’s internal exe-
cution cycle: rather than select an action one at
a time, we select a goal which is persistent and
constrains our selection of actions. Areactive
agent is one which will change its behaviour in
response to changes in the environment. An im-
portant aspect in decision making is balancing
proactive and reactive aspects. On the one hand
we want the agent to stick with its goals by de-
fault, on the other hand we want it to take changes in the environment into account. The
key to reconciling these aspects, thus making agents suitably reactive, is to identifysig-
nificantchanges in the environment. These areevents. We distinguish between percepts
and events: an event is an interpreted percept which has significance to the agent. For
example, seeing a fire is a percept. This percept could give rise to anew fireevent or a
fire under controlevent depending on history and possibly other factors.

A goal (variously called “task”, “objective”, “aim”, or “desire”) is something the
agent is working on or towards, for exampleextinguishfire, or rescuecivilian. Often
goals are defined as states of the world which the agent wants to bring about; however,
this definition rules out maintenance goals (e.g. “maintain cruising altitude”) and avoid-
ance goals, or safety constraints (e.g. “never move the table while the robot is drilling”).
Goals give the agent its autonomy and proactiveness. An important aspect of proactive-
ness is the persistence of goals: if a plan for achieving a goal fails then the agent will
consider alternative plans for achieving the goal in question. We have found that goals
require greater emphasis than is typically found in existing systems. It is important for
the developer to identify the top level goals of the agent as well as subsidiary goals
which are used in achieving main goals. Our modified execution engine does signifi-
cantly more reasoning about goals than is usual in BDI implementations [14], includ-
ing reasoning about interference between goals and how to select goals when it is not
consistent to pursue them simultaneously. We differentiate between top level goals and



6

subsidiary goals in that subsidiary goals are not important in their own right and may
therefore be treated differently in the reasoning process than top-level goals.

An event is a significant occurrence. Events are often extracted from percepts, al-
though they may be generated internally by the agent, for example on the basis of a
clock. An event can trigger new goals, cause changes in information about the envi-
ronment, and/or cause actions to be performed immediately. Actions generated directly
by events correspond to “reflexive” actions, executed without deliberation. Events are
important in creating reactive agents in that they identify important changes which the
agent needs to react to.

Percepts

Action

Events

GoalsActions

Plans

Beliefs

Fig. 3.Adding Plans and Beliefs

Agents in realistic applications usually
have limited computational resources and
limited ability to sense their environment.
Thus the auxiliary concepts ofplan andbe-
lief are needed. Beliefs are effectively a cache
for perceived information about the environ-
ment, and plans are effectively a cache for
ways of pursuing goals (see figure 3). Al-
though both of these concepts are “merely”
aids in efficiency, they are not optional. Be-
liefs are essential since an agent has limited
sensory ability and also it needs to build up
its knowledge of the world over time. Plans
are essential for two reasons. The first is pure
computational efficiency: although planning technology and computational speed are
improving, planning from action descriptions is still incompatible with real time deci-
sion making. The second reason is that by providing a library of plans we avoid the need
to specify each action’s preconditions and effects: all we need to provide for an action is
the means to perform it. This is significant in that representing the effects of continuous
actions operating over time and space in an uncertain world in sufficient detail for first
principles planning is unrealistic for large applications.

A plan is a way of realising a goal, for example a plan for achieving the goalex-
tinguishfire might specify the three steps: plan a route to the fire, follow the route to
the fire, and squirt the fire until it has been put out. Although the concept of a plan is
common there is no agreement on the details. From our point of view it is not neces-
sary to adopt a specific notion of a plan, rather we can specify abstractly that a plan for
achieving a goal provides a function which returns the next action to be performed. This
function takes into account the current state of the world (beliefs), what actions have
already been performed, and might involve sub-goals and further plans. For computa-
tional reasons it is desirable for this to at least include a “library of recipes” approach,
rather than requiring construction of plans at runtime from action descriptions.

A belief is some aspect of the agent’s knowledge or information about the envi-
ronment, self or other agents. For example an agent might believe there is a fire atX
because she saw it recently, even if she cannot see it now.

These concepts (actions, percepts, decisions, goals, events, plans, and beliefs) are
related to each other via theexecution cycleof the agent. An agent’s execution cycle



7

follows a sense-think-act cycle, since the agent is situated. The think part of the cycle in-
volves rational decision making, consisting of the following steps: (depicted in figure 4)

Beliefs

Percepts
Interpret

Beliefs

Events

Decisions

Goals
Which

Goal?

H
o
w
?

Action

Trigger

Reflex

Actions
ScheduleAction

Decisions

Goals

Plans

Decisions

Plans
Update

Expand

1

2

3

4

5

6

7

Fig. 4.Agent Execution Cycle

1. Percepts are interpreted (using be-
liefs) to give events

2. Beliefs are updated with new in-
formation from percepts

3. Events yield reflexive actions
and/or new goals

4. Goals are updated, including cur-
rent, new and completed goals.

5. If there is no selected plan for the
current goal, or if the plan has
failed, or if reconsideration of the
plan is required (due to an event)
then a plan is chosen.

6. The chosen plan is expanded to
yield an action

7. Action(s) are scheduled and performed

By comparison, the BDI abstract execution cycle [10] consists of the following
steps: (1) use events to trigger matching plans (options), (2) select a subset of the op-
tions, (3) update the intentions and execute them, (4) get external events, and (5) drop
successful and impossible attitudes. The execution cycle presented here differs from
the BDI execution cycle in a number of ways including the use of reflexive actions, the
derivation of events by interpreting percepts, the process of going from goals to plans to
actions, and increased reasoning about goals. However, the two primary contributions
are the role of top level goals (which are distinguished from events and from sub-goals,
and are persistent) in achieving proactiveness, and the role of events (assignificantoc-
currences) in creating suitably reactive agents.

4 A Case Study: RoboRescue

One of the applications we have worked on recently is RoboRescue. We describe a
greatly simplified version of a part of this application in order to illustrate concretely
the concepts we have identified.

RoboRescue[11] is a long-term (50 years!) project which has the goal of creat-
ing robotic squads which could be deployed in the aftermath of a disaster such as an
earthquake. Tasks to be carried out include rescuing & evacuating people and control-
ling fires. Challenges faced include the lack of information and an environment which
contains obstacles (including collapsed buildings, obstructed roads, fires, etc.) and po-
tentially limited communication.

The RoboRescue simulator has a number of components which simulate different
aspects of a disaster scenario. The intention is that these aspects combine synergistically
to provide a realistically complex and challenging environment. There are a number of



8

different types of agents in the system including fire engines, ambulances, civilians, and
police agents. At each simulator cycle agents receive visual information and possibly
heard information.

Due to space limitations in this paper we focus on a single agent type (fire engine)
and a simple set of its behaviours focussed on fire extinguishing.

To design the fire engine agent using the concepts described earlier we look at each
concept and identify instances of it in the agent system. This process is, in general, iter-
ative: when designing a plan we may realise that the agent needs to know a certain piece
of information which implies the addition of a belief which might imply the addition
(or modification) of goals and plans. A comprehensive methodology for the detailed
design of agent systems is described in [8]. Here we concentrate on illustrating the way
in which instances of the relevant concepts are identified and defined.

Decisions are not considered here since questions which an agent needs to answer as
it runs aren’t specific to a given application domain; rather, they are specific to a given
agent architecture. Detailed design regarding how agents will work together, exactly
what plans will be used and what sub-goals will be needed is a design task well beyond
the scope of this paper and requiring the more extensive methodology of [8]. Rather, we
focus on the initial aspects of the process and the identification of some of the relevant
concepts in each class. More concept instances will inevitably be identified as the design
progresses.

Percepts:Percepts represent an interface to the environment, so are often, as in
this case, at least partially predefined. There are two types of percepts in RoboRescue
- visual and auditory. Auditory information may be broadcast information which in
the case of a fire-engine agent may be a message from another fire-engine agent, the
fire-engine center, or a civilian either crying for help or stating that they have heard a
cry for help. It may also be a message directed specifically to that agent from another
fire-engine agent. The content of messages from fire-engine agents and the fire-engine
center is an aspect of perceptual information which is under the control of the designer
and must be decided. Visual information contains a current view of the environment
including such things as roads, buildings, fires and their intensity, etc.

Percepts must be processed to build up knowledge of the environment (beliefs) and
to extract events. In the case of the visual information in RoboRescue it is first processed
in order to add any information to the map of the world that is built incrementally. It is
then processed to extract the position of each fire which is assessed to see whether there
is a fire-related event which should be generated and to further update the knowledge
of the environment.

Actions: The actions which an agent can perform are also part of its interface to the
environment. As indicated earlier, there may be additional actions defined beyond those
that affect the environment, but these are a starting point. In this case the agent can
perform the external actions ofsquirtingwhich reduces the fire at the current location,
movingwhich moves the agent an unspecified number of steps along a given route,
telling (broadcasting) andsaying(sending) a message. The move and squirt actions
may need to be applied repeatedly to achieve the desired goal, for example a fire may
need to be squirted multiple times before it is extinguished and the agent may need to
move several times before it reaches its destination.



9

We also identified early on the action of planning a route between two points as an
internal action. A route is a necessary parameter for the move action, code existed for
planning a route given the map, a current position and a destination, and there seemed
to be no clear advantage in using goals and plans to achieve this task, particularly given
the existing code. Thus we had an initial set of five actions, four that were part of the
external interface to the simulator and one which was internal.

Goals:An obvious major goal of the fire engine agent is to put out any fire. We also
identified a goal of discovering fires. Additional thought yielded for us the further goals
of assisting a team-mate to put out a fire and coordinating a team effort to extinguish a
fire. The goals of the agent obviously have to do with the motivation for the system, but
are not externally defined in the way that at least some of the percepts and actions are.
Choosing the appropriate set of top-level goals is one of the early design decisions that
need to be made.

It is tempting to treat goals as being implied by the beliefs: any belief in the exis-
tence of a fire implies a goal extinguish the fire. However, this approach has a number of
issues. Firstly, it is hard to indicate that certain fires should not be pursued (e.g. because
another agent is dealing with them). Secondly, it is difficult to add goals which are not
directly prompted by environmental cues. For example, the goal to find fires exists in-
dependent of cues in the environment, and should result in exploratory behaviour if no
other goals are inhibiting this goal.

In addition to identifying the goals of an agent, we need to specify when to adopt
and drop goals (including how to recognise when they are achieved), plans for achieving
these goals, sub-goals that may be part of achieving each goal and relative priorities and
interactions between the goals.

As indicated in section 3, events, i.e. significant things which happen in the envi-
ronment, often result in the adoption of goals. Thus the event of receiving a message
from a team-mate requesting help in extinguishing a fire is likely to result in a goal to
assist that team mate to put out his fire. The event of noticing a fire is likely to result in
a goal to extinguish that fire. Thus we move onto events.

Events: Here we are identifying significant occurrences that are likely to make the
agent add or delete goals, change goal priorities, or change how the agent is pursuing a
goal. We also look for significant occurrences which affect our beliefs. Many events will
be the result of processing percepts - e.g. extracting information about fires and their
locations, checking these against a list of fires we already know about, and obtaining
any “new-fire” events. Some events will also be generated internally as a result of the
agent’s own behaviour. For example after sending a request for assistance with a fire,
the agent may generate a “help-requested” event. As events are used to update beliefs,
trigger plans and generate reflexive actions there are likely to be a large set of events
which are developed iteratively in the process of developing the full design. The detailed
design methodology in [8] allows for a layered identification of events in conjunction
with incremental refinement of sets of plans.6

The initial events that we identify typically have to do with the significant occur-
rences that will alert the agent to the need to instantiate one of its top level goals,
recognise one of its top level goals as achieved, or indicate a need for reconsideration.

6 These sets of plans and related events are actually JACK capabilities.



10

In this example such events include

– “new-fire” which causes instantiation of an “extinguish” goal and also causes a
reflexive action to broadcast the existence of the fire to other fire-engine agents;

– “fire-extinguished” event which causes the agent to recognise that a goal has been
achieved;

– “fire-urgent” event which indicates fire is growing and is larger than a given thresh-
old. This indicates a need for reconsideration and in our design may lead to a goal
to co-ordinate a team effort to extinguish the fire;

– “help-requested” which leads to a reconsideration of current priorities and may lead
to a goal to assist team-mates;

Identification of events determines what interpretation or processing we need to do
with the percepts received in order to be able to recognise events. This in turn also often
affects what information about the environment we need to represent - e.g. to be able
to generate a new fire event from a visual percept we need to explicitly represent which
fires we already know about.

Beliefs: Beliefs are really any knowledge the agent maintains. Some of this infor-
mation may be kept in the form of a special purpose knowledge database, other infor-
mation may be kept in arbitrary suitable data structures. For this application the primary
information needed is an internal map of the environment including the location of fires,
roads, buildings, etc. Updating of this data structure is part of the important processing
of percepts.

Beliefs tend to be used primarily in two ways. The first is in extracting events from
percepts: to recognise a new fire we have to have knowledge about existing fires. The
second is in determining which plan should be used to achieve a goal in a particular
situation. Information that allows us to choose between two alternative ways of achiev-
ing a goal - or even whether there is any way of achieving a goal, depends on some
representation of beliefs.

Some of the beliefs we have identified as important here (in addition to the map)
are: which fires are being attended to and by who; current priority of fires; and whether
a route is available to a particular location (it may not be, either due to blockages, or
insufficient information about the environment).

Plans:Plans describe various ways for us to achieve our goals. To get the full power
of the BDI approach it is advantageous to define simple plans, with use of sub-goals
wherever possible. Initially there may only be one straightforward way to achieve each
goal, but new variations can be added in a modular fashion. This allows development of
a simple agent that manages straightforward cases first, with addition of variations for
more complex cases afterwards. Plan sets need to be checked for coverage and overlap
regarding the situations which can arise.

A very simple pair of plans for achieving the goal to extinguish a fire at X would
be one plan which simply squirts until the fire is extinguished (suitable if the agent
is already at location X), and another plan which obtains a route to X, moves to X,
then squirts until the fire is extinguished (suitable if the agent is not already at X).
Alternatively we could have a plan for putting out a fire and a plan for extinguishing a
fire as shown below:



11

Goal: put-outfire(position) Goal: extinguishfire(position)
plan route(position) Condition: location= position
move(route) squirt
extinguishfire(position) extinguishfire(position)unlessnofire(position)

In fact this plan is simple enough that it can be implemented reactively using a set
of trigger response rules, all that needs to be stored for this approach is the target’s
coordinates. However this approach is unable to handle sequences of actions where
the triggers aren’t in the environment and is unable to manage commitment. For these
reasons plans need internal state to track what has been done, and need to be able to
specify a sequence of actions to be done.

5 Discussion

We have presented the concepts we have found important in building BDI agent sys-
tems and the relationships between these concepts. We have found these concepts to be
clearer and easier to teach and use than the BDI model. The concepts presented:

– Distinguish between goals and sub-goals, between percepts and events, and be-
tween events and goals. BDI implementations, by comparison, do not distinguish
these and merge them all into an “event” type. We feel that this distinction is impor-
tant since goals and events play roles in achieving reactivity and proactiveness and
have rather different properties: for example, goals persist until they are achieved.

– Explicitly represent goals. This is vital in order to enable selection between com-
peting goals, dealing with conflicting goals, and correctly handling goals which
cannot be pursued at the time they are created and must be delayed [14].

– Highlight goal selection as an important issue. By contrast, BDI systems simply
assume the existence of a selection function.

– Emphasise the importance of percepts and actions.
– Highlight the role of events in creating reactive agents.

We also introduced reflex actions, generalised the concept of a plan, decomposed the
concept of intentions (which we have found to be difficult to explain and teach) into
the simpler notion of a decision, and provided a hierarchical, staged presentation of the
concepts.

Our design process (which is still being refined and developed, and which is ex-
plained more fully in [8]) is focussed on the detailed design and we view it as comple-
mentary to methodologies such as GAIA [15] and Tropos [7] which focus more on the
higher level design and analysis and on the requirements aspects of agent systems.

The choice of concepts was driven by three sources. Primarily, our experience work-
ing on a number of agent programs, teaching students and assisting them to build agent
programs, and developing and running workshops for academia and industry. Secondly,
a survey of a range of agent systems (see below); and finally, “bottom up” derivation of
concepts from first principles.

Although there is some degree of consensus in the deliberative agent research com-
munity that the BDI model is a reasonable common foundation for intelligent agents



12

there are also known shortcomings of the model [4]. Thus, in order to avoid being “BDI-
biased” we surveyed a range of agent systems which address the internals of an intelli-
gent software agent. For more details seehttp://www.cs.rmit.edu.au/˜winikoff/SAC.

There is much further work to be done including continuing to apply the concepts
and design process to various applications. We are also starting to survey students and
professionals regarding the concepts they regard as natural for developing agent sys-
tems. Developing a formal semantics for the concepts we have identified, as well as
developing support tools (design, development, and debugging) are also high priorities.
Finally, the concepts identified need to be extended (and revised) to support the creation
of social intelligent agents.

Acknowledgements:We would like to acknowledge the support of Agent Oriented
Software Pty. Ltd. and of the ARC (under grant CO0106934).

References

1. M. E. Bratman.Intentions, Plans, and Practical Reason. Harvard University Press, Cam-
bridge, MA, 1987.

2. P. R. Cohen and H. J. Levesque. Intention is choice with commitment.Artificial Intelligence,
42:213–261, 1990.

3. K. Decker. DECAF update: Agents for undergrads & planning for a smart scheduler. Presen-
tation at the Workshop on Infrastructure for Agents, MAS, and scalable MAS at Autonomous
Agents 2001.

4. M. Georgeff, B. Pell, M. Pollack, M. Tambe, and M. Wooldridge. The belief-desire-intention
model of agency. In ATAL, 1999.

5. N. Jennings and M. Wooldridge. Applications of intelligent agents. Chapter 1 inAgent
Technology: Foundations, Applications, and Markets. Springer, 1998.

6. N. R. Jennings. An agent-based approach for building complex software systems.Commu-
nications of the ACM, 44(4):35–41, 2001.

7. J. Mylopoulos, J. Castro, and M. Kolp. Tropos: Toward agent-oriented information systems
engineering. InSecond International Bi-Conference Workshop on Agent-Oriented Informa-
tion Systems (AOIS2000), June 2000.

8. L. Padgham and M. Winikoff. A methodology for agent oriented software design. Technical
Report TR-01-2, School of Computer Science and Information Technology, RMIT Univer-
sity, 2001.

9. A. S. Rao and M. P. Georgeff. Modeling rational agents within a BDI-Architecture. In
J. Allen, R. Fikes, and E. Sandewall, editors,Principles of Knowledge Representation and
Reasoning, Proceedings of the Second International Conference, pages 473–484, Apr. 1991.

10. A. S. Rao and M. P. Georgeff. An abstract architecture for rational agents. In C. Rich,
W. Swartout, and B. Nebel, editors,Proceedings of the Third International Conference on
Principles of Knowledge Representation and Reasoning, pages 439–449, San Mateo, CA,
1992. Morgan Kaufmann Publishers.

11. RoboCup-Rescue home page.http://robomec.cs.kobe-u.ac.jp/robocup-rescue/, 2001.
12. S. Russell and P. Norvig.Artificial Intelligence: A Modern Approach. Prentice Hall, 1995.
13. Y. Shoham. Agent-oriented programming.Artificial Intelligence, 60:51–92, 1993.
14. J. Thangarajah. Representation of goals in the belief-desire-intention model, 2000. Honours

thesis, supervised by Lin Padgham.
15. M. Wooldridge, N. Jennings, and D. Kinny. The Gaia methodology for agent-oriented anal-

ysis and design.Autonomous Agents and Multi-Agent Systems, 3(3), 2000.




