PathFinder: A Tool for Design Exploration

Shoham Ben-David, Anna Gringauze, Baruch Sterin, and Yaron Wolfsthal

IBM Research Laboratory in Haifa
{shoham, vanna,baruch,wolfstal}@il.ibm.com

1 Introduction

In this paper we present a tool called PathFinder', which exploits the power
of model checking for developing and debugging newly-written hardware de-
signs. Our tool targets the community of design engineers, who—in contrast to
verification engineers—are not versed in formal verification, and therefore have
traditionally been distant from the growing industry momentum in the area of
model checking?.

PathFinder provides a means for the designer to explore, debug and gain
insight into the behaviors of the design at a very early stage of the implementa-
tion—even before their design is complete. In the usage paradigm enabled by
PathFinder, which we call Design FExploration, the design engineer specifies a
behavior of interest, and the tool then finds and demonstrates—graphically—a
set of execution traces compliant with the specified behavior, if any exist. When
presented with each such execution sequence, the designer is essentially furnished
with an insight into the design behavior, and specifically with an example of a
concrete scenario in which the behavior of interest occurs. This scenario can then
be closely inspected, refined, or abandoned in favor of another scenario.

Technically, PathFinder works by translating scenarios specified by the de-
signer into safety properties, and then challenging an underlying model checker
with proving the negation of those properties. If the property presented to the
model checker turns out to be false, the counter example is a trace demonstrating
the scenario requested by the designed. Thus, with PathFinder, designers can
harness the power of static analysis - without being subjected to the learning
curve involved with formal specification and verification.

2 The Visual Specification Interface

Path Specification. To specify a design behavior of interest (a scenario),
the user of PathFinder creates a graphical representation of the scenario as an

! There is no connection between our tool and the Java PathFinder tool from NASA.

2 In the hardware industry, there is an age-old practical separation between the roles
of design engineer and verification engineer. Designers implement chip specifications,
while verification engineers check the compliance of the implementation to the spec-
ifications.

D. Brinksma and K. G. Larsen (Eds.): CAV 2002, LNCS 2404, pp. 510-514, 2002.
© Springer-Verlag Berlin Heidelberg 2002

PathFinder: A Tool for Design Exploration 511

ordered sequence of phases. Each phase is represented by Boolean expressions
which define the beginning and the termination conditions of the phase.

As a simple example, consider a state machine “machine(0:3)”, with 16 possi-
ble values. Suppose the designer is interested in seeing a scenario where the state
machine passes through states 4 and 6 and then reaches state 1-—mnot necessarily
in consecutive clock cycles. The specification is expressed by a graphical path
description as shown in Figure 1 below.

machine(0: 3) =4 machine(0: 3) =6 machine(0: 3) =1

Fig. 1. Simple path specification

This path specification drives the underlying model checker to look for a
trace with a state where machine(0 : 3) has the value of 4, then in a later state
the value is 6, and then on the final state of the trace, machine(0 : 3) has the
value of 1. Although restrictive, we found that this path specification formalism
is expressive enough to describe behaviors of interest. More important, it incurs
a minimal learning curve.

Controlling Input Behavior. A basic design principle of PathFinder has
been that the user should be able to produce first traces with minimal effort.
Input signals therefore have default values, to save the effort of assigning a be-
havior to each of them. We chose this default behavior to be non-deterministic
behavior. Thus, with minimal effort, the user is able to generate initial traces.
The user then moves to restrict input behavior—essentially, debugging the envi-
ronment model. The more the user is willing to invest in this process, the more
accurate the input behavior will be.

PathFinder offers the user a variety of ways to restrict input signal behavior.
These include the ability to describe a deterministic behavior through a graphical
timing diagram editor, and the use of predefined state machines. Unless a very
complicated input behavior is needed, in which case it should be modeled using
either Verilog or VHDL with non-deterministic extension, the user can easily
define the desired behavior through graphical means.

A screen capture of the PathFinder GUI is shown in Figure 2. The path speci-
fication panel is just below the center of the GUI, where a path scenario—in the
form of a sequence of phases as described above—can be visually entered by the
user. Below that, we see the path constraints panel, where the user can impose
constraints—specified in the Sugar [2] language—to further restrict the paths

512 Shoham Ben-David et al.

3 PathFinder V1,05, [C) copyright 1M corp. 19392000 BUF
File Disslay Compile Fun Soope Fath Cofigare Help
Cawpile | Kill compilation | 1o | | Find Trace | Losd trace | Mest trase | Kl smarch | Zoow o Fit ® Edit Path ~ Simulator

| Signals T
FF In Driginal Circutt: 218 [0 2 3 3 3] 5
FF In Reduced Circutt: 26 T T

Find: |

i)
El
b+ IRTOB_BCK_O
+ [RTOE_RCE_L
Dutputs
CRTORRELD
+ [ETOR_RED_1
« [BT0S_nCk_o
o f 1

Path Description

Tt Fell{BT ERE
mitt phase i oclit phase ikl phasn

1=}

Path List / Path Restrictions
loartial 5708 _FED_3=0

| F— fi Status:

[TRTR_BUFFER/F IFT
+ (IHTA_BUFFER/READ,

Fig. 2. Screen capture of the PathFinder GUI

he/she wants shown. The left part of the GUI is where the signals of the de-
sign are managed; in particular, input variables are controlled from here. Above
the path specification panel, we see the timing diagram panel, where traces are
displayed and can be further manipulated (to be presented in the next section).

3 More Key Features of PathFinder

As described in Section 1, the central theme in PathFinder is to visually demon-
strate a set of execution traces of the design, which match an abstract path
specified by the user. PathFinder also offers a host of additional features aimed
at computing useful information on the design’s behavior and making it rapidly
accessible to the user. These features include:

Generation of Disjoint Multiple Traces. PathFinder includes an algorithm
which, for a given path description, produces multiple traces which comply with
the path specification. The generation of such multiple traces—while maintaining
many variations between them—provides the user with additional information,
which proved to be useful in practice. The number of traces can be specified by
the user.

The Disjoint Multiple Traces algorithm [3] is heuristic, and therefore is not
guaranteed to find disjoint traces. However, our practical experience shows that
it almost always does.

PathFinder: A Tool for Design Exploration 513

Detection of Maximal Partial Trace. In design exploration (contrast to
“bug hunting” with Model Checking), the user always expects to be presented
with a trace as a result of the search. Accordingly, PathFinder produces a max-
imal partial trace (maximal in terms of events encountered), when no full trace
exists for the given path. The algorithmic details of this feature are described
in [3]. The user furthermore can interrupt the search at any time, and be pre-
sented with the maximal partial trace found in the search thus far.

Interactive Design Exploration Mode. The main purpose of this feature
is to let the user gain additional information about the design as quickly as pos-
sible. In interactive mode, the underlying model checker does not terminate after
finding the desired traces. Rather, it saves all information in memory (reachable
state set, traces etc.), and interactively serves new requests coming from the
user, thereby providing the user with new information as desired. The primary
types of user requests supported by our experimental exploration system are
presented below.

1. Additional Cycles. With this type of request, the user can specify a
number, N, of additional cycles to extend the current trace(s). The algorithm
then performs N forward steps from the final state of each trace previously
computed for the path specification.

2. Additional Traces. This type of request allows the user to ask for N more
traces, different from all the others previously produced.

3. Longer Trace. This type of request allows the user to ask the model
checker to search for a longer trace than those already produced.

Simulation Engine. A very useful feature of PathFinder is its integrated
simulator, which provides insights on design behavior and in particular can help
in the debugging of traces. Once a trace is produced and displayed for the user as
a timing diagram, the user can modify the values of input variables by directly
manipulating the timing diagram; clicking on the input signal at the cycle to be
changed will toggle the value. Then, the user can explore the different scenarios
made possible by the introduction of these changes (“what-if” analysis).

4 Related Work and Experience

The problem of making formal specification and verification techniques easier to
access has been addressed before. Fisler in [4] and Amla et al in [1] discuss the
usage of timing diagrams for specification, as those are a commonly used and
visually appealing specification method for designers. Hardin et al [5], in the
model checker COSPAN, have implemented a feature called “check-pointing”,
which provides for path exploration. The contribution of PathFinder is in that
unlike more common property verification tools, it provides for interactive ex-
ploration and debugging by designers, in a highly intuitive way.

514

Shoham Ben-David et al.

Initial experiments with PathFinder reveal a good level of designer accep-

tance. PathFinder is used on a newly written designs with a few hundred state
variables for 3—4 days, and finds 10-15 bugs on the average. We are therefore
optimistic about the prospects of the Design Exploration paradigm embodied
in the tool, which we feel can open new frontiers in making the power of model
checking accessible to engineers at large.

References

(1]

2]

[4]

[5]

N. Amla, E. A. Emerson, R. P. Kurshan, and K. S. Namjoshi. Model checking
synchronous timing diagrams. In Formal Methods in Computer-Aided Design,
pages 283-298, 2000. 513

1. Beer, S. Ben-David, C. Eisner, D. Fisman, A. Gringauze, and Y. Rodeh. The
temporal logic sugar. In Computer Aided Verification, Proc. 13th International
Conference, volume 2102 of Lecture Notes in Computer Science, pages 363—367.
Springer, 2001. 511

S. Ben-David, A. Gringauze, S. Keidar, B. Sterin, and Y. Wolfsthal. Design ex-
ploration through model checking. Technical Report H0097, IBM Haifa Research
Laboratory, December 2001. 512, 513

K. Fisler. Timing diagrams: Formalization and algorithmic verification. Journal
of Logic, Language and Information, 8(3):323-361, 1999. 513

R. H. Hardin, Z. Har’El, and R. P. Kurshan. COSPAN. In Computer Aided
Verification, Proc. 8th International Conference, volume 1102 of Lecture Notes in
Computer Science, pages 423—427. Springer, 1996. 513

	PathFinder: A Tool for Design Exploration
	Introduction
	The Visual Specification Interface
	More Key Features of PathFinder
	Related Work and Experience

