
Formal Verification of Complex Out-of-Order

Pipelines by Combining Model-Checking and
Theorem-Proving

Christian Jacobi�

IBM Deutschland Entwicklung GmbH, Processor Development II
71032 Boeblingen, Germany

cjacobi@de.ibm.com

Abstract. We describe a methodology for the formal verification of
complex out-of-order pipelines as they may be used as execution units in
out-of-order processors. The pipelines may process multiple instructions
simultaneously, may have branches and cycles in the pipeline structure,
may have variable latency, and may reorder instructions internally. The
methodology combines model-checking for the verification of the pipeline
control, and theorem proving for the verification of the pipeline function-
ality. In order to combine both techniques, we formally verify that the
FairCTL operators defined in µ-calculus match their intended semantics
expressed in a form where computation traces are explicit, since this
form is better suited for theorem proving. This allows the formally safe
translation of model-checked properties of the pipeline control into a
theorem-proving friendly form, which is used for the verification of the
overall correctness, including the functionality. As an example we prove
the correctness of the pipeline of a multiplication/division floating point
unit with all the features mentioned above.

1 Introduction

As microprocessor designs become increasingly complex, validation using tradi-
tional simulation becomes more and more insufficient to ensure the correctness
of the design. Over the last years, formal methods have proved to be applicable
to very complex systems such as out-of-order processors [10, 17, 14, 3, 13]. How-
ever, except for [13], these processors only contain very simple execution units.
They can process only one instruction at a time, and their pipelines have a sim-
ple structure. Furthermore, the delay of the execution units is often assumed
to be fixed. In contrast, modern execution units process multiple instructions
simultaneously, may have branches and cycles in the pipeline structure (e.g., for
iterative division algorithms), may have variable latency for each instruction,
and may reorder instructions internally, i.e., instructions do not need to leave
the pipeline in the order they entered it. In [13], a Tomasulo scheduler [19] has
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been verified which is capable of using such execution units; however, neither
the design nor the verification of the actual execution units is described in [13].

In this paper we describe a methodology for the verification of pipelined ex-
ecution units with the features described above. As an example we describe the
verification of the pipeline of a multiplication/division floating point unit, whose
combinatorial datapaths have been verified in [4]. The pipeline can process up
to six instructions simultaneously. The difficulty in the verification of such com-
plex pipelines arises from the fact that pipelines consist of a control-dominated
part which schedules the processing of the instructions in the pipeline, while
simultaneously the effect of the datapaths on the data of each instruction has to
be considered in order to guarantee functional correct behavior of the execution
unit.

The use of theorem proving for the verification of complex pipelines would
involve the construction of an inductive invariant to cope with the control-
dominated part. The construction usually has to be performed manually, which
is considered the hard part of the verification of out-of-order systems [10,17,13].
On the other hand, model-checking is suitable for the automatic verification of
control-dominated systems, but becomes infeasible for the verification of com-
plete pipelines due to the data part. Even if one uses abstract datapaths, e.g.
uninterpreted functions [6], the state space grows huge due to the large num-
ber of (nested) function applications (e.g., due to possible cycles in the pipeline
structure).

We propose a methodology which combines the best of both worlds: we use
model-checking to verify the control part of the pipelines, and then use theorem
proving to conclude overall correctness, including data correctness. We use the
PVS theorem proving system [15] with its built-in model-checker [16].

In order to use model-checked properties for the further verification by the-
orem proving, the model-checked properties have to be translated into a form
which is easy to use for theorem proving. In PVS, the FairCTL operators are de-
fined as fixpoints in µ-calculus, which in turn are defined in terms of higher-order
logic. These definitions are hard to use in theorem proving. It is more suitable for
theorem proving to define computation traces explicitly, and to express tempo-
ral properties using standard mathematical quantifiers, e.g., ∀t : p(t) to express
a property p to hold for all times t. In order to translate model-checked proper-
ties safely from FairCTL to ∀t form, we have proved theorems which relate the
FairCTL operators defined in µ-calculus with their intended semantics expressed
in ∀t form. These relations are well known [7], but have not been verified using
formal methods before.

The mathematics in this paper has been formalized and verified in PVS. For
the sake of readability we use standard mathematical notation throughout the
paper. All PVS specifications and proofs are available at our web site.1

Paper Outline. In the following section, we define the correctness criterion
which the execution units shall obey. The correctness criterion is defined in
terms of computation traces of a next-state function under a given input se-
1 http://www-wjp.cs.uni-sb.de/projects/verification/{pvsctl,fpu}
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quence. We then describe in section 3 how model-checked properties of a system
can be translated into the computation trace form. In section 4 we show how
model-checking and theorem proving is combined for the verification of complex
pipelines. The discussion of related work is postponed to section 5. Section 6
gives a summary.

2 Pipeline Correctness Criterion

In this section we describe the correctness criterions which our execution units
(EU, also called pipelines in this paper) shall obey. An execution unit can be
seen as a black box with inputs and outputs interconnecting the EU with the
Tomasulo scheduled processor core. The core dispatches instructions by passing
the instruction data (operands, op-code, etc.) to the EU along with a tag used to
identify the instruction. The EU executes the instruction and returns the result
with the corresponding tag to the core. The EU may process several instructions
simultaneously, instructions may have variable latency, and the EU may reorder
instructions internally, i.e., instructions do not need to leave the pipeline in the
order they have entered it. The Tomasulo scheduler from [13] can cope with
these possibilities.

dataout tagout validout stallin

datain tagin validin stallout

clear EXECUTION UNIT

Fig. 1. Execution unit inter-
face

The Tomasulo scheduler only dispatches in-
struction whose operands are available. There-
fore, the pipelines do not have to cope with
data hazards. The only hazards occurring in the
pipelines are structural hazards, i.e., multiple in-
structions requiring the same resources in the
pipeline.

Figure 1 shows a black-box view of an execu-
tion unit. The clear input is activated at power-
up and during interupts in order to clear the pipeline. Instructions are dispatched
into the EU by activating the validin signal along with the instruction’s datain

and tagin. The EU then computes the result and returns it by activating validout

along with the proper dataout and tagout. The stallout signal is activated if the
EU cannot take further instructions; in this case, the scheduler must not dis-
patch instructions. Analogously, if the core activates the stallin signal, the EU
must not return any instructions. In the following, we ignore the clear signal
since the implementation and verification of clear is simple.
Formalization of the EU Interface. Let S denote the state set of the EU
(usually the set of possible contents of the registers in the EU). Let Di, Do, and
T denote the set of the input data, output data, and tags, respectively. The
valid and stall signals are booleans. The EU is specified by the following five
functions:

1. ns(Scur, datain, tagin, validin, stallin) → S: the next-state function, which
computes the next state given the current state Scur and the current inputs.

2. dataout(Scur, datain, validin, stallin) → Do: computes the data output of the
EU given current state and inputs.
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3. tagout(Scur, tagin, validin, stallin) → T : computes the output-tag.
4. validout(Scur, validin, stallin) → B: computes the valid output.
5. stallout(Scur, stallin) → B: computes the stall output.

The functions dataout, tagout, validout, and stallout model the combinatorial
circuits computing the corresponding outputs from the (registered) state and
the current inputs. Note that not all outputs may depend on all inputs. This is
necessary to model absence of combinatorial dependencies between some inputs
and outputs. For example, stallout only depends on the state and the current
stallin, i.e., whether the EU accepts a further instruction may not depend on
the instruction data or tag.

Let I := Di × T × B × B denote the combination of the inputs of the EU.
We recursively define the behavior of a pipeline under an infinite input sequence
I := (i0, i1, . . .) ∈ I∞. We assume the pipeline to be in some initial state init ∈ S
at time t = 0. The state st(I) at time t is recursively defined as

s0(I) := init, st+1(I) := ns(st(I), it).

We define datat
out(I), tagt

out(I), validt
out(I), and stalltout(I) to be the outputs of

the pipeline during cycle t, e.g., stalltout(I) := stallout(st(I), it.stallin). For the
sake of convenience, we omit the parameter I if it is clear from the context.

We say a tag tg ∈ T is dispatched at time t (denoted by disp(tg, t)), if validt
in

and tagt
in = tg hold. The tag is returned at time t (denoted by ret(tg, t)),

if validt
out and tagt

out = tg hold. The tag is in use at time t (denoted by
inuse(tg, t)), if the tag was dispatched and not yet returned, i.e.,

inuse(tg, t) := ∃t′ < t : disp(tg, t′) and ∀t′′ ∈ {t′, . . . , t− 1} : ¬ret(tg, t′′).

Correctness Criterion. We can now define the correctness criterions for exe-
cution units. A validout may only be signaled if stallin is not active:

∀t : stalltin =⇒ ¬validt
out. (P1)

The stallout signal is live, i.e., at each point in time t, it will eventually become
inactive (at time t′):

∀t : ∃t′ ≥ t : ¬stallt′out. (P2)

Instructions dispatched into the EU at time t will eventually be returned (at
time t′). We call this property liveness of the EU.

∀t : disp(tg, t) =⇒ ∃t′ ≥ t : ret(tg, t′). (P3)

The last property, called tag-consistency, states that instructions returned at
time t by the EU have already been dispatched before (at time t′), and have not
already been returned in between (at time t′′):

∀t : ret(tg, t) =⇒ ∃t′ ≤ t : disp(tg, t′) and
∀t′′ ∈ {t′, . . . , t− 1} : ¬ret(tg, t′′). (P4)
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Note that the right side of the above definition does not exactly match inuse(tg,
t), since here t′ = t is allowed. However, it is sufficient to prove ∀t : ret(tg, t) =⇒
inuse(tg, t) in order to assert tag-consistency. Note further that liveness and
tag-consistency together yield a one-to-one mapping between dispatched and
returned instructions.

Of course the execution unit cannot satisfy these properties if the input sequence
does not satisfy some properties itself. The first required input property is that
no instruction is dispatched if the stallout is active, analogously to (P1):

∀t : stalltout =⇒ ¬validt
in. (I1)

The analogue to (P2) is that the stallin signal is live:

∀t : ∃t′ ≥ t : ¬stallt′in. (I2)

The third input property is called tag-uniqueness and requires that no tag tg is
dispatched into the EU if it is already in use:

∀t : disp(tg, t) =⇒ ¬inuse(tg, t) (I3)

We call an execution unit correct iff for all input sequences I and tags tg the
properties (P1) to (P4) hold under the assumptions (I1) to (I3), where not all
properties need all assumptions:

EUcorrect := (I1) =⇒ (P1) and
(I1) ∧ (I2) =⇒ (P2) ∧ (P3) and
(I1) ∧ (I2) ∧ (I3) =⇒ (P4). (C)

This definition of correctness only covers the correct termination of instruc-
tions. In order to cover the input/output data relation, we introduce the notion
of functional correct execution units. An EU is called functional correct with re-
spect to a function dp : Di → Do, iff dp(datain) = dataout holds for correspond-
ing inputs and outputs. For example, a floating point unit can be described by
a function dp reflecting the combinatorial datapaths, and the pipelined hard-
ware shall compute this function. In order to model functional correctness, we
strengthen the liveness property (P3) to cover the relation between data input
and output of an instruction:

∀t : disp(tg, t) =⇒
(
∃t′ ≥ t : ret(tg, t′) and dp(datat

in) = data
t′
out

)
. (P3′)

Formally, we call an execution unit functional correct with respect to dp iff (C)
holds where (P3) is replaced by (P3′).

Note that the definition of (functional) correctness allows multiple instruc-
tions (with distinct tags) in the EU simultaneously, and that no restriction on
the order in which instructions leave the EU is imposed. Note further that not
all EUs have a functional description; a memory unit, e.g., cannot be described
by a function dp, since functions are by definition memory-less.



314 Christian Jacobi

out

prio

prio

prio

op a, b

rd1

special cases
div lookup

unpack

rd2

selfd

mul1

mul2

Fig. 2. FPU pipe-
line

The correctness criterions of the EUs have been ar-
ranged with Kröning in order to allow the integration of
our EUs into Kröning’s Tomasulo core [13].
Example Pipeline. In [4], the verification of the combina-
torial datapaths of an IEEE compliant floating point unit
(FPU) is reported. Here, we aim at verifying the pipeline
of this FPU as an example of our verification approach.
Pipelining is not considered in [4]. Figure 2 shows the struc-
ture of the pipeline of the multiplication/division floating
point unit.

The first pipeline stage performs unpacking of float-
ing point operands, handles special cases (e.g., operations
on ±∞), and initial approximation lookup in case of divi-
sion. The next two stages comprise a pipelined multiplier.
For division, the instructions have to iterate through these
stages up to 8 times, depending on the precision of the
floating point operation. The selfd stage is used for divi-
sions only, multiplications skip this stage. Finally, the re-
sults are rounded by a two-stage rounder. Special cases do
not flow through the pipeline, but are bypassed from the
unpacker to the output.

Each instruction flows through the pipeline until it can-
not flow further due to structural hazards, i.e., other in-
structions in the pipeline require the same resources. For example, if two divisions
are iterating simultaniously through the two multiplication stages, a multipli-
cation in the unpack stage has to be stalled. Out-of-order completion in this
pipeline can occur in various ways: for example, an operation involving special
cases is bypassed to the output while other operations are still in the pipeline.
Another example is a multiplication which overtakes a division that iterates
through the mul1 and mul2 stages.

The FPU from [4] is given as a function md. We have partitioned the compu-
tation of this function into sub-functions corresponding to the datapaths of the
individual pipeline stages, e.g, functions unp, mul1, . . . . For multiplications on
non-special operandsmd = rd2◦rd1◦mul2◦mul1◦unp holds, i.e., multiplication
can be performed by consecutive execution of the pipeline stage functions. Anal-
ogously, for non-special divisions md = rd2 ◦ rd1 ◦ selfd ◦ (mul2 ◦mul1)i ◦ unp
holds, where i is the number of iterations depending on the precision. For the
verification of the pipeline, the actual implementation of the datapaths is not
important, i.e., the functions can be left uninterpreted. We only have to prove
that instructions take the correct path through this pipeline, and that the correct
stage functions are applied to the instruction data.
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3 Translating FairCTL to ∀t Form

Our goal is to use the PVS built-in model-checker for the verification of tem-
poral properties of the pipeline control, and then to use the theorem prover to
conclude overall correctness of the pipeline, including the datapaths. In PVS,
the FairCTL operators are defined as fixpoint in µ-calculus [16], whereas we
have used temporal properties in ∀t form in the previous section. In order to
transform model-checked statements from FairCTL to ∀t form, we formally ver-
ify that the FairCTL operators defined as fixpoints in µ-calculus match their
intended semantics expressed in ∀t form. These theorems have first been proved
in [8] and are well known. However, they have not been verified using formal
methods, which is necessary to transform between µ-calculus and ∀t form in a
formally safe way. The formal verification depends on the definition of fixpoints
and FairCTL operators in the PVS library, and on the Tarski-Knaster argument,
which has been verified in PVS in [16]. We omit the proofs in this section, since
they follow the very detailed “paper & pencil” proofs from [7].

In this section, systems are described by a state set S and a total next-
state relation N ⊆ S × S which models a non-deterministic choice of the next
state. In contrast, in the previous section systems were modeled by next state
functions which deterministically compute the next state from the current state
and some inputs. It is easy to transform between the two kinds of systems by
“simulating” inputs by non-deterministic choice and vice versa. We come back
to this difference at the end of this section.

Let f ∈ 2S be a predicate on S, and let ν denote the greatest fixpoint oper-
ator. In PVS, the EX and EG operators, for example, are defined as predicates

EX(N, f) := λs ∈ S : ∃s′ ∈ S : f(s′) ∧N(s, s′),

EG(N, f) := ν(λQ ∈ 2S : f ∧ EX(N,Q)).

An N -path is an infinite sequence (p0, p1 . . .) ∈ S∞ where successive states
respect the next-state relation, i.e., ∀t : N(pt, pt+1) holds. We have proved the
following theorem:

Theorem 1. EG(N, f)(s) iff there exists an N -path p0, p1, . . . starting in s,
i.e. p0 = s, where all states satisfy f , i.e., ∀t : f(pt).

We omit the definitions and theorems or the other FairCTL operators due to lack
of space. Instead, we restate the theorems for the AG and fairAF operators with
respect to the semantics of deterministic systems with input sequences below.
Non-Determinism versus Input Sequences. As mentioned above, FairCTL
is defined in the context of non-deterministic systems without inputs, whereas
deterministic systems with inputs have been used in the previous section to
define the correctness of execution units. The use of deterministic next state
functions is better suited for the definition of execution units since it is closer
to the actual implementation; furthermore, we believe it is simpler to handle in
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theorem proving. However, the definition of FairCTL in PVS imposes the use of
non-deterministic systems for model-checking. It is easy to bridge this gap:

Let S be the state type, I be the input type, and ns : S × I → S be
the deterministic next-state function of a system as in section 2. Further, let
Ip ⊆ S×I be an input predicate (e.g., Ip ≡ stallout =⇒ ¬validin to model the
pipeline input property (I1)). Let init ∈ S be the initial state. We define a new
state type S′ := S × I and a non-deterministic next-state relation N ⊆ S′ × S′

by

N ((s1, i1), (s2, i2)) := (s2 = ns(s1, i1) ∧ Ip(s2, i2)) .
Read the new state type as current state and input. Then there is a transition

from (s1, i1) to (s2, i2), iff the next-state function ns takes the transition s1 → s2
under input i1. Furthermore, the next-state relation N non-deterministically
chooses the next input i2, which has to satisfy the input-predicate Ip. We define
init′ := {(s, i) | s = init ∧ Ip(s, i)} as the initial state set of the new system.

We now state the theorems for the AG and fairAF operators with respect
to deterministic systems:

Theorem 2. (∀s′ ∈ init′ : AG(N, f)(s′)) iff for all input sequences I =
(i0, i1, . . .) ∈ I∞ satisfying the input predicate, the predicate f holds globally:

(
∀t : Ip(st(I), it)

)
=⇒

(
∀t : f(st(I))

)
,

where st is defined as in section 2.

Theorem 3. Let fair be a predicate. (∀s′ ∈ init′ : fairAF(N, f)(fair)(s′)) iff for
all input sequences I := (i0, i1, . . .) ∈ I∞ satisfying the input predicate and yield-
ing a path on which fair holds infinitly often, the predicate f holds eventually.
Formally: for all input sequences I holds

((
∀t : Ip(st(I), it)

)
∧

(
∀t : ∃t′ ≥ t : fair(st(I))

))
=⇒

(
∃t : f(st(I))

)
.

In the following, we do not explicitly distinguish between systems stated as
next-state function or relation. Of course, one has to deal with the differences in
PVS, but for reasons of readability we omit this in the rest of this paper.

4 Pipeline Verification

4.1 Separating Pipeline Control and Datapaths

In order to use model-checking on the pipeline control we have to separate the
control and datapath circuits in the pipeline. Figure 3 shows a simple pipeline
example. The control registers consist of valid bits indicating that a stage con-
tains a valid instruction, the tags, and some auxiliary control data, e.g., a counter
to keep track of the number of iterations to go through during divisions. The
control circuit maintains the control registers, and computes the control outputs
validout, tagout, and stallout.
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TAG, VALID, CNT

TAG, VALID, CNT

cej

Fig. 3. Separating Control and Datap-
aths

The control interacts with the dat-
apaths by computing the clock-enables
ce for each stage and the multiplexer
control signals where multiple inputs
lead to the same pipeline stage (e.g, to
the mul1 stage in Fig. 2). The clock-
enables control whether the register
keeps its data from the previous cy-
cle, or if new data is clocked into the
register. If a stage i contains no valid
instruction, it is always clocked (cei = 1), i.e., a potentially valid instruction
is taken over from the preceeding stage. Otherwise, if stage i contains a valid
instruction, it is only clocked if itself can pass its instruction to the succeeding
stage j. This may not be possible due to several reasons: 1) the stage j may
itself contain a valid instruction which it is unable to pass to the next stage.
2) there are multiple valid instructions aiming for stage j, and the instruction
in stage i has lower priority. For instance, this may occur above stage rd1 in
the FPU pipeline. 3) the instruction result has to be returned to the CPU from
stage i, but the CPU has asserted the stallin signal. We refer the reader to [12]
for details on the pipeline control.

According to the separation of control and data in the pipeline, we split the
next-state function ns of the pipeline into a next-state function nsctrl of the
control part, and a next-state function nsdata of the data part.

4.2 Verification of the Pipeline

In the following, we describe how we verify the liveness (P3) and tag-consistency
(P4) properties of pipelines. We will not discuss the (P1) and (P2) properties,
since these are fairly simple in comparison. Furthermore, we will only give the
idea of the actual verification, since the mathematical details are tedious and
straightforward.
Liveness. We start with the verification of liveness. In order to prove functional
correctness of the pipelines, we will prove the strengthened liveness (P3′) covering
the functionality of the pipeline. The verification idea is as follows: we first
use model-checking to show that each pipeline stage is live, i.e., that its clock-
enable becomes eventually active. We then use theorem-proving to show that
the instruction take the correct path through the pipeline and hence the correct
result is computed.

For model-checking the liveness of each of the clock-enables, the liveness of
stallin is presumed. We model-check the following property for each stage i and
an arbitrary, not necessarily initial control state s:

fairAF(nsctrl, cei)(¬stallin)(s).
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Using theorem 3 we conclude that the clock-enable cei is live in all computations
starting in arbitrary states s under all input sequences where stallin is live, i.e.,
for all I := (i0, i1, . . .):

(
∀t : ∃t′ ≥ t : ¬stallt′in

)
=⇒

(
∃t : ceti

)
. (1)

Using theorem proving, it is easy to extend 1 to 2 by exploiting that (1) holds
for arbitrary states:

(
∀t : ∃t′ ≥ t : ¬stallt

′
in

)
=⇒

(
∀t : ∃t′ ≥ t : cet

′
i

)
. (2)

Note that the left-hand side of the equation matches the pipeline input property
(I2).

Having proved the liveness of the clock-enables, it is relatively easy to verify
liveness of the complete pipeline including the datapaths by pushing instruc-
tions through the pipeline stage by stage. This is done using theorem proving.
We exemplarily prove the liveness property (P3′) of the multiplicative FPU for
multiplication instructions:

Theorem 4. Assume that the input properties (I1) and (I2) hold. Assume fur-
ther that a multiplication with tag tg is dispatched at time t, i.e., disp(tg, t) holds.
Then there exists t′ ≥ t such that ret(tg, t′) and datat′

out = rd2 ◦ rd1 ◦ mul2 ◦
mul1 ◦ unp(datat

in) hold, i.e., the multiplication eventually terminates with the
correct data.

Proof. We only sketch the proof, because its details are long and tedious. By
input property (I1) we know that stalltout is inactive, since otherwise the in-
struction cannot be dispatched. Since the definition of stallout directly depends
on ceunp (cf. [12, App. D]), one trivially concludes that the instruction is clocked
into the register stage unp at time t. The data in this register are the outputs
of the combinatorial unpack circuit.

From (2) we know that there exists a (minimal) time t1 > t such that cet1unp

is active, i.e., the unp stage is clocked at time t1, and is not clocked in between.
Hence, the data at time t1 − 1 in the register stage unp is the same as at time t.

The unp stage is only clocked if its valid instruction proceeds to the next
stage (this follows trivially from the definition of cetunp). We conclude that the
instruction with tag tg is clocked from the unp stage into stage mul1 at time t1.
The data at this time is computed from mul1 ◦ unp, i.e., the composition of the
first two combinatorial stages.

Analogously, we derive times t2 > t1, t3 > t2, and t4 > t3 where the instruc-
tion proceeds to mul2, rd1, rd2, respectively. When the instruction is in stage
rd2, it is returned to the CPU immediately when the stallin signal becomes in-
active. Hence, there exists t′ > t where the instruction is returned with datat′

out

computed from datat
in by the combinatorial circuits between the register stages.

Note that the actual computation performed in the datapaths plays no role
in the above proof, and hence the datapath functions may be left uninterpreted.

��
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Tag-Consistency. We now describe the verification of tag-consistency. We want
to express tag-consistency (P4) in FairCTL in order to allow model-checking.
Therefore we need a FairCTL formalization of “tag has been dispatched previ-
ously”, and a formalization of tag-uniqueness. It would be useful to have tem-
poral operators reaching in the past; however, FairCTL does not provide such
operators. In order to circumvent this problem, we introduce an auxiliary vari-
able inusetg for each tag tg ∈ T representing that an instruction with tag tg
is currently in the pipeline. The meaning of this variable is exactly the same
as the predicate inuse from section 2. The variable inusetg is set whenever an
instruction with tag tg enters the pipeline, and it is cleared whenever the tag tg
leaves the pipeline. Tag-uniqueness can hence be modeled as input predicate Ip
checking that the tag tg is not dispatched when the variable inusetg is already
set. Vice versa, tag-consistency can be modeled as an invariant stating that a
tag tg can only leave the pipeline if inusetg is set.

Let ñsctrl denote the next-state function of the modified model including the
inuse variables, and let Ip denote the input predicate modeling tag-uniqueness
(I3). We verify the property

∀tg : AG
(
ñsctrl, (validout ∧ tagout = tg) =⇒ inusetg

)
(init),

where init is an initial state in which all pipeline stages are empty (i.e., validi =
0), and all inusetg variables are cleared. From this we conclude using theorem 2:
for all input sequences I = (i0, i1, . . .) ∈ I∞ and for all tags tg

(
∀t :

(
validt

in ∧ tagt
in = tg

)
=⇒ ¬inusettg

)
=⇒

(
∀t :

(
validt

out ∧ tagt
out = tg

)
=⇒ inusettg

)
.

One can see (and easily verify in PVS) that the left-hand side of the implication
matches tag-uniqueness, and that the right-hand side implies tag-consistency.

4.3 Some Practical Considerations

In order to verify tag-consistency, we have changed the model and added the
auxiliary variables inusetg. It is easy to prove that these auxiliary variables do
not affect the outputs of the actual pipeline implementation and hence can be
omitted. They are used solely to prove the correctness of the pipeline.

The state-space for model-checking becomes very large due to the tags and
the inusetg variables. Of course, one can abstract the tags by means of scalar-
sets [11] in the sense of data-type reduction as in SMV [14]. Model-checkers such
as SMV support this as a built-in feature. In PVS the abstraction has to be
done manually. We have abstracted the tags and proved the correctness of this
abstraction, but omit the details since they are well known.

A major disadvantage of the PVS model-checker is that it is not capable
of providing counter-examples when the verification of a FairCTL formula fails.
Since the design of complex pipelines is very error-prone and debugging is hard,
such counter-examples are very useful. We therefore developed and debugged
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the pipelines (without datapaths) in SMV, and then manually translated the
pipeline control to PVS. We then used the PVS model-checker to re-check the
properties.

We have manually performed the “pushing through the pipeline” in theorem 4
stage by stage during liveness verification. The proofs for each stage are very
similar. We therefore believe that it is possible to create a proof strategy which
performs the “pushing through the pipeline” automatically. This would result in
a mostly automatic method for the verification of complex pipelines.

5 Related Work

There are some papers which report on the verification of out-of-order proces-
sors, e.g., by Hosabettu et.al. [10], by Sawada and Hunt [17], by McMillan [14],
and by Berezin et.al. [3]. None of the cited papers mentions multi-cycle execution
units, or even execution units which have a cycle in the pipeline structure or may
reorder instructions internally. Kröning is the first who reports on the verifica-
tion of a Tomasulo scheduler capable of handling such complex pipelines [13],
although the design and the verification of the actual pipelines is not part of
Kröning’s work. In this paper we have presented a methodology to verify complex
pipelines, and have presented the pipeline of a multiplication/division floating
point unit as an example. Kröning is currently integrating this example (among
other pipelined FPUs for other operations) into his Tomasulo CPU.

Aagaard and Leeser [2] propose a methodology for the verification of pipe-
lines: they decompose pipelines into segments, and then further decompose the
correctness proof of individual segments into smaller proof goals. Their work
describes only how one could employ a theorem prover for the verification of
pipelines, but they do not actually use formal methods (in the sense of a com-
puter tool). We have tried a similar approach to the verification of our pipelines
using solely theorem proving, but failed because very complex inductive invari-
ants had to be constructed manually [12].

Another approach to the verification of pipelines is the use of a logic with
uninterpreted functions that are used to model the datapath functionality. The
use of uninterpreted functions is comparable to the separation of the EU into
pipeline control and datapaths, since the actual datapath implementation has no
impact on the pipeline verification (cf. sect. 4). Bryant et.al. [5] describe how a
logic with equality and uninterpreted functions can be reduced to propositional
logic. In [20], Velev and Bryant describe how this reduction can be used to
verify in-order microprocessors with variable-latency EUs. They do not verify
the actual EU, but use an abstract execution unit model in order to verify the
processor core. The EUs modeled by the abstraction process only one instruction
at a time, and hence do not reorder instructions internally. Velev and Bryant
only verify in-order processors; the verification of out-of-order designs would
probably require the manual construction of a complex inductive invariant, and
hence automation would be lost. In our approach, this is not the case due to the
use of model-checking.
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Another approach is the use of uninterpreted functions within a model-
checker such as SMV. Data-type reduction and case-splitting is used in order
to reduce the state space [14]. This is used in [14] to verify a Tomasulo sched-
uler, where the functionality of the EUs is defined by uninterpreted functions.
The state space and the number of cases to be checked grows rapidly in the
number of function applications, which is large in our example due to the cy-
cle in the pipeline structure. We have modeled the FPU pipeline in SMV with
uninterpreted functions for the datapaths, and have tried to verify liveness with
functional correctness using model-checking. This was infeasible due to the huge
state space and number of cases. The verification of some cases aborted with a
memory usage of >2GB, other cases ran for more than 5 days without termi-
nating.

In [3], Berezin et.al. prove the correctness of a simple Tomasulo processor by
combining model-checking with uninterpreted functions and theorem proving.
They use SMV to verify an invariant of an abstraction of the processor, and
then use PVS to conclude overall correctness of the concrete machine. Their
translation from SMV to PVS is not formally safe in the sense that they introduce
a new, manually written axiom in PVS which hopefully reflects exactly the
model-checked property. In contrast, we use the PVS built-in model-checker,
and then use the theorems from section 3 to safely translate the model-checked
properties to a form suitable for theorem proving.

In [9], Ho et.al. use the abstraction of the datapaths of pipelines to token
nets for the automatic verification of pipeline control properties. Their approach
is not applicable to pipelines with cycles in the pipeline structure, and is not
suitable to verify functional correctness of the pipelines.

In [1], Aagaard et.al. verify iterative circuits using Intel’s Forte system. They
use symbolic simulation and LTL model-checking for the verification of bit-level
invariants of iterative floating point circuits, and then use theorem proving to
conclude “numerical” correctness of the floating point results. Though Intel’s
circuits are most probably much more complex than ours in terms of gate count,
the verified pipelines are simple in the sense that they seem to support only one
instruction at a time and hence do not reorder instructions. Moreover, the work
from [1] is not reproducible since Intel’s Forte system is not publicly available.

Schneider and Hoffmann [18] report on the definition of LTL in the theorem
prover HOL, and on the automatic translation of LTL to ω-automata within
HOL. The ω-automata are used as input for a model-checker. Their definition of
LTL is close to our ∀t form. Hence, their work could be used to verify pipelines
in HOL in a similar way as described here.

6 Summary

We have presented a methodology for the verification of complex pipelines. The
pipelines may process several instructions simultaneously, may have variable la-
tency, cycles and branches in the pipeline structure, and may reorder instructions
internally. The pipelines are used as execution units in the Tomasulo scheduler
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verified by Kröning [13]. As an example, we have presented the pipeline of a
floating point unit, whose combinatorial correctness has been proved in [4].

Verification of the pipelines using solely theorem proving is hard since one
has to manually construct a complex inductive invariant. The verification of the
pipelines using solely model-checking is infeasible due to the large state space
which arises from the datapaths, even if these are modeled as uninterpreted
functions (cf. sect. 5). We therefore combine model-checking and theorem proving
for the verification of the pipelines. Model-checking is used to verify properties of
the pipeline control, theorem proving is then used to conclude overall correctness
of the pipeline including the datapaths.

The correctness criterions for the execution units are given as temporal prop-
erties of the form ∀t : p(t) (cf. sect. 2), which is suitable for theorem proving. In
contrast, the FairCTL operators used for model-checking are defined as fixpoints
in µ-calculus. We therefore have formally proved that the FairCTL operators, as
defined in µ-calculus, match their intended semantic expressed in ∀t form. This
has been shown previously with “paper & pencil” proofs [8], but it has never
been proved using formal methods before. Having proved the correspondence of
the FairCTL operators expressed in µ-calculus and ∀t form allows us to trans-
late between both languages in a formally safe way. This is necessary to prevent
errors which may be introduced by translating properties between two systems
or languages by hand.
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