Model Checking Linear Properties
of Prefix-Recognizable Systems

Orna Kupferman'*, Nir Piterman?, and Moshe Y. Vardi®**

! Hebrew University, School of Engineering and Computer Science
Jerusalem 91904, Israel
orna@cs.huji.ac.il
http://www.cs.huji.ac.il/"orna
2 Weizmann Institute of Science, Department of Computer Science
Rehovot 76100, Israel
nirp@wisdom.weizmann.ac.il
http://www.wisdom.weizmann.ac.il/"nirp
3 Department of Computer Science, Rice University
Houston, TX 77251-1892, U.S.A.
vardi@cs.rice.edu
http://www.cs.rice.edu/ vardi

Abstract. We develop an automata-theoretic framework for reasoning
about linear properties of infinite-state sequential systems. Our frame-
work is based on the observation that states of such systems, which
carry a finite but unbounded amount of information, can be viewed as
nodes in an infinite tree, and transitions between states can be simulated
by finite-state automata. Checking that the system satisfies a temporal
property can then be done by an alternating two-way automaton that
navigates through the tree. We introduce path automata on trees. The
input to a path automaton is a tree, but the automaton cannot split
to copies and it can read only a single path of the tree. In particular,
two-way nondeterministic path automata enable exactly the type of nav-
igation that is required in order to check linear properties of infinite-state
sequential systems.

We demonstrate the versatility of the automata-theoretic approach by
solving several versions of the model-checking problem for LTL specifi-
cations and prefix-recognizable systems. Our algorithm is exponential in
both the size of (the description of) the system and the size of the LTL
specification, and we prove a matching lower bound. This is the first op-
timal algorithm for solving the LTL model-checking problem for prefix
recognizable systems. Our framework also handles systems with regular
labeling.

* Supported in part by BSF grant 9800096.
** Supported in part by NSF grants CCR-9988322, 11S-9908435, 11S-9978135, and
EIA-0086264, by BSF grant 9800096, and by a grant from the Intel Corporation.

D. Brinksma and K. G. Larsen (Eds.): CAV 2002, LNCS 2404, pp. 371-385, 2002.
© Springer-Verlag Berlin Heidelberg 2002

372 Orna Kupferman et al.

1 Introduction

In temporal-logic model checking, we verify the correctness of a finite-state sys-
tem with respect to a desired behavior by checking whether a labeled state-
transition graph that models the system satisfies a temporal logic formula that
specifies this behavior (for a survey, see [CGP99]). An important research topic
over the past decade has been the application of model checking to infinite-state
systems. Notable successes in this area has been the application of model check-
ing to real-time and hybrid systems (cf. [HHWT95, LPY97]). Another active
thrust of research is the application of model checking to infinite-state sequen-
tial systems. These are systems in which a state carries a finite, but unbounded,
amount of information, e.g., a pushdown store. The origin of this thrust is the
important result by Miiller and Schupp that the monadic second-order theory
of context-free graphs is decidable [MS85]. As the complexity involved in that
decidability result is nonelementary, researchers sought decidability results of el-
ementary complexity. This started with Burkart and Steffen, who developed an
exponential-time algorithm for model-checking formulas in the alternation-free
p~calculus with respect to context-free graphs [BS92]. Researchers then went
on to extend this result to the p-calculus, on one hand, and to more general
graphs on the other hand, such as pushdown graphs [BS95, Wal90], regular
graphs [BQ906], and prefiz-recognizable graphs [Cau96]. The most powerful result
so far is an exponential-time algorithm by Burkart for model checking formu-
las of the p-calculus with respect to prefix-recognizable graphs [Bur97b]. See
also [BCMS00, BE96, BEM97, BS99, Bur97a, FWW97].

In [KV00], Kupferman and Vardi develop an automata-theoretic framework
for reasoning about infinite-state sequential systems. The automata-theoretic
approach uses the theory of automata as a unifying paradigm for system spec-
ification, verification, and synthesis [WVS83, EJ91, Kur94, VW94, KVWO00].
Automata enable the separation of the logical and the algorithmic aspects of
reasoning about systems, yielding clean and asymptotically optimal algorithms.
Kupferman and Vardi use two-way alternating tree automata in order to rea-
son about branching properties of infinite state sequential systems. The idea is
based on the observation that states of such systems can be viewed as nodes in
an infinite tree, and transitions between states can be simulated by finite-state
automata. Checking that the system satisfies a branching temporal property can
then be done by an alternating two-way automaton. The two-way alternating
automaton starts checking the input tree from the root. It then spawns several
copies of itself that may go in different directions in the tree. Each new copy
can spawn other new copies and so on. The automaton accepts the input tree if
all spawned copies agree on acceptance. Thus, copies of the alternating automa-
ton navigate through the tree and check the branching temporal property. The
method in [KV00] handles prefix-recognizable systems, and properties specified
in the p-calculus. The method appears to be very versatile, and it has further
applications: the p-calculus model-checking algorithm can be easily extended to
graphs with regular labeling (that is, graphs in which each atomic proposition p
has a regular expression describing the set of states in which p holds) and reg-

Model Checking Linear Properties of Prefix-Recognizable Systems 373

ular fairness constraints, to p-calculus with backward modalities, to checking
realizability of p-calculus formulas with respect to infinite-state sequential en-
vironments, and to computing the set pre* (post™) of predecessors (successors)
of a regular set of states. All the above are achieved using a reduction to the
emptiness problem for alternating two-way tree automata where the location
of the alternating automaton on the infinite tree indicates the contents of the
pushdown store.

The p-calculus is sufficiently strong to express all properties expressible in
the linear temporal logic LTL (and in fact, all properties expressible by an
w-regular language) [Dam94]. Thus, the framework in [KV00] can be used in
order to solve the problem of LTL model-checking for prefix-recognizable sys-
tems. The solution, however, is not optimal. This has to do both with the fact
that the translation of LTL to the u-calculus is exponential, as well as the fact
that the framework in [[KV00] is based on tree automata. A tree automaton
splits into several copies when it runs on a tree. While splitting is essential for
reasoning about branching properties, it has a computational price. For linear
properties, it is sufficient to follow a single computation of the system, and
tree automata seem too strong for this task. For example, while the application
of the framework in [[XV00] to pushdown systems and LTL properties results
in a doubly-exponential algorithm, the problem is known to be EXPTIME-
complete [BEMIT].

In this paper, we develop an automata-theoretic framework to reason about
linear properties of infinite-state sequential systems. We introduce path automata
on trees. The input to a path automaton is a tree, but the automaton cannot
split to copies and it can read only a single path of the tree. In particular, two-
way nondeterministic path automata enable exactly the type of navigation that
is required in order to check linear properties of infinite-state sequential systems.
We study the expressive power and the complexity of the decision problems for
(two way) path automata. The fact that path automata follow a single path
in the tree makes them very similar to two-way nondeterministic automata on
infinite words. This enables us to reduce the membership problem (whether an
automaton accepts the tree obtained by unwinding a given finite labeled graph)
of two-way nondeterministic path automata to the emptiness problem of one-way
alternating weak automata on infinite words, which was studied in [KXVWO00].
This leads to a quadratic upper bound for the membership problem for two-way
nondeterministic path automata.

As usual, the automata-theoretic framework proves to be very helpful. We
are able to solve the problem of LTL model checking with respect to pushdown
systems by a reduction to the membership problem of two-way nondeterminis-
tic path automata. This is in contrast to [[{V00], where the emptiness problem
for two-way alternating tree automata is being used. We note that both simpli-
fications, to the membership problem vs. the emptiness problem, and to path
automata vs. tree automata are crucial: as we prove, the emptiness problem for
two-way nondeterministic Biichi path automata is EXPTIME-complete, and the
membership problem for two-way alternating Biichi automata is also EXPTIME-

374 Orna Kupferman et al.

complete!'. Our automata-theoretic technique matches the known upper bound
for model checking LTL properties on pushdown systems [BEM97, ETTRS00].
In addition, the automata-theoretic approach provides the first solution for the
case the system is prefix recognizable. Specifically, we show that we can solve
the model-checking problem of an LTL formula ¢ with respect to a prefix-
recognizable system R of size n in time and space 2°0("*1¢D) We also prove
a matching EXPTIME lower bound.

Our framework also handles regular labeling (in both pushdown and prefix-
recognizable systems). The complexity is exponential in the nondeterministic
automata that describe the labeling, matching the known bound for pushdown
systems [[LI{S01]. The automata-theoretic techniques for handling regular label-
ing and for handling the regular transitions of a prefix-recognizable system are
very similar. In both settings, the system has to be able to check the membership
of the word in the store in a regular expression. This leads us to the understand-
ing that regular labeling and prefix recognizability have exactly the same power.
In the full version, we prove that LTL model checking in a prefix recognizable sys-
tem and LTL model checking in a pushdown system with regular labeling are in-
tereducible. Since the latter problem is known be EXPTIME-complete [F1<S01],
our reductions suggest an alternative proof of the exponential upper and lower
bounds for the problem of LTL model checking in prefix-recognizable systems.

2 Preliminaries

We consider finite or infinite sequences of symbols from some finite alphabet X .
Given a word w = wowiws --- € X* U XY, we denote by by ws; the suffix of w
starting at w; hence w>; = w;w;t1w;y2---. The length of w is denoted by |w|
and is defined to be w for infinite words.

Nondeterministic Automata. A nondeterministic automaton on words is
N =(X,Q,qo,n, F), where X is a finite alphabet, @ is a finite set of states, ¢ €
Q is an initial state, 7 : Q x ¥ — 29 is a transition function, and F C Q is a
set of accepting states. We can run N either on finite words (nondeterministic
finite automaton or NFA for short) or on infinite words (nondeterministic Biichi
automaton or NBW for short). A deterministic automaton is an automaton for
which [n(q,a)] =1 for all ¢ € Q and a € Y. We denote by N7 the automaton N
with initial state ¢. A run of N on a finite word w = wy,...,w;_1 is a finite
sequence of states pg,p1,...,p € Q! such that pg = qo and for all 0 < j < I,
we have pj11 € n(p;,w;). A run is accepting if p; € F. A run of N on an infi-
nite word w = wq, w1, ... is defined similarly as an infinite sequence. For a run
r = po,P1,- .., let inf(r) = {q € Q | ¢ = p; for infinitely many i’s} be the set of

! In contrast, the membership problem for one-way alternating Biichi tree automata
can be solved in quadratic time. Indeed, the problem can be reduced to the empti-
ness problem of the 1l-letter alternating word automaton obtained by taking the
product of the labeled graph that models the tree with the one-way alternating tree
automaton [KVWO00]. This technique cannot be applied to two-way automata, since
they can distinguish between a graph and its unwinding. For a related discussion
regarding past-time connectives in branching temporal logics, see [[KP95].

Model Checking Linear Properties of Prefix-Recognizable Systems 375

all states occurring infinitely often in the run. A run r of an NBW is accepting
if it visits the set F' infinitely often, thus inf(r) N F # (. A word w is accepted
by N if N has an accepting run on w. The language of N, denoted L(N), is the
set of words accepted by N. The size |N| of a nondeterministic automaton N is
the size of its transition function, thus |[N| = XicqXsex|n(g, o).

We are especially interested in cases where X = 247 for some set AP of
atomic propositions AP, and in languages L C (ZAP)“ definable by NBW or
formulas of the linear temporal logic LTL [Pnu77]. For an LTL formula ¢, the
language of ¢, denoted L(yp), is the set of infinite words that satisfy (.

Theorem 1. [VW94] For every LTL formula ¢, there exists an NBW N,
with 20U states, such that L(N,) = L(y).

Labeled Rewrite Systems. A labeled transition graph is G = (X, S, L, p, so),
where X' is a finite set of labels, S is a (possibly infinite) set of states, L : § — X
is a labeling function, p € S x S is a transition relation, and sy € Sy is an initial
state. When p(s, s'), we say that s is a successor of s, and s is a predecessor of s'.
For a state s € S, we denote by G* = (X, S, L, p, s), the graph G with s as its
initial state. An s-computation is an infinite sequence of states sg, s1,... € S¥
such that sy = s and for alli > 0, we have p(s;, s;+1). An s-computation sg, $1, . . .
induces the s-trace L(so) - L(s1)---. The set 75 is the set of all s-traces. We say
that s satisfies an LTL formula ¢, denoted (G, s) = ¢, iff 7, C L(¢p). A graph G
satisfies an LTL formula ¢, denoted G = ¢, iff its initial state satisfies it; that
is (G,s0) E ¢. The model-checking problem for a labeled transition graph G
and an LTL formula ¢ is to determine whether G satisfies ¢. Note that the
transition relation need not be total. There may be finite paths but satisfaction
is determined only with respect to infinite paths. In particular, if the graph has
only finite paths, its set of traces is empty and the graph satisfies every LTL
formula (It is also possible to consider finite paths. In this case, the NBW in
Theorem 1 has to be modified so that it can recognize also finite words. Our
results are easily extended to consider also finite paths).

A rewrite system is R = (X, V,Q,L,T,qo,xo), where X is a finite set of
labels, V' is a finite alphabet, labeling function, 7" is a finite set of rewrite rules,
to be defined below, ¢q is an initial state, and zo € V* is an initial word. The set
of configurations of the system is Q x V*. Intuitively, the system has finitely many
control states and unbounded store. Thus, in a configuration (g, x) € Q x V* we
refer to g as the control state and to x as the store. A configuration (¢, z) € QxV*
indicates that the system is in control state g with store . We consider here two
types of rewrite systems. In a pushdown system, each rewrite rule is (¢, A, z,¢’) €
RQXxVxV*xQ. Thus, T C QxV xV*xQ. In a prefiz-recognizable system, each
rewrite rule is (¢, o, 3,7, ¢") € Q x reg(V') x reg(V') x reg(V') x Q, where reg(V') is
the set of regular expressions over V. Thus, T' C Q X reg(V') x reg(V') x reg(V') X Q.
For a word w € V* and a regular expression r € reg(V') we write w € r to denote
that w is in the language of the regular expression r. We note that the standard
definition of prefix-recognizable systems does not include control states. Indeed,
a prefix-recognizable system without states can simulate a prefix-recognizable

376 Orna Kupferman et al.

system with states by having the state as the first letter of the unbounded store.
For uniformity, we use prefix-recognizable systems with control states.

We consider two types of labeling functions, simple and regular. The labeling
function associates with a configuration (¢,z) € @ x V* a symbol from ¥. A
simple labeling function depends only on the first letter of . Thus, we may write
L:Qx(VU{e}) — X. Note that the label is defined also for the case that z is the
empty word e. A regular labeling function considers the entire word 2 but can
only refer to its membership in some regular set. Formally, for every state ¢ there
is a partition of V* to |X| regular languages Ry, ... R|x|, and L(g, z) depends on
the regular set that = belongs to. We are especially interested in the cases where
the alphabet X is the powerset 247 of the set of atomic propositions. In this
case, we associate with every state ¢ and proposition p a regular language R,),
that contains all the words x for which the proposition p is true in configuration
(g,x). Thus p € L(q,z) iff z € Ry,.

The rewrite system R induces the labeled transition graph Gr = (¥, Q X
V* L', pr, (qo,20)). The states of G are the configurations of R and ((g, z),
(¢',2")) € pr if there is a rewrite rule ¢t € T leading from configuration (g, z)
to configuration (¢, z’). Formally, if R is a pushdown system, then pgr((g, A -
y), (¢, x-y)) if (¢, A,z,q¢") € T; and if R is a prefix-recognizable system, then
pr((¢,x - y), (¢’ 2" - y)) if there are regular expressions «, [, and v such that
x€a,y€ B, 2 €r,and (¢, a,5,7,¢") € T. In order to apply a rewrite rule in
state (¢,z) € Q x V* of a pushdown graph, we only need to match the state ¢
and the first letter of z with the second element of a rule. On the other hand, in
an application of a rewrite rule in a prefix-recognizable graph, we have to match
the state ¢ and find a partition of z to a prefix that belongs to the second element
of the rule and a suffix that belongs to the third element. A labeled transition
graph that is induced by a pushdown system is called a pushdown graph. A
labeled transition system that is induced by a prefix-recognizable system is called
a prefiz-recognizable graph. We say that a rewrite system R satisfies an LTL
formula ¢ if Gg = . 2

Ezample 1. The pushdown system (2{P1r2} {A B} {q}, L, T, qo, A), with T =
{{q0, A, AB, qo), (g0, A, €, q0), (g0, B,€,q0)}, and L defined by Rgopr = {A, B}
B-B-{A,B}* and Ry, ,, = A-{A, B}*, induces the labeled transition graph
below.

P2 P2 P1,P2 p1,p2
(q0,A) =q0,AB}) (q0,ABB) (90,ABBB)- - -
(g0, ¢€) (40,B) (¢0,BB) (q0,BBB) - - -

P1 P1

2 Some work on verification of infinite-state system (e.g., [ETTRS00]), consider prop-
erties given by nondeterministic Biichi word automata, rather than LTL formulas.
Our algorithm actually handles properties given by automata. We translate an LTL
formula to an automaton and use the automaton in our algorithm.

Model Checking Linear Properties of Prefix-Recognizable Systems 377

Consider a prefix-recognizable system R = (X, V,Q, L, T, q,x0). For a re-
write rule t; = (s, a;, Bi, i, 8') € T, let Uy = (V,Qx, q%,nx, F), for X € {ay, i,
7i }, be the nondeterministic automaton for the language of the regular expression
A. We assume that all initial states have no incoming edges and that all accepting
states have no outgoing edges. We collect all the states of all the automata for
@, 3, and v regular expressions. Formally, Qo = Uy, cr Qois Qs = U, cr Qs>
and Q = U, er @~,- We assume that we have an automaton whose language is
{zo}. We denote the initial state of this automaton by zo and add all its states
to ~. Finally, for a regular labeling function L, a state ¢ € (), and a proposition
p € AP, let Uy, = (V, Qp,q,quq,ppyq,Fp,ﬁ be the nondeterministic automaton
for the language of Ry .

We define the size |T|| of T as the space required in order to encode the
rewrite rules in 7" and the labeling function. Thus, in a pushdown system, ||T'|| =
> (g, Az,qer 1%, and in a prefix-recognizable system, |T'(| = 3=, o 5. ¢her Ual
+|Ug| + [Uy]. In the case of a regular labeling function, we also measure the
labeling function [[L|| =3 o > cap [Ugpl-

Theorem 2. The model-checking problem for a pushdown system R and an LTL
formula ¢ is solvable

— in time O(||T||%) - 2°U¢D) and space O(||T||?) - 2°U¢D in the case that L is a
simple labeling function [EHRS00].

—in time O(||T||?) - 2CUEI+I#D and space O(||T||?) - 20UWEI+IPD in the case
that L is a reqular labeling function. The problem is EXPTIME-hard in || L||
even for a fized formula [FIKS01].

3 Two-Way Path Automata on Trees

Given a finite set 7 of directions, an 1"-tree is a set T C T such that if v-z € T,
where v € 7" and x € T*, then also x € T'. The elements of T" are called nodes,
and the empty word ¢ is the root of T'. For every v € T and x € T, the node If
z=uwax-y €T then z is a descendant of y. Each node x # ¢ of T has a direction
in 7. The direction of the root is the symbol L (we assume that L ¢ 7). The
direction of a node v - z is v. We denote by dir(z) the direction of the node z.
An T-tree T is a full infinite tree if T'=1*. A path 7 of a tree T is an infinite
set m C T such that € € 7 and for every x € 7 there exists a unique v € 7" such
that v -« € . Note that our definitions here reverse the standard definitions
(e.g., when 7" = {0, 1}, the successors of the node 0 are 00 and 10, rather than
00 and 01°.

Given two finite sets 1" and X, a X-labeled 1-tree is a pair (T, 7) where T
is an T-tree and 7 : T — X maps each node of T to a letter in Y. When T
and Y are not important or clear from the context, we call (T, 7) a labeled
tree. A tree is regular if it is the unwinding of some finite labeled graph. More

3 As will get clearer in the sequel, the reason for that is that rewrite rules refer to the
prefix of words.

378 Orna Kupferman et al.

formally, a transducer D is a tuple (1, X, Q, qo,n, L), where 7" is a finite set of
directions, X is a finite set alphabet, () is a finite set of states, gg € @ is a start
state, n : Q@ X7 — @ is a deterministic transition function, and L : Q — X
is a labeling function. We define n : 7* — @ in the standard way: n(e) = qo
and n(az) = n(n(x),a). Intuitively, a transducer is a labeled finite graph with
a designated start node, where the edges are labeled by 1" and the nodes are
labeled by Y. A X-labeled Y-tree (T*,7) is regular if there exists a transducer
D=T,%,0Q,q,n, L), such that for every x € T*, we have 7(x) = L(n(z)). We
denote by ||7]|, the number |Q| of states of D.

Path automata on trees are a hybrid of nondeterministic word automata and
nondeterministic tree automata: they run on trees but have linear runs. Here
we describe two-way nondeterministic Biichi path automata. For a set 1" of
directions, the extension of 1" is the set ext(Y) = T U {e,1} (we assume that
YN{e, 1} =0). A two-way nondeterministic Biichi path automaton (2NBP, for
short) on Y-labeled T-trees is S = (X, P, d, po, F'), where X, P, pg, and F are
as in an NBW, and 6 : P x X — 2(e#t(0)xP) jg the transition function. A path
automaton that visits the state p and reads the node x € T chooses a pair
(A, p") € §(p, 7(x)), and then follows direction A and moves to state p'.

Formally, a run of a 2NBP S on a labeled tree (Y, 7) is a sequence of pairs
r = (o,po), (x1,p1),... where for all i > 0, z; € T™* is a node of the tree
and p; € P is a state. The pair (x,p) describes a copy of the automaton that
reads the node = of 77* and is in the state p. Note that many pairs in r may
correspond to the same node of T7*; Thus, S may visit a node several times. The
run has to satisfy the transition function. Formally, (zo, po) = (£, o) and for all
i > 0 there is A € ext(T") such that (A, p;+1) € 0(p;, 7(x;)) and

—IfAe€T, then ;41 = A -2y
— If A =¢, then ;41 = z;.
— If A =7, then z; =v - z, for some v € T and z € T*, and z;11 = 2.

Thus, e-transitions leave the automaton on the same node of the input tree, and
T-transitions take it up to the parent node. Note that the automaton cannot go
up the root of the input tree, as whenever A =7, we require that z; # €. A
run 7 is accepting if it visits T* x F' infinitely often. An automaton accepts a
labeled tree if and only if there exists a run that accepts it. We denote by £(A)
the set of all X-labeled trees that A accepts. The automaton A is nonempty iff
L(A) # (. We measure the size of a 2NBP by two parameters, the number of
states and the size, |0| = ZpepXaex|d(s, a)|, of the transition function.
Readers familiar with tree automata know that the run of a tree automaton
starts in a single copy of the automaton reading the root of the tree, and then the
copy splits to the successors of the root and so on, thus the run simultaneously
follows many paths in the input tree. In contrast, a path automaton has a single
copy at all times. It starts from the root and it always chooses a single direction
to go to. In two-way path automata, the direction may be “up”, so the automaton
can read many paths of the tree, but it cannot read them simultaneously. The
fact that a 2NBP has a single copy influences its expressive power and the
complexity of its nonemptiness and membership problems. In the full version we

Model Checking Linear Properties of Prefix-Recognizable Systems 379

study the expressive power of 2NBP. We show that a 2NBP cannot recognize
even very simple properties that refer to all the branches of the tree. However,
when a universal property considers only a bounded prefix of the branch, it can
be recognized by a 2NBP. We now turn to study the emptiness and membership
problems of 2NBP.

Given a 2NBP S, the emptiness problem is to determine whether S accepts
some tree, or equivalently whether £(S) = 0. The membership problem of S
and a regular tree (¥, 7) is to determine whether S accepts (77*,7), or equiv-
alently (T*,7) € L£(S). The fact that 2NBP cannot spawn new copies makes
them similar to word automata. Thus, the membership problem for 2NBP can
be reduced to the emptiness problem of one-way weak alternating automata
on infinite words (IAWW) over a 1-letter alphabet (cf. [KVWO00]). The reduc-
tion yields a polynomial time algorithm for solving the membership problem. In
contrast, the emptiness problem of 2NBP is EXPTIME-complete.

In the full version, we show that we can reduce the membership problem
of 2NBP to the emptiness problem of alternating word automata. The reduc-
tion generalizes the construction in [PV0la, PVO1b, Pit00]. We combine this
reduction with an algorithm for checking the emptiness of alteranting word au-
tomata [[XVWO00]. Formally, we have the following.

Theorem 3. Consider a 2NBP § = (X, P,py,0, F).

— The membership problem of the regular tree (Y*,7) in the language of S is
solvable in time O(|P|* - |6| - ||7]|) and space O(|P|? - ||7||).
— The emptiness problem of S is EXPTIME-complete.

We note that the membership problem for 2-way alternating Biichi automata
on trees (2ABT) is EXPTIME-complete. Indeed, CTL model-checking of push-
down systems, proven to be EXPTIME-hard in [Wal00], can be reduced to the
membership problem of a regular tree in a 2ABT. The size of the regular tree
is linear in the size of the alphabet of the pushdown system and the size of the
2ABT is linear in the size of the CTL formula. Thus, path automata capture the
computational difference between linear and branching specifications.

4 LTL Model Checking

In this section we solve the LTL model-checking problem by a reduction to
the membership problem of 2NBP. We start by demonstrating our technique
on LTL model-checking for pushdown systems. Then we show how to extend
it to prefix-recognizable systems and to systems with regular labeling. For an
LTL formula ¢, we construct a 2NBP that navigates through the full infinite V-
tree and simulates a computation of the rewrite system that does not satisfy
. Thus, our 2NBP accepts the V-tree iff the rewrite system does not satisfy
the specification. Then, we use the results in Section 3: we check whether the
given V-tree is in the language of the 2NBP and conclude whether the system
satisfies the property.

380 Orna Kupferman et al.

Consider a rewrite system R = (X, V,Q, L, T, qo,x0). Recall that a configu-

ration of R is a pair (¢,x) € @ x V*. Thus, the store 2 corresponds to a node in
the full infinite V-tree. An automaton that reads the tree V* can memorize in
its state space the state component of the configuration and refer to the location
of its reading head in V* as the store. We would like the automaton to “know”
the location of its reading head in V*. A straightforward way to do so is to label
a node x € V* by x. This, however, involves an infinite alphabet, and results
in trees that are not regular. We show that it is possible to label V* with a
regular labeling that is sufficiently informative to provide the 2NBP with the in-
formation it needs in order to simulate the transitions of the rewrite system. For
pushdown systems with a simple labeling function, we show that it is enough to
label a node x by its direction. For prefix-recognizable systems or systems with
regular labeling, the label is more complex and reflects the membership of x
in the regular expressions that are used in the transition rules and the regular
labeling.
Pushdown Systems. Recall that in order to apply a rewrite rule of a pushdown
system from configuration (¢, z), it is sufficient to know ¢ and the first letter
of . Let (V*,7,,) be the V-labeled V-tree such that for every x € V* we have
7, () = dir(z). Note that (V*, 7,) is a regular tree of size |V|+ 1. We construct
a 2NBP S that reads (V*, 7,). The state space of S contains a component that
memorizes the current state of the rewrite system. The location of the reading
head in (V*, 7,,) represents the store of the current configuration. Thus, in order
to know which rewrite rules can be applied, S consults its current state and the
label of the node it reads (note that dir(z) is the first letter of x). Formally, we
have the following.

Theorem 4. Given a pushdown system R = (247 V,Q,L,T,qo, 7o) and an
LTL formula @, there is a 2NBP S on V-trees such that S accepts (V*,1,)
iff Gr W . The automaton S has O(|Q| - ||T||) - 2°U¢D) states and the size of its
transition function is O(||T||) - 2°U#D.

Proof. According to Theorem 1, there is an NBW M_, = (247 W, Mo, Wo, F)
such that £(M-,) = (247)* \ L(¢). The 2NBP S tries to find a trace in Gp
that satisfies —¢. The 2NBP S runs M-, on a guessed (qo, o)-computation in
R. Thus, S accepts (V*, 7,) iff there exists an (qg, 2o)-trace in G accepted by
M. Such a (qo, zo)-trace does not satisfy ¢, and it exists iff R = ¢. We define
§= <‘/7 P7p0a57 F/>7 where

— P =W x Q x tails(T), where tails(T) C V* is the set of all suffixes of
words x € V* for which there are states ¢,¢’ € Q and A € V such that
(q,A,x,q') € T. Intuitively, when S visits a node z € V* in state (w, q,y),
it checks that R with initial configuration (¢,y - x) is accepted by MY . In
particular, when y = ¢, then R with initial configuration (¢, x) needs to be
accepted by MY . States of the form (w, q,€) are called action states. From
these states S consults 7, and 7" in order to impose new requirements on
(V*,7,). States of the form (w, q,y), for y € VT, are called navigation states.
From these states S only navigates downwards y to reach new action states.

Model Checking Linear Properties of Prefix-Recognizable Systems 381

— po = {(wo, go, To). Thus, in its initial state S checks that R with initial config-
uration (qo, o) contains a trace that is accepted by M with initial state wy.
— The transition function § is defined for every state in (w,q,z) € W x Q x
tails(T) and letter in A € V as follows.
o 5((w, q,6), 4) = {((w', ¢,), 1) : w" € Ny (w, L(g, A))
and (¢,4,y,q¢') € T }.
e 5((w,q,B-y), A) ={((w, q,y), B)}.
Thus, in action states, S reads the direction of the current node and applies
the rewrite rules of R in order to impose new requirements according to
7-,- In navigation states, S needs to go downwards B -y, so it continues in
direction B.
— F' = {{w,q,¢e) : we Fand ¢ € Q}. Note that only action states can be
accepting states of S.

We show that S accepts (V*, 7,.) iff R £ ¢. Assume first that S accepts (V*, 7,,).
Then, there exists an accepting run (po, o), (p1, 1), ... of S on (V*, 7.,). Extract
from this run the subsequence of action states (pi,, i,), (Diys Tip), As the
run is accepting and only action states are accepting states we know that this
subsequence is infinite. Let p;; = (w;;, ¢;;,). By the definition of 0, the sequence
(Giys iy), (Giy, Tiy), - . . corresponds to an infinite path in the graph Gg. Also, by
the definition of F”, the run w;, ,w;,, ... is an accepting run of M-, on the trace
of this path. Hence, G contains a trace that is accepted by M-, thus R}~ ¢.

Assume now that R [~ . Then, there exists a path (qo, z0), (¢1,21),...in Gr
whose trace does not satisfy . There exists an accepting run wg, w, ... of M,
on this trace. The combination of the two sequence serves as the subsequence
of the action states in an accepting run of S. It is not hard to extend this
subsequence to an accepting run of S on (V*,7,).

Prefix-Recognizable Systems. We now turn to consider prefix-recognizable
systems. Again the configuration of a prefix-recognizable system R = (¥, V, @, L,
T, qo, zo) consists of a state in @ and a word in V*. So, the store content is still a
node in the tree V*. However, in order to apply a rewrite rule it is not enough to
know the direction of the node. Recall that in order to represent the configuration
(¢, z) € Q x V*, our 2NBP memorizes the state ¢ as part of its state space and
it reads the node x € V*. In order to apply the rewrite rule ¢; = (q, v, Bi, Vi, ¢'),
the 2NBP has to go up the tree along a word y € a;. Then, if x = y- z, it has to
check that z € 3;, and finally guess a word 3’ € 7; and go downwards v’ to 3 - z.
Finding a prefix y of such that y € «;, and a new word 3’ € ~; is not hard: the
2NBP can emulate the run of the automaton U, backwards while going up the
tree and the run of the automaton U, while going down the guessed y’. How
can the 2NBP know that z € (3;7 Instead of labeling each node x € V* only by
its direction, we can label it also by the regular expressions [for which = € (.
Thus, when the 2NBP run U, up the tree, it can tell, in every node it visits,
whether z is a member of 3; or not. If z € 3;, the 2NBP may guess that time
has come to guess a word in v; and run U, down the guessed word.

Thus, in the case of prefix-recognizable systems, the nodes of the tree whose
membership is checked are labeled by both their directions and information

382 Orna Kupferman et al.

about the regular expressions . Let {f1,...,3,} be the set of regular ex-
pressions (; such that there is a rewrite rule (g, o, 3i,vi,q') € T. Let Dg, =
(V. Dg,, qgi .18, Fg,) be the deterministic automaton for the language of ;. For a
word x € V*, we denote by 7, () the unique state that Dg, reaches after reading
the word «. Let ¥ = V X II1<;<,Dg,. For aletter o € X, let o[i], for i € {0,...n},
denote the i-th element in o (that is, o[0] € V and a[] € Dg for ¢ > O) Let
(V*,73) denote the X-labeled V-tree such that 75(e) = (1,3 ,...,q3), and
for every node A-x € V*t, we have 75(A-x) = (A,np, (A - z),...,n5,(A - x)).
Thus, every node z is labeled by dir(z) and the vector of states that each of
the deterministic automata reach after reading x. Note that 75(x)[i] € Fj, iff «
is in the language of ;. Note also that (V*,73) is a regular tree whose size is
exponential in the sum of the lengths of 51, ..., G,.

Theorem 5. Given a prefiz-recognizable system R = (X, V,Q, L, T, qo,xo) and
an LTL formula ¢, there is a 2NBP S such that S accepts (V*,73) iff R [~ .
The automaton S has O(|Q)| - (|Qa| + |Q7|) |T|) - 20UeD) states and the size of
its transition function is O(||T|) - 2°U#D).

The proof resembles the proof for pushdown systems. This time, the applica-

tion of a rewrite rule ¢t; = (q, o, Bi, Vi, ¢') involves an emulation of the automata
Up, (upwards) and U, (downwards). Accordingly, one of the components of the
states of the 2NBP is a state of either U, or U,,. Action states are states in which
this component is a final state of U,,. From action states, the 2NBP chooses a
new rewrite rule ty = (¢, v, Bir,vir, ¢"), and it applies it as follows. First, it
chooses a final state of U, , and run U,, backwards up the tree until it reaches
the initial state. It then verifies that the current node is in the language of j3;,
in which case it moves to the initial state of i/, and runs it forward down the
tree until it reaches a new action state.
Regular Labeling. Handling regular labels for pushdown systems or prefix-
recognizable systems is similar to the above. We add to the label of every node
in the tree V* also the states of the deterministic automata that recognizes the
languages of the regular expressions of the labels. The navigation through the V-
tree proceeds as before, and whenever the 2NBP needs to know the label of the
current configuration (that is, in action states, when it has to update the state
of M~,), it consults the labels of the tree.

If we want to handle a prefix-recognizable system with regular labeling we
have to label the nodes of the tree V* by both the deterministic automata for reg-
ular expressions [3; and the deterministic automata for regular expressions R .
Let (V*, 73 1) denote this tree. Again note that (V*, 75) is a regular tree of
exponential size.

Theorem 6. Given a prefiz-recognizable system R = (X, V,Q, L, T, qo,xo) and
an LTL formula o, there is a 2NBP S such that S accepts (V*,75.1) iff R~ ¢.
The automaton S has O(|Q)| - (|Qa| + |Q7|) |T|) - 2009 states and the size of
its transition function is O(||T) - 2

Note that Theorem 6 differs from Theorem 5 only in the labeled tree whose
membership is checked. Also, all the three labeled trees we use are regular,

Model Checking Linear Properties of Prefix-Recognizable Systems 383

with |7, || = O(|V]), ||7s] = 29URD and |75 1| = 2°UQsI+IED . Combining
Theorems 4, 5, 6, and 3, we get the following.

Theorem 7. The model-checking problem for a rewrite system R and an LTL
formula ¢ is solvable

— in time O(||T||?) - 2°U¢D) and space O(|T||?) - 2°U¢D when R is a pushdown
system with simple labeling.

— in time O(||T||?) - 2°0UeI+1QsD) and space O(|T|?) - 20U#I+1Q8D when R is a
prefix-recognizable system with simple labeling. The problem is EXPTIME-
hard in |Qg| even for a fized formula.

— in time O(||T||?) - 20UeIH1QsIHILID and space O(|T|?) - 20U +I1QsI+ILID when,
R is a prefix-recognizable system with reqular labeling L.

For pushdown systems with simple labeling (the first setting), our complexity
coincides with the one in [EITRS00]. In the full version, we prove the EXPTIME
lower bound in the second setting by a reduction from the membership problem
of a linear space alternating Turing machine. An alternative proof is given in
Theorem 2. This, together with the lower bound in [EKS01], implies EXPTIME-
hardness in terms of |Qg| and ||L|| in the the third setting. Thus, our upper
bounds are tight.

References

[BCMS00] O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verification on infinite
structures. Unpublished manuscript, 2000. 372

[BE96) O. Burkart and J. Esparza. More infinite results. FElectronic Notes in
TCS, 6, 1996. 372

[BEM9T] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of push-
down automata: Application to model-checking. In 8th Concur, LNCS
1243, 135-150, 1997. 372, 373, 374

[BLMO1] P. Biesse, T. Leonard, and A. Mokkedem. Finding bugs in an alpha
microprocessors using satisfiability solvers. In 13th CAV, LNCS 2102,
454-464, 2001.

[BQIG] O. Burkart and Y.-M. Quemener. Model checking of infinite graphs de-
fined by graph grammers. In Ist Infinity, ENTCS 6, 1996. 372

[BS92] O. Burkart and B. Steffen. Model checking for context-free processes. In
3rd Concur, LNCS 630, 123-137, 1992. 372

[BS95] O. Burkart and B. Steffen. Composition, decomposition and model check-
ing of pushdown processes. Nordic J. Comut., 2:89-125, 1995. 372

[BS99] O. Burkart and B. Steffen. Model checking the full modal u-calculus for
infinite sequential processes. Theoretical Computer Science, 221:251-270,
1999. 372

[Bur97a] O. Burkart. Automatic verification of sequential infinite-state processes.

LNCS 1354. 372

[Bur97b] O. Burkart. Model checking rationally restricted right closures of recog-
nizable graphs. In 2nd Infinity, 1997. 372

[Cau96] D. Caucal. On infinite transition graphs having a decidable monadic
theory. In 23rd ICALP, LNCS 1099, 194-205, 1996. 372

384 Orna Kupferman et al.

[CFF01]

[CGPY9]
[CKS81]
[Dam94]

[EHRS00]

[EJ91]

[EKS01]

[EL36]
[FWW97]
[HHWTY5]
[KPY5]
[Kur94]

[KV00]

[KVO0la]
[KVO01b)

[KVWO0]

[LPY97]
[Lyn77]
[MS85)

[Pit00]

[Pnu77]

[PVO01a]

F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tacchella, and
M. Y. Vardi. Benefits of bounded model checking at an industrial setting.
In 13th CAV, LNCS 2102, 436-453, 2001.

E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press,
1999. 372

A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. J. of
ACM, 28(1):114-133, January 1981.

M. Dam. CTL* and ECTL* as fragments of the modal p-calculus. TCS,
126:77-96. 373

J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algo-
rithms for model checking pushdown systems. In 12th CAV, LNCS 1855,
232-247, 2000. 374, 376, 377, 383

E. A. Emerson and C. Jutla. Tree automata, u-calculus and determinacy.
In Proc. 82nd FOCS, 368-377, October 1991. 372

J. Esparza, A. Kucera, and S. Schwoon. Model-checking LTL with regular
valuations for pushdown systems. In 4th STACS, LNCS 2215, 316339,
2001. 374, 377, 383

E. A. Emerson and C.-L. Lei. Efficient model checking in fragments of
the propositional p-calculus. In 1st LICS, 267-278, 1986.

A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to
model checking pushdown automata. In 2nd Infinity, 1997. 372

T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. A user guide to HYTECH.
In TACAS, LNCS 1019, 41-71, 1995. 372

O. Kupferman and A. Pnueli. Once and for all. In 10th LICS, 25-35,
1995. 374

R. P. Kurshan. Computer Aided Verification of Coordinating Processes.
Princeton Univ. Press, 1994. 372

O. Kupferman and M. Y. Vardi. An automata-theoretic approach to
reasoning about infinite-state systems. In 12th CAV, LNCS 1855, 36-52,
2000. 372, 373

O. Kupferman and M. Y. Vardi. On clopen specifications. In 8th LPAR,
LNCS 2250, 24-38, 2001.

O. Kupferman and M. Y. Vardi. Weak alternating automata are not that
weak. ACM Trans. on Computational Logic, 2001(2):408-429, July 2001.
O. Kupferman, M. Y. Vardi, and P. Wolper. An automata-theoretic ap-
proach to branching-time model checking. Journal of the ACM, 47(2):312—
360, March 2000. 372, 373, 374, 379

K. G. Larsen, P. Petterson, and W. Yi. UPPAAL: Status & developments.
In 9th CAV, LNCS 1254, 456-459, 1997. 372

N. Lynch. Log space recognition and translation of parenthesis languages.
Journal ACM, 24:583-590, 1977.

D. E. Muller and P. E. Schupp. The theory of ends, pushdown automata,
and second-order logic. T'CS, 37:51-75, 1985. 372

N. Piterman. Extending temporal logic with w-automata.
M.Sc. Thesis, The Weizmann Institute of Science, Israel, 2000.
http://www.wisdom.weizmann.ac.il/home/nirp/public_html/
publications/msc_thesis.ps. 379

A. Pnueli. The temporal logic of programs. In 18th FOCS, 46-57, 1977.
375

N. Piterman and M. Vardi. From bidirectionality to alternation. In 26th
MFCS, LNCS 2136, 598-609, 2001. 379

[PVO1b)
[Var9g]

[VW94]
[Wal96]
[Wal0o]

[WVS83]

Model Checking Linear Properties of Prefix-Recognizable Systems 385

N. Piterman and M. Vardi. From bidirectionality to alternation. TCS,
2001. to appear. 379

M. Y. Vardi. Reasoning about the past with two-way automata. In 25th
ICALP, LNCS 1443, 628—641, 1998.

M. Y. Vardi and P. Wolper. Reasoning about infinite computations. In-
formation and Computation, 115(1):1-37, November 1994. 372, 375

1. Walukiewicz. Pushdown processes: games and modal logic. In 8th CAV,
LNCS 1102, 62-74, 1996. 372

1. Walukiewicz. Model checking ctl properties of pushdown systems. In
20th FSTTCS, LNCS 1974, 127-138, 2000. 379

P. Wolper, M. Y. Vardi, and A. P. Sistla. Reasoning about infinite com-
putation paths. In 24/th FOCS, 185-194, 1983. 372

	Model Checking Linear Properties of Prefix-Recognizable Systems
	Introduction
	Preliminaries
	Two-Way Path Automata on Trees
	LTL Model Checking

