
The AVISS Security Protocol Analysis Tool�

Alessandro Armando1, David Basin2, Mehdi Bouallagui3, Yannick Chevalier3,
Luca Compagna1, Sebastian Mödersheim2, Michael Rusinowitch3,

Mathieu Turuani3, Luca Viganò2, and Laurent Vigneron3

1 Mechanized Reasoning Group, DIST
Università di Genova, Italy
2 Institut für Informatik

Universität Freiburg, Germany
3 LORIA-INRIA-Lorraine, Nancy, France

Abstract. We introduce AVISS, a tool for security protocol analysis
that supports the integration of back-ends implementing different search
techniques, allowing for their systematic and quantitative comparison
and paving the way to their effective interaction. As a significant ex-
ample, we have implemented three back-ends, and used the AVISS tool
to analyze and find flaws in 36 protocols, including 31 problems in the
Clark-Jacob’s protocol library and a previously unreported flaw in the
Denning-Sacco protocol.

1 Introduction

We describe the AVISS (Automated Verification of Infinite State Systems) tool
for security protocol analysis, which supports the simple integration of different
back-end search engines. As example back-ends, we have implemented an on-the-
fly model-checker, an analyzer based on constraint logic, and a SAT-based model-
checker. Although each of these back-ends can work independently, integrating
them into a single tool allows for the systematic and quantitative comparison
of their relative strengths, and paves the way for their effective interaction. As
an initial experiment, we have used the tool to analyze and find flaws in 36
protocols, including a previously unknown flaw in the Denning-Sacco protocol
and previously reported attacks (see [4]) to 31 protocols of [2].

The AVISS tool has a web-based graphical user-interface (accessible at
the URL: www.informatik.uni-freiburg.de/~softech/research/projects/
aviss) that aids protocol specification and allows one to select and configure dif-
ferent back-ends.

2 The System

The AVISS tool supports automatic protocol analysis in the presence of an active
intruder. As illustrated in Fig. 1, the system consists of different, independent
� This work was supported by the FET Open Assessment Project IST-2000-26410,
“AVISS: Automated Verification of Infinite State Systems”.

D. Brinksma and K. G. Larsen (Eds.): CAV 2002, LNCS 2404, pp. 349–354, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



350 Alessandro Armando et al.

Translator
HLPSL2IF

On−the−fly Model−Checker CL−based Model−Checker SAT−based Model−Checker

High−Level Protocol Specification Language (HLPSL)

Intermediate Format (IF)

Translator Translator Translator
IF2OFMC IF2CL IF2SAT

Fig. 1. The AVISS system architecture

modules. Protocols are formulated in a high-level protocol specification language
(HLPSL). The translator HLPSL2IF performs a static analysis to check the
executability of the protocol (i.e. whether each principal has enough knowledge
to compose the messages he is supposed to send), and then compiles the protocol
and intruder activities into an intermediate format (IF) based on first-order
multiset rewriting. The IF unambiguously specifies an infinite state transition
system. Afterwards, different translators are employed that translate the IF into
the input language of different analysis tools. The IF can be also generated in
a typed variant (the untyped one is the default), which leads to smaller search
spaces at the cost of abstracting away type-flaws (if any) from the protocol.

The input language HLPSL supports the declaration of protocols using stan-
dard “Alice&Bob” style notation indicating how messages are exchanged be-
tween principals [2]. Additionally, one specifies type information, initial knowl-
edge of principals, possible intruder behavior (e.g. variants of the Dolev-Yao
model), and information about session instances (given explicitly or implicitly
by declaring roles, with possibly several instances in parallel).1 Security objec-
tives (authentication and secrecy) can also be declared. For example, the HLPSL
specification of (the authentication part of) the well-known Needham-Schroeder
Public Key (NSPK) protocol [2] is:

PROTOCOL NSPK;
Identifiers Messages
A, B: user; 1. A -> B: {A,Na}Kb
Na, Nb: nonce; 2. B -> A: {Na,Nb}Ka
Ka, Kb: public_key; 3. A -> B: {Nb}Kb

Intruder_knowledge I, a, b, ka, kb, ki;
Goal B authenticate A on Na;

Ease of tool integration was an important design consideration for the AVISS
tool. We currently have implemented three back-ends for performing complemen-
tary automated protocol analysis techniques.

The On-the-Fly Model-Checker (OFMC): The transition relation spec-
ified by the IF is unrolled starting from the initial state producing an infinite
1 Note also that the tool handles several types of keys: symmetric (atomic or non-
atomic), asymmetric (public), and arrays of asymmetric keys are supported.



The AVISS Security Protocol Analysis Tool 351

tree that is model-checked on-the-fly. We use Haskell, a compiled lazy functional
programming language, to modularly specify the search space, reduction meth-
ods, heuristics, and procedures, generalizing the method of [1]. When an attack is
found, it is reported to the user by means of the sequence of exchanged messages.

Constraint-Logic-Based Model-Checker (CL): The IF is translated
into a first-order theory which is input to the daTac prover [5]. The CL back-
end combines rewrite-based first-order theorem proving with constraint logic in
order to handle properties such as associativity/commutativity of operators for
representing sets of messages. Message exchanges and intruder activities are di-
rectly translated from the IF rewrite rules into clauses; searching for a flaw then
amounts to searching for an incoherence in the resulting formula.

The SAT-Based Model-Checker (SATMC): The SAT-based model-
checker builds a propositional formula encoding a bounded unrolling of the
transition relation specified by the IF, the initial state, and the set of states
representing a violation of the security properties. The propositional formula is
then fed to a state-of-the-art SAT solver (currently Chaff, SIM, and SATO are
supported) and any model found by the solver is translated back into an attack,
which is reported to the user.

There are other tools for protocol analysis providing similar features, e.g.
[3,6,7]. To our knowledge, only CAPSL [3], with its intermediate language CIL, is
designed to support multiple analysis techniques. There are however several im-
portant differences between CAPSL/CIL and the AVISS tool. First, the CAPSL
translator does not generate attacker rules, whereas we are able to produce IF
rules from the specification of the intruder behavior. Second, we test a more
general notion of executability (useful for e-commerce protocols such as non-
repudiation protocols). CAPSL is unable to translate protocols where a principal
receives a cipher, say {Na}K , and later receives the key K and then uses Na in
some message. In our case, the principal will store {Na}K and will decrypt it
when he later receives the key. Finally, based on the available published experi-
ments, the AVISS tool and its back-ends are considerably more effective on the
Clark-Jacob’s library than CAPSL and its current connectors.

3 Experiments

We have run successfully the AVISS tool to find flaws in 36 protocols, including
32 protocols from the Clark-Jacob’s library [2,4]. Of the 36 protocols analyzed,
31 were already reported to be insecure in [4] whereas for 1, namely the Denning
Sacco protocol, no flaw was previously found. Table 1 lists the performance of the
three back-ends on these problems.2 Preliminary to the execution of the back-
ends we generated both the untyped and the typed version of the IF specifications
by means of the HLPSL2IF translator. The OFMC and the CL back-end were
run against the untyped and the typed IF specifications of each protocol. The
2 The protocols marked with a “∗” are variants of protocols in [2] that we have addi-
tionally analyzed. Times are obtained on a PC with a 1.4GHz Pentium III processor
and 512Mb of RAM. The SATMC timings are obtained using the Chaff solver [8].



352 Alessandro Armando et al.

kind of the attack found (if any) and the time spent by each back-end are given in
the corresponding columns. For SATMC we give a pair of values te/ts, where te
is the encoding time, i.e. the time spent to generate the propositional formula,
and ts is the search time, i.e. the time spent by the SAT solver to check the
formula. Note that the analysis of the untyped and typed IF specifications may
lead to the detection of different kinds of attacks. Since SATMC is not suited
to analyze untyped IF specifications, we applied it to typed specifications only
(and thus not on protocols suffering from type flaw attacks).

Table 1 allows us also to analyze and compare the performance of the indi-
vidual back-ends. The OFMC model-checker performs uniformly well on all the
protocols: most of the attacks are found in a fraction of a second, and detecting
all the attacks requires a total time of less than one minute. The poorer timings
of the CL back-end are balanced by the fact that it is based on an off-the-shelf
prover (daTac) and it offers other advantages such as the simple integration of
algebraic relations on message constructors (e.g. commutativity of encryptions
in RSA). For SATMC, the experiments show that the time spent to generate the
SAT formula largely dominates the time spent to check the satisfiability of the
SAT instance. Nevertheless, in many cases the overall timing is not too far from
that of OFMC and it is better than that of CL. It is also interesting to observe
that in many cases the time spent by the SAT solver is smaller than the time
spent by OFMC for the same protocol.

We have begun experimenting with larger e-commerce protocols and the
first results are very promising. For example, we have been able to compile and
analyze the card-holder registration phase of SET protocol. Since our tool can
only detect attacks (and for a correct protocol it only terminates when checking
a finite number of sessions), we are also working on implementing back-ends that
can find security proofs for correct protocols.

References

1. D. Basin. Lazy infinite-state analysis of security protocols. In Secure Networking
— CQRE’99, LNCS 1740, pp. 30–42. Springer, 1999. 351

2. J. Clark and J. Jacob. A Survey of Authentication Protocol Literature: Version 1.0,
17. Nov. 1997. URL http://www.cs.york.ac.uk/~jac/papers/drareview.ps.gz .
349, 350, 351

3. G. Denker and J. Millen. CAPSL Intermediate Language. In Proc. of FMSP’99.
URL for CAPSL and CIL: http://www.csl.sri.com/~millen/capsl/. 351

4. B. Donovan, P. Norris, and G. Lowe, Analyzing a library of protocols using Casper
and FDR. In Proc. of FMSP’99. 349, 351

5. F. Jacquemard, M. Rusinowitch, and L. Vigneron. Compiling and Verifying Se-
curity Protocols. In Proc. of LPAR’00, LNCS 1955, pp. 131–160. Springer, 2000.
351

6. G. Lowe. Casper: a compiler for the analysis of security protocols. J. of Com-
puter Security, 6(1):53–84, 1998. URL for Casper: http://web.comlab.ox.ac.uk/
oucl/work/gavin.lowe/Security/Casper/index.html. 351

7. C. Meadows. The NRL protocol analyzer: An overview. J. of Logic Programming,
26(2):113–131, 1996. http://chacs.nrl.navy.mil/projects/crypto.html. 351

http://www.cs.york.ac.uk/~jac/papers/drareview.ps.gz
http://www.csl.sri.com/~millen/capsl/
http://chacs.nrl.navy.mil/projects/crypto.html


The AVISS Security Protocol Analysis Tool 353

8. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engi-
neering an Efficient SAT Solver. In Proc. of DAC’01. 2001. 351



354 Alessandro Armando et al.

Table 1. Performance of the AVISS tool back-ends over the testsuite

Protocol Name Kind of AVISS
Attack OFMC CL SATMC

ISO symm. key 1-pass unilateral auth. Replay 0.0 2.0 0.2/0.0

ISO symm. key 2-pass mutual auth. Replay 0.0 3.9 0.4/0.0

Andrew Secure RPC prot. Type flaw 0.0 4.3 na
Replay 0.1 32.7 80.6/2.7

ISO CCF 1-pass unilateral auth. Replay 0.0 2.2 0.2/0.0

ISO CCF 2-pass mutual auth. Replay 0.0 4.6 0.5/0.0

Needham-Schroeder Conventional Key Replay STS 0.3 63.4 29.3/0.4

Denning-Sacco (symmetric) Type flaw 0.0 16.0 na

Otway-Rees Type flaw 0.0 10.7 na

Yahalom with Lowe’s alteration Type flaw 0.0 44.1 na

Woo-Lam Π1 Type flaw 0.0 0.8 na

Woo-Lam Π2 Type flaw 0.0 0.8 na

Woo-Lam Π3 Type flaw 0.0 0.8 na

Woo-Lam Π PS 0.2 1075.0 3.3/0.0

Woo-Lam Mutual auth. PS 0.3 245.6 1024.1/8.0

Needham-Schroeder Signature prot. MITM 0.1 53.9 3.8/0.1
∗ Neuman Stubblebine initial part Type flaw 0.0 6.2 na
∗ Neuman Stubblebine rep. part Replay STS 0.0 3.5 15.2/0.2

Neuman Stubblebine (complete) Type flaw 0.0 46.8 na

Kehne Langendorfer Schoenwalder (rep. part) PS 0.2 199.4 mo/-

Kao Chow rep. auth., 1 Replay STS 0.5 76.8 16.3/0.2

Kao Chow rep. auth., 2 Replay STS 0.5 45.3 339.7/2.1

Kao Chow rep. auth., 3 Replay STS 0.5 50.1 1288.0/mo

ISO public key 1-pass unilateral auth. Replay 0.0 4.2 0.3/0.0

ISO public key 2-pass mutual auth. Replay 0.0 11.1 1.2/0.0
∗ Needham-Schroeder Public KeyNSPK MITM 0.0 12.9 1.8/0.1

NSPK with key server MITM 1.1 to 4.3/0.0
∗ NSPK with Lowe’s fix Type flaw 0.0 31.1 na

SPLICE/AS auth. prot. Replay 4.0 352.4 5.5/0.1

Hwang and Chen’s modified SPLICE MITM 0.0 13.1 ns

Denning Sacco Key Distr. with Public Key MITM 0.5 936.9 ns

Shamir Rivest Adelman Three Pass prot. Type flaw 0.0 0.7 na

Encrypted Key Exchange PS 0.1 240.8 75.4/1.8

Davis Swick Private Key Certificates, prot. 1 Type flaw 0.1 106.2 na
Replay 1.2 to 1.4/0.0

Davis Swick Private Key Certificates, prot. 2 Type flaw 0.2 348.5 na
Replay 0.9 to 2.7/0.0

Davis Swick Private Key Certificates, prot. 3 Replay 0.0 2.7 1.5/0.0

Davis Swick Private Key Certificates, prot. 4 Replay 0.0 36.0 8.2/0.1

Legenda: MITM: Man-in-the-Middle. PS: Parallel-Session. Replay STS: Replay attack
based on a Short-Term Secret. na: Not Attempted. ns: Not Supported. mo: Memory
Out. to: Time Out (> 1 hour).


	The AVISS Security Protocol Analysis Tool
	Introduction
	The System
	Experiments


