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Abstract. We consider the framework of regular tree model checking
where sets of configurations of a system are represented by regular tree
languages and its dynamics is modeled by a term rewriting system (or a
regular tree transducer). We focus on the computation of the reachability
set R*(L) where R is a regular tree transducer and L is a regular tree lan-
guage. The construction of this set is not possible in general. Therefore,
we present a general acceleration technique, called regular tree widening
which allows to speed up the convergence of iterative fixpoint compu-
tations in regular tree model checking. This technique can be applied
uniformly to various kinds of transformations.

We show the application of our framework to different analysis con-
texts: verification of parametrized tree networks and data-flow analysis
of multithreaded programs. Parametrized networks are modeled by re-
labeling tree transducers, and multithreaded programs are modeled by
term rewriting rules encoding transformations on control structures.
We prove that our widening technique can emulate many existing algo-
rithms for special classes of transformations and we show that it can deal
with transformations beyond the scope of these algorithms.

1 Introduction

Regular Model Checking has been proposed as a general and uniform framework
for reasoning about infinite-state systems [[KMM 97, WB98, BINT00, Bou01].
In this framework, systems are modeled and analyzed using automata-based
symbolic representations: configurations of the system are encoded as words or
trees (of arbitrary sizes). This suggests the use of regular finite-state word/tree
automata to represent sets of configurations, and the use of regular relations rep-
resented as word/tree transducers (or rewriting systems) to model the dynamics
of the system, i.e., the transition relation between configurations. Then, verifi-
cation problems based on performing reachability analysis are reduced to the
computation of closures of regular languages under regular word/tree transduc-
ers (rewriting systems), i.e., given a regular relation R and a regular language L,
compute R*(L), where R* is the reflexive-transitive closure of R. A more general
problem is to construct a representation of the relation R* as a finite transducer.
This problem is harder than the previous one: there are regular relations having
nonregular transitive closures, but under which subclasses of regular languages
are effectively closed (see, e.g., [BMT01]). Computing R*(L) is impossible in
general since the transition relation of any Turing machine is a regular word
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transduction. Therefore, the main issue in regular model checking is (1) to deter-
mine classes of regular languages L and relations R such that the closure R*(L)
is effectively constructible, and (2) to find accurate and powerful fixpoint accel-
eration techniques which help the convergence of language closures (reachability
analysis) in the general case.

During the last three years, several authors addressed this issue, essentially in
the case of Regular Word Model Checking where configurations are encoded as
words (see, e.g., [ABJN99, JNOO, BJNT00, PS00, DLS01, Tou01]). In this paper,
we consider the more general case of Regular Tree Model Checking. Indeed, tree-
like structures are very common and appear naturally in many modeling and
verification contexts. We consider in this paper two of such contexts: verification
of parametrized networks with tree-like topologies, and data flow analysis of
multithreaded programs.

Indeed, in the case of parametrized tree networks, labeled trees of arbitrary
height represent configurations of networks of arbitrary numbers of processes:
each vertex in a tree corresponds to a process, and the label of a vertex is the
current control state of its corresponding process. Typically, actions in such
parametrized systems are communications between processes and their sons
or fathers. These actions correspond in our framework to tree relabeling rules
(transformations which preserve the structure of the trees). Examples of such
systems are multicast protocols, leader election protocols, mutual exclusion pro-
tocols, etc.

In the case of multithreaded programs, trees represent control structures
recording the names of the procedures to call, and the sequential/parallel or-
der in which they must be called. These structures are of unbounded sizes and
are transformed dynamically after the execution of each action of the program
(e.g., recursive call, launching a new thread, etc.). Such actions correspond in
our framework to tree transformations represented as tree transductions (or tree
rewriting rules). Notice that, in contrast with the previous case (parametrized
systems), these tree transformations are not tree relabelings, but transformations
which modify the structures of the trees (non structure-preserving transforma-
tions).

Therefore, our aim in this work is to provide algorithmic techniques which
allow to compute automatically closures of regular tree languages under regular
tree transformations, and when possible, to compute transitive closures of regular
tree transformations. Moreover, we want to define general techniques which can
deal with different classes of relations, and which can be applied uniformly in
many verification and analysis contexts such as those mentioned above.

The main contribution of our work is the definition of a general accelera-
tion technique on tree automata called regular tree widening. Our technique,
is based on comparing languages (automata) obtained by successive applica-
tions of a transformation R to a language L in order to guess automatically the
limit R*(L). The guessing technique we introduce is based on detecting regular
growths in the structures of the automata. A test is performed to check automat-
ically whether the guess covers all the reachable configurations, i.e., whether the
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set R*(L) is included in the guessed language. The same test ensures in many
interesting cases that the guess is exact i.e., that the guessed language is pre-
cisely R*(L). This technique can also be applied in order to compute iteratively
transitive closures of relabeling transducers.

We show that the iterative computation of closures enhanced with regular
tree widening yields a quite general and accurate reachability analysis procedure
which can be applied uniformly to various analysis problems. We illustrate this
by showing the application of this procedure to the analysis of parametrized
systems and to the analysis of multithreaded programs. Moreover, we prove
that this procedure is powerful and accurate enough to compute precisely the
reachability sets for many significant classes of systems, covering several classes
for which there exist different specialized algorithms.

First, we consider the case of parametrized networks. We consider a par-
ticular class of models based on term rewriting systems called Well-Oriented
Systems. These models correspond to systems where, typically, informations are
exchanged between a set of processes (the leaves of the tree) and another pro-
cess (the root of the tree) through a tree-like network, assuming that the state of
each process is modified after the transmission of a message (this correspond for
instance to the fact that paths followed by messages are marked, messages are
memorized by routers, etc.). We assume moreover that the system has a finite
number of ascending and descending phases. These assumptions are quite real-
istic and many protocols and parallel algorithms running on tree-like topologies
(e.g., leader election protocols, mutual exclusion protocols, parallel boolean al-
gorithms, etc.) have these features (for instance, requests are generated by leaves
and go up to the root, and then answers or acknowledgements are generated by
the root and go down to leaves following some marked paths).

We prove that for every well-oriented system, the transitive closure is regular
and we provide a transducer characterizing this closure. Then, we prove that
our widening techniques can simulate the direct construction we provide for
well-oriented system.

Then, we address the issue of analyzing multithreaded programs using regular
tree model checking. We consider programs with recursive calls, dynamic creation
of processes, and communication. We adopt the approach advocated in [E1<{99]
which consists in reducing data flow analysis to reachability analysis problems
for Process Rewriting Systems (PRS) [May98]. Programs are described as term
rewriting rules of the form ¢ — ' where ¢ and ¢’ are terms built up from process
variables, sequential composition, and asynchronous parallel composition.

We give a construction of a tree automaton recognizing the set of immediate
successors/predecessors of any regular tree language by a PRS transition, and
then, the reachability sets of PRSs can be computed iteratively using regular
tree widening. We illustrate our approach on the example of a concurrent server
which can launch an unbounded number of threads.

Then, we show that our techniques are at least as general as the known algo-
rithms in this context. Namely, we show that reachability analysis with regular
tree widening terminates and computes precisely the sets of forward/backward
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reachable configurations in the case of PA rewriting systems (when all the left-
hand-sides of the rules are process variables). Hence, our techniques cover the
case considered in [LS98, EP00] and can handle programs which are beyond
the scope of these algorithms (e.g., the concurrent server). Actually, we prove a
more general result. We prove that our procedure terminates and computes the
exact reachability set (at least in the case) of any PRS R such that R or R™1
is Noetherian. This is for instance the case of the concurrent server. The com-
pleteness result for PA follows from the fact that we can transform any PA into
an equivalent one which has this property.

For lack of space we omit the details and refer to the full version of this
paper [BT02].

Related Work: The idea of widening operation is inspired by works in the do-
main of abstract interpretation [CC77] where it is mainly used for systems with
numerical data domains (integer or reals) [CT178]. There are numerous works on
tree-like representations of program configurations or schemes. Probably the first
work using tree automata and tree transducers for symbolic reachability analysis
of systems (especially parametrized systems) is [[KMM " 97]. However, no accel-
eration techniques are provided in that work. In [LS98, EP00], tree automata
are used for symbolic reachability analysis of PA processes and its applications
in model-checking and static analysis of programs. Works on acceleration tech-
niques for regular model checking concern mainly the case of word automata and
transducers [ABJN99, JNOO, BJNT00, PS00, TouO1]. Our regular tree widening
technique is an extension of the widening techniques for word automata defined
in [BINTO0, Tou01]. In [DLS01], techniques are presented for computing transi-
tive closures for tree transducers, but no completeness results are provided. The
problem of finding subclasses of term rewriting systems (tree transducers) which
effectively preserve regularity has also been considered in the automata-theory
community by several authors (see, e.g., [GT95] where it is proved that ground
tree rewrite systems preserve regularity).

2 Preliminaries

2.1 Trees and Terms

An alphabet X' is ranked if it is endowed with a mapping rank : X~ — N.
For k > 0, X} is the set of elements of rank k. The elements of Yy are called
constants. Let X' be a denumerable set of symbols called variables. Let Ts;[X]
denote the set of terms over X and X. Ts; will stand for T'x[@]. Terms in T are
called ground terms. A term in Tx[X] is linear if each variable occurs at most
once.

As usual, a term in T'x;[X] can be viewed as a rooted labeled tree where an
internal node with n sons is labeled by a symbol from Y, and the leaves are
labeled with variables and constants.



Extrapolating Tree Transformations 543

Definition 1. A bottom-up tree automaton (we shall omit ’bottom-up’) is
a tuple A= (Q, X, F,0) where Q is a finite set of states, X is a ranked alphabet,
F C Q is a set of final states, and & is a set of rules of the form

f(q17"'7Qn) —5 q (1)
a—sq (2)
q—sq (3)

where a € Yo, n>1, f € Xy, and q1,...,qn,q,¢ € Q.

Let ¢ be a ground term. A run of A on ¢ can be done in a bottom-up manner as
follows: first, we assign a state to each leaf according to the rules (2), then for each
node, we must collect the states assigned to all its children and then associate a
state to the node itself according to the rules (1). Formally, if during the state
assignment process the subterms tq, ..., t, are labeled with states ¢1, ..., ¢,, and
if the rule f(ql, ce qn) —s qisin 0 then the term f(¢1,...,t,) is labeled with q.
A term t is accepted if A reaches the root of ¢ in a final state.

The language accepted by the automaton A is the set of ground terms that
it accepts: L(A) = | Lq.

qeF

Definition 2. A bottom-up tree transducer (we shall omit ’bottom-up’) is
a tuple T = (Q, X, X', F, ) where Q is a finite set of states, X and X' (the sets
of input and output symbols) are ranked alphabets, F C Q is a set of final states,
and § is a set of rules of the form:

f(fh(xl); cee a‘hz(xn)) -5 q(u)a u e TE’[{Ilv <o >$n}] (4)
qa(z) =5 q'(u),u € T [{z}] (5)
a—sq(u),u € Tx (6)

whereaeEO; n=>1, feETw x7x17"'7xnex7 andqla"'aqn7qaql€Q'

Given an input term ¢, 7 proceeds as previously: it begins by replacing some
leaves according to the rules (6). For instance, if a leaf is labeled a and the
rule a —4 ¢(u) is in §, then a is replaced by ¢(u). The substitution proceeds
then towards the root. If the rule f(q1 (1), qn (:cn)) —s q(u) is in §, then 7
replaces an occurrence of a subtree f(q1 (t1)y -y qn (tn)) by the term g(uf[z «—
t1,...,&, < ty,]), where each occurrence of the variable x; in ¢ is replaced by ¢;.
The computation continues until the root of ¢ is reached.

The transducer 7 defines the following regular relation between trees Ry =
{(t,t") € T x T | t 55 q(t'), for some ¢ € F}. We denote by R the compo-
sition of Rz, n times. As usual, Ry = J,~, R’} denotes the reflexive-transitive
closure of Rt. B

Let L C T, be a tree language. Then, we define the set Ry (L) = {t' € X' |
Jte L, (tt) e Ry}
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Definition 3. A transducer is linear if all the right hand sides of its rules are
linear (no variable occurs more than once).

We restrict ourselves to linear tree transducers since they are closed under com-
position whereas general transducers are not [Fng75, CDGT97].

Proposition 1. Let 7 be a linear tree transducer and L be a regular tree lan-
guage. Then, Ry (L) and R; (L) are regular and effectively constructible.

Particular cases of linear transducer are relabeling tree transducers.

Definition 4. A transducer is called a relabeling if all its rules are of the form

f(ql(xl),...,qn(:cn)) —s q(g(xl,...,zn)) (7)
a—sq(b) (8)
q(z) =5 ¢'(2) 9)

where f,g € X, and a,b € X.

Notice that relabeling tree transducers preserve the structure of the input
tree. A relabeling (Q, X, X’ F,§) can be seen as a tree automaton over the
product alphabet X' x X’. The rules (7) can then be written f/g(q1,...,qn) — ¢,
the rules (8) can be written a/b — ¢, and the rules (9) can be written ¢ — ¢'.

2.2 Tree Automata and Hypergraphs

Definition 5. Let V be a set of vertices and X be a ranked alphabet. Let f € X,
and v,v1,...,v, €V, the tuple (v, f,v1,...,v,) is a hyperedge labeled by f

and connecting in order v to the vertices vy, . .., v,. We will write v 4, VlyeveyUn
for every hyperedge (v, f,v1,...,v,), or just v 2 ifa € Xy. A hypergraph is
a pair G = (V, H) where V is a set of vertices and H a set of hyperedges on V.

Given a bottom-up tree automaton A = (Q, X, F, ), the transition relation
d can be represented by the hypergraph G5 = (Q, Hs), where H; is defined by:

f
—q>s54q1,---,qn € Hs for every rule f(ql,...,qn) —5 q.
— q %5€ Hj for every initial rule a —s q.
— q —s ¢ € Hy for every rule ¢ —5 ¢'.

All operations on tree automata can be defined on hypergraphs. In the re-
mainder of the paper, a tree automaton (tree relabeling transducer) will be rep-
resented by a pair (G, F'), where G is the hypergraph that represents its transition
relation and F is the set of final states.

3 Widening Techniques on Tree Automata

We define hereafter an extrapolation technique on tree automata called regu-
lar tree widening which allows to compute the limit of a sequence of tree sets
obtained by iterating tree transformations.
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3.1 Principle

The technique we present generalizes the one we have introduced in [BJNT00,
Tou01] in the case of word automata. The principle proposed in these previous
works is based on the detection of growths during the iterative computation of
the sequence L, R(L), R*(L),..., in order to guess R*(L). For instance, if the
situation L = L1 Lo and R(L) = L1 ALy occurs, then we guess that iterating R
will produce L1 A*Ls. In some cases, it is possible to decide whether our guess is
correct. Here, we extend this principle to the case of tree languages. The detec-
tion of growths is performed on the hypergraph structures of the tree automata
recognizing the computed sequence of languages.

Definition 6. Let G = (V, H) be a hypergraph and F C'V be a set of accepting
vertices. Then, a hypergraph bisimulation is a symmetrical binary relation
p CV XV such that, for every v,v' € V, (v,v') € p iff

—veFiffv eF,

— for every hyperedge v 4 v1,...,0, € H, there exists a hyperedge v’ 4,
Vi, ..., € H such that, for every i € {1,...,n}, (v;,v)) € p. We write
v ~ v if there exists a hypergraph bisimulation relating v and v'.

Given two tree automata A = (G, F) and A" = (G', F'), we write A ~ A" iff
every vertex in I is bisimilar to a vertex in F' and vice versa.

Definition 7. Suppose that we are given:

— a sub-hypergraph of G: A= (Va,Hp) (VA CV, and Hyn C H),
— two subsets of Va: Tpa and O called entry and exit vertices,
— : a partition of TAUOA.

Let ~, denote the equivalence relation induced by p. We assume moreover that
(e NOA x Op) C~ (i.e., non bisimilar exit vertices are not ~,-equivalent).
Then, we define two hypergraphs G\, A and G[A — A*] as follows:

— G\ A is the hypergraph (V', H') such that
o V' = V\VA @] {[’U]«p | vEIAU OA} and
e H' = H\Ha U {v ER Vi, v ER Vi,...,0n € H\Ha and if v; €
ZAU O, then v, = [vi],, otherwise v, =v;}
where [v], denotes the ~,-equivalence class of the vertex v. Intuitively, G\ ,A
is the hypergraph obtained from G by removing all hyperedges in A, and
collapsing ~ ,-equivalent vertices.
— G[A « AT] is the hypergraph (V, H") where:
H"=HU{v ER v, .., | o ER V1, ..., U €A and Vi, if v; €O then v] €
[vilp NZa, otherwise v = v;}.
Intuitively, G|A « AT] is obtained by adding loops allowing to iterate A (by
going back to entry vertices).

Now, we are able to define the regular widening operation on tree automata:
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Definition 8 (Regular tree widening). Let A= (G, F) and A" = (G, F') be
two tree automata. Then, given a sub-hypergraph A of G', sets of entry and exit
vertices Za and Oa, and a partition ¢ of TAUO A such that (~, N OaxOA) Cr~,
if

(ga F) ~ (gl \413 A, FI) (10)

then we define V(A, A", A, p) = (G'[|A — AT], F').

Notice that the same widening principle can be applied in the case of relabeling
tree transducers (in order to compute iteratively transitive closures of relabeling
transducers).

Ezample 1. Consider the following term rewriting rule: R = a — f(a,b) and
assume we want to compute R*(a). Let (Go, {qo}), (G1,{q2}), and (G2, {qs}) be
tree automata recognizing a, R(a), and R?(a). Their corresponding hypergraphs
are depicted in Figure 1.

By comparing G; and Go, we detect a widening situation where A is the

hypergraph ({q1, 42,43}, {3 L g, 1)), Za = {q3}, Oa = {q1,q2}, and ¢ =
{{q1},{q2,¢3}}- Then, the widening operator V yields an automaton (G, {qs})
obtained by adding the loop drawn by thick lines to G5. This automaton defines
precisely RZ3(a) (its union with the automata of the previous steps corresponds
to R*(a)).

Performing a widening operation requires finding a widening situation, i.e.,
a subgraph A and a partition ¢ satisfying the condition (10).

Proposition 2. The problem of finding widening situations is NP-complete.

The detection of candidates A can be done effectively by performing a prod-
uct between the two compared hypergraphs G and G’, and guessing nondetermin-
istically the entries and the exits of A. Efficient (but uncomplete) strategies can
be adopted in order to reduce nondeterminism (the number of candidates A).

o

o)
f
“ © @
ol 0]
g1
g

Fig. 1. Tllustration of the regular tree widening mechanism
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3.2 Exact Widening

We give hereafter a test which allows for some relations R to check automatically
whether a widening operation computes the exact reachability set R*(L).

Definition 9. A relation R is neetherian if there is no infinite sequence of
terms to, t1, ... such that for every i >0, (t;,t;11) € R.

Proposition 3. If R or R™! is neetherian then L' = R*(L) iff

L'=R(L’)UL (11)
Proof: In [FO97], a proof for the case where R™! is ncetherian is given. The
proof for the other case can be found in the full paper. a

Therefore, when R or R~! is ncetherian, we can use our widening technique
to generate automatically closure candidates, and use the test (11) to check
automatically that a candidate is indeed equal to R*(L).

4 Parametrized Networks with Tree-Like Topologies

We show the application of regular tree model checking in the analysis of parame-
trized networks of identical processes arranged in a tree-like topology.

We model such systems by relabeling tree transducers. Indeed, the set of
configurations of a parametrized tree network can be represented by a set of trees
(of arbitrary size) where nodes correspond to control location of processes, and
therefore, actions in the network can be seen as transformations which modify
the labels in the trees.

Then, given a set of initial configurations represented by a finite tree automa-
ton A and a finite tree transducer 7 representing the dynamics in the network,
we can apply reachability analysis with regular widening in order to compute (an
upper-approximation of ) the set of reachable configurations 7 *(.A). We can also
apply the same procedure in order to compute a finite transducer corresponding
to the transitive closure of 7.

4.1 Example : Parallel OR Algorithm

To illustrate our approach, we show the example of a parallel boolean program,
called PERCOLATE [[KMM*97], which computes the OR of a set of boolean
values: we consider an arbitrary number of processes arranged in a binary tree
architecture. Each process has a variable val ranging over {0, 1, L}. Initially, all
the leaves have val € {0,1}, and all the others have val = L. The purpose of the
program is to percolate to the root the value 1 if at least one of the leaves has
val = 1. A transition of the system consists in assigning 1 to a node if one of its
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children has val = 1, and 0 otherwise. This corresponds to the term rewriting
system Rpercolate given by the following rewriting rules:

L(1(x1,22), 1(x3,24)) — (121, 22), (23, 24))
L(1(x1,22),0(x3,24)) — 1(1(21, 22),0(x3,24))
1(0(z1,22), L(xs,24)) — 1(0(21, 22), L(x3,24))
1(0(z1,22),0(xs3,24)) — 0(0(21, 22),0(x3,24))

The property to check is that the root is labeled by 1 if and only if at least one
of the leaves is labeled by 1. This property can be represented by a regular tree
automaton. Hence, we can check the satisfaction of this property if we are able
to compute the set of reachable configurations in the system.

Actually, our approach allows to construct automaticallythe transitive closure
of Rpercolate after two iterations (see Theorems 1 and 2).

4.2 Well-Oriented Systems

We prove hereafter that with our widening techniques reachability analysis ter-
minates and computes exactly the transitive closure of (at least) a kind of relabel-
ing transducers, called Well-Oriented Systems, which correspond to a significant
class of parametrized networks.

It can be observed that many protocols and parallel algorithms which are
defined on networks with a tree-like topology satisfy the following features: (1)
informations go from leaves upward to the root and vice versa, which means
that each node communicates directly either with its children or with its father,
(2) there is a finite number of alternating phases of upward and downward in-
formation propagation (e.g., requests are sent by leaves, and then answers are
sent by the root, and son on), (3) the state of each process is modified after each
transmission of information, i.e., at each phase, when a node of the network is
crossed, it is marked by a new label. This corresponds for instance to marking
paths, memorizing sent messages, etc.

We introduce a model to describe the dynamics of such parametrized tree
networks which consists of term rewriting systems called well-oriented systems.
To simplify the presentation, we shall restrict ourselves in this section to binary
trees, the general case is similar.

Definition 10. Let S = SoUS1U---US,, where the S;’s are disjoint finite sets
of symbols. We denote by S<; the set \J{S; | j <i}.

A n-phase well-oriented system (n-phase WOS) over S is a set of rewriting
rules of the form:

( (Zla 1'2)a Cl(l‘3, ﬂ34))
(a(x1,22), c2(x3,74))

b(a(mlva)vcl(z&m‘l) a (
v (
b (a(x1,x2), a(ws, 14)) (14
d (

a(b(zlv 1‘2), 02(1'3; 1'4)

)
)
a(b(x1,x2), ca(xs,24))
b

N
N
N
N

NN N N
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bla(x1,x2), c1(xsg,24)) — d(a(x1, z2), c1(x3, 24)) (16)
a(b(mlv 1‘2), 02(1'3; 1'4)) - a(d(mla 1'2)a Cg(l‘3, 1‘4)) (17)
a(b(mlv 1‘2), 02(1'3; 1'4)) - a(d(mla 1'2)a d(ﬂ?3, 1‘4)) (18)

as well as the symmetrical forms of these rules obtained by commuting the chil-
dren, where a,b' € Sit1, b € S;, d € Sita, ¢1 € S<it1, and ¢ € S<;, such that
0<i<n-—1 for the rules (12), (13), and (14), and 0 < i < n — 2 for the last
rules.

In the definition above, the variables z1, 2, x3 and x4 represent the subtrees
hanging under the nodes a and ¢; in the rules (12) and (16), and b and ¢z in the
other rules.

Intuitively, a rule (12) corresponds to the upward propagation of a. When a
crosses b, it takes its place and labels its old place with b’ in order to mark
its path. Similarly, a rule (13) corresponds to the downward propagation of a,
and a rule (14) corresponds to the broadcasting of a. Finally, the four last rules
allow to pass from one phase to the next one. More precisely, the rule (15)
corresponds to a nonconditionnal passage, and the rules (16) (resp. (17) and
(18)) to a conditionnal passage towards a descending (resp. an ascending) phase.

Several examples can be modeled using well-oriented systems. For instance,
the system Rpercolate given above is a 1-phase WOS where Sy = { L}, and &1 =
{0,1}. Other examples such as the Parity Tree [CGJ95] and the asynchronous
tree arbiter mutual exclusion protocol [ABH " 97] can be found in the full version
of the paper [BT02].

4.3 Analyzing Well-Oriented Systems

In order to prove that regular widening allows to construct transitive closures of
WOSs, we give first a direct construction of these transitive closures, and show
that regular widening can simulate this construction.

Theorem 1. Let R be a well-oriented system, then R* is reqular and effectively
representable by a tree transducer.

Proof (Sketch): Let R be a n-phase well-oriented system. Let us denote
by RL_I (resp. Rfﬂ) the set of rules of the form (12) (resp. the set of rules
of the form (13) and (14)) corresponding to the upward (resp. downward) prop-
agation of the letters a of S;41.

We let R; = RiT U RZ-l for every 1 < i < mn. The set R; corresponds to the
phase i of the system since its rules propagate the letters of S;. Finally, the rules
(15), (16), (17), and (18) are called R;41—i1+2 (they correspond to the passage
from the phase 7+ 1 to the phase 7 + 2, i.e., from the propagation of the symbols
of S;+1 to the propagation of the symbols of S;2).

The main observation is that the application of the previous rules always
increases the index of the label of any node in the tree. This property together
with the fact that ¢; and ¢y are in S<;4+1 ensure that the phase i + 1 (a €
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Sit+1) depends only on the earlier phases j < i + 1. Therefore, it is easy to see
that R* = Ry, o R} oR! _jo0---0Rj_,0R;. Moreover, the fact that c; € S<;

n—1—-n
ensures that during the phase i+ 1, there is no interaction between the ascending

rules RZ-TJrl and the descending ones Rz'l+1' This infers that Rf = (R})* o (Rzl)*
Then, the proof consists in giving direct constructions of the transducers (R;)*,
(Rii)*, and R}, for every 1 <i <n (see [BT02] for details).

O

We show also that regular tree widening is able to compute the transitive
closure of any well-oriented system (it can emulate the construction given above).

Theorem 2. Let R be a well-oriented system, then a tree transducer that rep-
resents R* can be computed using reqular tree widening.

5 Multithreaded Programs as Process Rewrite Systems

We show in this section the application of regular tree model checking in the anal-
ysis of multithreaded programs modeled as term rewriting systems. We consider
here multithreaded programs with recursive calls, dynamic creation of parallel
processes, and communication. These programs are modeled by Process Rewrite
Systems [May98].

5.1 Process Rewrite Systems

Let Act = {a,b,c,...} be a set of actions, Var = {X,Y,...} be a set of process
variables, and T, be the set of process terms t defined by the following syntax:

tu=0|X|t-t|¢t

W

Intuitively, “0” is the null process, (resp. ¢||”) denotes sequential composition

(resp. parallel composition).

Definition 11 ([May98]). A Process Rewriting System (PRS for short) is a
finite set of rules R of the form ty N ta, where t1,to € T, and a € Act. A PA
declaration is a PRS where all the rules have the form X > t.

A PRS induces a transition relation % over T}, defined by:

t1 Sts €R -t SRty t Spt

t Srty | ti|lts Sr |ttt Sty

a a
lo wgpty o —pgth

t ~0
til|ts Sr ||ty it SR tl.tg( )

where t =~ 0 means that ¢ is a terminated process.
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5.2 Example: A Concurrent Server

The JAVA code below corresponds to a typical concurrent server who launches
a new thread to deal with each new client request. The number of launched
threads is unbounded.

public void server() {
Socket socket;
while(true) {
try{
socket=serverSocket.accept();
} catch (Exception e){
System.err(e);
continue;
}
Thread t=new thread(runnableService(socket));
t.start();

Let us model this program by a PRS system. An instance of the procedure
server() is represented by the process variable X, the instruction try is rep-
resented by the variable Y, and an instance of t.start() is represented by the
variable Z. The variables T' and F' correspond to the booleans true and false
meaning that the try instruction (represented by Y') succeeded or failed, respec-
tively. The program is modeled by the following PRS rules:

— Ry = X — Y.X (the procedure starts by executing Y),

— Ry =Y — T (Y returns true),

— R3 =Y — F (Y returns false),

- Ry =T.X — X||Z (if Y returns true, then a new thread is launched),
— Rs = F — 0 (otherwise, the request is ignored after failure).

5.3 Reachability Analysis of PRSs

PRS terms can be naturally represented as trees. Indeed, the set 7}, can be seen
as Tx where ¥y = {0} UVar and ¥y = {-,||}. Thus, we can use finite tree
automata to represent regular sets of PRS configurations. Therefore, we can
apply regular tree model checking to perform reachability analysis of PRSs. We
use iterative computation of reachable configurations enhanced with regular tree
widening steps.

As in [LS98, EP00], we do not take into account the structural equivalence
between terms defined by the properties of neutrality of 0 w.r.t. “ and “||”, asso-
ciativity and commutativity of “||”, and associativity of “”. Indeed, introducing
this equivalence makes the set of reachable configurations nonregular [LS98].
Moreover, since terms represent program control structures, it may be legiti-
mate to ignore structural equivalence since for instance informations about the
hierarchy between procedures are lost when reasoning modulo associativity.
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We prove that when applied to PA systems, our widening technique yields
the termination of forward and backward reachability analysis and produces the
exact sets of all reachable successors and predecessors. Moreover, we prove that
our technique is applicable beyond the PA case (e.g., for the server above). Fur-
thermore, we prove that our technique allows to construct the exact reachability
set for each PRS system R such that R or R~! is Noetherian. For instance, it
can be seen that the system corresponding to the concurrent server defined in
Section 5.2 is such that R~! is Noetherian. Then, the completeness result con-
cerning PA follows from the fact that we can transform any PA system to an
equivalent one having this property.

Theorem 3. For every PRS system R, and every regular tree language L, R*(L)
is effectively computable using reqular tree widening, provided that we are given
a test that checks whether some language is equal to R*(L).

An immediate consequence of this theorem is:

Corollary 1. For every PRS system R, if R or R~ is naetherian then for every
reqular tree language L, the sets R*(L) and (R~1)*(L) are effectively computable
using reqular tree widening.

Theorem 4. For every PA system R, and every regular tree language L, the
sets R*(L) and (R™1)*(L) are effectively computable using reqular tree widening.

Let us mention that Theorem 3 holds also for the class of ground term rewrite
(GTR) systems which is known to preserve regularity [GT95]. Actually, PRS
systems are sets of ground term rewriting rules (contrary to, e.g., WOSs used
to model parametrized systems in Section 4.2). However, semantically, PRSs
are not standard GTR systems due to the semantics of the operator “” which
imposes a particular rewriting strategy on the trees. To establish our results for
this class, we proceed as for PRS: we provide a new direct construction of the
reachability sets and we show that the widening technique allow to simulate this
construction. The direct construction we provide constitutes an alternative and
actually simpler proof of the result in [GT95].

6 Conclusion

We have defined a general framework for reasoning about many kinds of infinite-
state systems. Indeed trees are very common data structures and can be used to
encode configurations of many classes of systems.

In this paper we have considered the case of parametrized tree networks
and the case of multithreaded programs modeled as transformers of tree control
structures. Of course many other cases can be considered since we can con-
sider all systems modeled as term rewriting systems, e.g., systems manipulating
abstract data types, logic programs, process calculi, etc. In particular, our algo-
rithmic techniques could be applied in the analysis of cryptographic protocols
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following the approach in [Mon02, GLO0O, CCMO1] where such systems are rep-
resented as term rewriting systems and sets of configurations of such protocols
are represented by means of tree automata.

We have defined an acceleration technique (regular tree widening) based on
detecting regular growths in sequences of tree sets. Hence, this technique can
be applied uniformly regardless from the class of tree transformations since it
is based on comparing hypergraph structures of tree automata. In particular,
it can be used for structure-preserving as well as for non structure-preserving
transformations. We have also shown that this technique is accurate and pow-
erful enough to emulate existing specialized algorithms for symbolic reachabil-
ity analysis (such as the one for PA systems). In [Tou01], it has already been
shown that regular word widening (defined on word automata) can simulate ex-
isting constructions such as those in [ABJN99, BMTO01]. We can actually show
that regular widening simulates many other constructions such as, e.g., those
in [BEMO97, ABJ98] concerning pushdown systems and lossy fifo-channel sys-
tems.

Finally, the widening principle we have defined here on trees can be extended
easily to graphs using graph grammars. This would allow to deal with systems
having more complex control or data structures. However, the problem is then to
determine a class of graph grammars having nice closure and decision properties,
which can be used as symbolic representation structures.
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