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Abstract. In this paper, we present an approach for algorithmic verifi-
cation of infinite-state systems with a parameterized tree topology. Our
work is a generalization of regular model checking, where we extend the
work done with strings toward trees. States are represented by trees over
a finite alphabet, and transition relations by regular, structure preserv-
ing relations on trees. We use an automata theoretic method to compute
the transitive closure of such a transition relation. Although the method
is incomplete, we present sufficient conditions to ensure termination.
We have implemented a prototype for our algorithm and show the result
of its application on a number of examples.

1 Introduction

Regular model checking has recently been advocated for model checking of param-
eterized systems, i.e. systems whose description is parameterized by the number
of components in them (e.g. [KMM+97, KMM+01, WB98, BJNT00]).

In regular model checking, states are represented by strings over a finite
alphabet, while sets of states are represented by regular sets. Regular relations
specified by finite-state transducers are used to describe actions between states.
Regular model checking has been used to verify several classes of protocols with
linear or ring-formed topologies, such as mutual exclusion protocols and cache
coherence protocols (e.g. [BJNT00, Mai01, PRZ01, APR+01, FP01]).

On the other hand, there are several classes of systems which are beyond
the capability of regular model checking, either because the behaviour of the
system cannot be captured by a regular relation [FP01], or because the topology
of the system is not linear. In this paper, we extend the work in [JN00, BJNT00]
in order to obtain a model checking algorithm for tree-formed protocols. We
propose regular tree languages as a symbolic representation of state spaces and
regular tree relations, characterized by finite-state tree transducers, as a symbolic
representation of the transition relation.

A major problem in model checking of parameterized systems is that the
depth of the state space is in general not bounded. This means that standard it-
eration based symbolic reachability algorithms [BCMD92, McM93] are not guar-
anteed to terminate for these systems. Therefore, an important challenge is how
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to accelerate the standard algorithm in order to make it terminate more often
on practical examples. One way to achieve that is to augment the algorithm by
adding the effect of arbitrarily long sequences of actions. Since an action in our
case is modelled by a regular tree relation, this amounts to computing the transi-
tive closure of a regular tree relation. For instance, the effect of an action which
sends a token upwards in a tree is that the token is propagated an arbitrary
number of steps toward the root of the tree.

The main contribution of this paper is to show how to compute the transitive
closure for a large class of actions. Starting from a tree transducer corresponding
to an action, we compute a new (symbolic) transducer corresponding to the
transitive closure. We also classify a class of actions for which the construction
of the symbolic transducer always terminates. We do that by extending the
notion of local depth [JN00] to trees. Intuitively, an action has local depth k
if repeated applications of the action changes each node of the tree at most k
times. We show that, for any action with a finite local depth, we can compute a
finite-state tree transducer corresponding to the transitive closure of the action.

We have implemented a prototype for computing such a transitive closure
and verification. We show the result of running our algorithm for verification of
parameterized versions of a number of protocols: two token tree protocols, the
Percolate protocol [KMM+97], and a tree arbiter described in [ABH+97].

Related Work Regular model checking has been proposed by
[KMM+97, KMM+01] and [WB98]. Several techniques have been proposed
for accelerating reachability analysis for parameterized systems such as bisim-
ulation [DLS01], widening [BJNT00, Tou01], automatic invariant generation
[PRZ01, APR+01], and transitive closure [ABJN99, JN00, BJNT00, PS00].

The paper [FP01] goes beyond regular languages using context-free languages
as a symbolic representation. The paper [BMT01] proposes a subclass of regular
languages closed under a larger set of operations than regular languages.

The difference between the above works and the work of this paper is that
they all consider systems with linear topologies. Our work can be seen as a
generalization of the techniques described in [JN00] for word transducers. The
work in [KMM+97] also considers tree-formed protocols. However, [KMM+97]
only considers transducers that represent the effect of a single application of an
action rather than the transitive closure.

2 Words

In this section, we recall some standard definitions and results for word lan-
guages. The concepts of finite automata and regular languages are defined as
usual. For a word w, and i : 1 ≤ i ≤ |w|, we let w(i) denote the ith ele-
ment of w. For words w1, . . . , wm of equal length k over an alphabet Σ, we let
w1 × · · · × wm be the word w over Σm such that w(i) = (w1(i), . . . , wm(i)) for
i : 1 ≤ i ≤ k. An m-ary relation on the alphabet Σ is a set of tuples of the form
(w1, . . . , wm), where w1, . . . , wm ∈ Σ∗ and |w1| = · · · = |wm|. We observe that a
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language K over Σm characterizes an m-ary relation [K] on Σ in the sense that
(w1, . . . , wm) ∈ [K] if and only if (w1 × · · · × wm) ∈ K. A relation R is regular
if R = [K] for some regular language K.

For relations R and R′, we define R ⊗ R
′
as the relation (w1, . . . , wk,

w′
1, · · · , w′

m) where (w1, . . . , wk) ∈ R, (w′
1, . . . , w

′
m) ∈ R′, and |w1| = |w′

1|. No-
tice that the third condition ensures |w1| = · · · = |wk| = |w′

1| = · · · = |w′
m|.

For a relation R of arity m and i : 1 ≤ i ≤ m, we let R|i denote the relation
{(w1, . . . , wi−1, wi+1, . . . , wm)| (w1, w2, . . . , wm) ∈ R}. The operation is general-
ized in the obvious manner to R|I , where I is a subset of {1, . . . ,m}.

It is straightforward to show that regular relations are closed under⊗ and |I.
Sometimes, we use the term word language instead of language to avoid con-

fusion with tree languages (defined later). The same applies to other concepts,
e.g. automata, relations, etc.

3 Trees

In this section, we introduce some preliminaries on trees and tree relations.
A ranked alphabet is a pair (Σ, ρ), where Σ is a finite set of symbols and ρ is

a mapping from Σ to N. We call ρ(f) the arity of f . We let Σp denote the set
of symbols in Σ with arity p. Intuitively, each node in a tree is labelled with a
symbol in Σ with the same arity as the out-degree of the node. Sometimes, we
abuse notation and use Σ to denote the ranked alphabet (Σ, ρ).

Trees Following the standard notation (e.g. found in [CDG+99]), the nodes in a
tree are represented by strings over N. More precisely, the empty string ε repre-
sents the root of the tree, while a node b1b2...bk is a child of the node b1b2...bk−1.
Also, nodes are labelled by symbols from Σ.

Formally, a tree T over a ranked alphabet Σ is a pair (S, λ), where

– S, called the tree structure, is a finite set of sequences over N (i.e, a finite
subset of N

∗). Each sequence n in S is called a node of T . If S contains a
node n = b1b2...bk, then S will also contain the node n′ = b1b2...bk−1, and
the nodes nr = b1b2...bk−1r, for r : 0 ≤ r < bk. We say that n′ is the parent
of n, and that n is a child of n′. A leaf of T is a node n which does not have
any child, i.e., there is no b ∈ N with nb ∈ S.

– λ is a mapping from S to Σ. The number of children of n is equal to ρ(λ(n)).
Observe that if n is a leaf then λ(n) ∈ Σ0.

We use T (Σ) to denote the set of all trees over Σ.
We let n ∈ T indicate that n ∈ S, and let f ∈ T denote that λ(n) = f for

some n ∈ T .
For a tree T = (S, λ) and a node n ∈ T , the subtree of T rooted at n is the

tree Tn = (Sn, λn), where Sn = {b| nb ∈ S} and λn(b) = λ(nb).
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Tree Relations We generalize the definition of a relation from words to trees.
For a ranked alphabet Σ and m ≥ 1, we let Σ•(m) be the ranked alphabet

which contains all tuples (f1, . . . , fm) such that f1, . . . , fm ∈ Σp for some p. We
define ρ((f1, . . . , fm)) = ρ(f1). In other words, the set Σ•(m) contains the m-
tuples, where all the elements in the same tuple have equal arities. Furthermore,
the arity of a tuple in Σ•(m) is equal to the arity of any of its elements. For
trees T1 = (S1, λ1) and T2 = (S2, λ2), we say that T1 and T2 are structurally
equivalent, denoted T1

∼= T2, if S1 = S2.
Consider structurally equivalent trees T1, . . . , Tm over an alphabet Σ, where

Ti = (S, λi) for i : 1 ≤ i ≤ m. We let T1 × · · · × Tm be the tree T = (S, λ)
over Σ•(m) such that λ(n) = (λ1(n), . . . , λm(n)) for each n ∈ S. An m-ary
relation on the alphabet Σ is a set of tuples of the form (T1, . . . , Tm), where
T1, . . . , Tm ∈ T (Σ) and T1

∼= · · · ∼= Tm. In a similar manner to the case of words,
a tree language K over Σ•(m) characterizes an m-ary tree relation [K] on T (Σ).
Notice that the condition of being structurally equivalent is a generalization
of the condition of having the same length in the case of words (Section 2).
Furthermore, in the case of words we worked with Σm (rather than Σ•(m))
since symbol arities were not relevant there.

The operations of intersection ∩ and union ∪ are defined as usual. The op-
eration |i and its generalization |I are defined in a similar manner to words.
For regular tree relations R and R

′
, we define R ⊗ R

′
as the set of tuples

(T1, · · · , Tm, T1

′
, · · · , Tn

′
) such that (T1, · · · , Tm) ∈ R, (T1

′
, · · · , Tn

′
) ∈ R

′
, and

T1
∼= T1

′
. Observe that the third condition is again a generalization of the corre-

sponding condition in the case of words. We use ◦ to denote the composition of
two binary relations as usual. We use Ri to denote i compositions of the relation
R and define R∗ = ∪i≥0R

i and R+ = ∪i≥1R
i.

4 Tree Automata

In this section, we introduce tree automata and use them to recognize regular
tree languages and regular tree relations.

A tree language is a set of trees.
A tree automaton over a ranked alphabet Σ is a tuple A = (Q,F, δ), where

Q is a finite set of states, F ⊆ Q is a set of final states, and δ is the transition
relation, represented by a set of rules each of the form (q1, . . . , qp)

f−→ q where
f ∈ Σp and q1, . . . , qp, q ∈ Q. Unless stated otherwise, we assume Q and δ to be
finite.

The automaton A takes a tree T ∈ T (Σ) as input. It proceeds from the leaves
to the root, annotating states to the nodes of T . A transition rule of the form
shown above tells us that if the children of a node n are already annotated from
left to right with q1, . . . , qp respectively, and if λ(n) = f (with f ∈ Σp), then the
node n can be annotated by q. As a special case, a transition rule of the form

f−→ q implies that a leaf labeled with f ∈ Σ0 can be annotated by q.
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Formally, a run r of A on a tree T = (S, λ) ∈ T (Σ) is a mapping from S to

Q such that for each node n ∈ T with children n1, . . . , nk: (r(n1), . . . , r(nk))
λ(n)−→

r(n) ∈ δ.
For a state q, we let T

r=⇒A q denote that r is a run of A on T such
that r(ε) = q. We use T =⇒A q denote that T

r=⇒A q for some r. For a
set S ⊆ Q of states, we let T

r=⇒A S (T =⇒A S) denote that T
r=⇒A q

(T =⇒A q) for some q ∈ S. We say that A accepts T if T =⇒A F . We define
L(A) = {T | T is accepted by A}. A tree language K is said to be regular if there
is a tree automaton A such that K = L(A).

We use tree automata also to characterize relations: An automaton A over
Σ•(m) characterizes an m-ary relation on T (Σ), namely the relation R = [L(A)].
A relation R is said to be regular if there is a tree automaton A with R = [L(A)].
Sometimes, we denote R by R(A).

In [CDG+99], it is shown that regular tree languages are closed under the
Boolean operations. Closedness under the operators ⊗ and R|I is straightfor-
ward. From the fact that R ◦ R′ = ((R ⊗ T (Σ)) ∩ (T (Σ)⊗ R′))|2 we get the
following

Lemma 1. Regularity is closed under composition.

Although Lemma 1 states that regularity is preserved by a finite number of
applications of the ◦ operator, it is well-known that regularity is not preserved
by ∗ even in the case of words (i.e. R∗ need not be regular even if R is).

Transducers In the special case where D is a tree automaton over Σ•(2), we
call D a tree transducer over Σ

Example 1. Let B be a tree automaton over Σ = {0, 1, and, or} (with ρ(and) =
ρ(or) = 2 and ρ(1) = ρ(0) = 0), where Q = {q0, q1}, F = {q1} and δ:

0−→ q0
1−→ q1 (q0, q0)

or−→ q0 (q0, q1)
or−→ q1 (q1, q0)

or−→ q1

(q1, q1)
or−→ q1 (q0, q0)

and−→ q0 (q0, q1)
and−→ q0 (q1, q0)

and−→ q0 (q1, q1)
and−→ q1

B recognizes the tree language which is the set of true Boolean expressions
over Σ.

Example 2. Token Tree Protocol As a running example in this paper, we con-
sider a tree transducer modelling the behaviour of a simple token tree protocol.
The system consists of processes that are connected in a binary tree-like fashion.
Each process stores a single bit which reflects whether the process has a token
or not. The token tree passes a token from a leaf to the root. We represent the
system by a tree transducer over an alphabet consisting of t, n ∈ Σ0 representing
processes at the leaves, and N,T ∈ Σ2 representing processes at the inner nodes
of the tree. Processes labeled by {n,N} are those which do not have a token,
while those labeled by {t, T } are those which do have the token. The set of states
is {q0, q1, q2} where q2 is the (single) final state. The transition relation is given
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by:

(n,n)−→ q0
(t,n)−→ q1 (q0, q0)

(T,N)−→ q1 (q1, q0)
(N,T )−→ q2

(q0, q1)
(N,T )−→ q2 (q0, q0)

(N,N)−→ q0 (q0, q2)
(N,N)−→ q2 (q2, q0)

(N,N)−→ q2

Intuitively, the states correspond to the following

q0 the node is idle, i.e., the token is not in the node, nor in the subtree below
the node;

q1 the node is releasing the token to the node above it in the tree;
q2 the token is either in the node or in a subtree below the node.

5 Symbolic Transducers

In this section we show how to compute the transitive closure of regular tree re-
lations. More precisely, given a tree transducer D, we generate a new infinite tree
transducer H , called the history transducer of D, such that R(H) = (R(D))∗.
We also introduce symbolic transducers which are compact representations of
history transducers.

History Transducers With a transducer D we associate a history transducer
which corresponds to the reflexive transitive closure of R(D). Each state of H
is a word of the form q1 · · · qk where q1, . . . , qk are states in D. Intuitively, for
each (T, T ′) ∈ (R(D))∗, the history transducer H encodes the successive runs of
D needed to derive T ′ from T . The term “history transducer” reflects the fact
that the transducer encodes the histories of all such derivations.

Formally, consider a tree transducer D = (Q,F, δ) over a ranked alphabet Σ.
The history (tree) transducer H for D is an (infinite) transducer (QH , FH , δH),

where QH =Q∗, FH =F ∗, and δH contains all rules of the form (w1, . . . , wp)
(f,f ′)−→

w such that there is k ≥ 0 where the following conditions are satisfied

– |w1| = · · · = |wp| = |w| = k.

– there are f1,f2, . . . ,fk+1, with f=f1,f ′=fk+1, and (w1(i) . . . , wp(i))
(fi,fi+1)−→

w(i) belongs to δ, for each i : 1 ≤ i ≤ k.

Observe that all the symbols f1, . . . , fk+1 are of the same arity p. We also notice
that if (T × T ′) r=⇒H w, then there is a k ≥ 0 such that |r(n)| = k for each
n ∈ (T × T ′). In other words, any run of the history transducer assigns states
(words) of the same length to the nodes.

From the definition of H we derive the following lemma which states that H
characterizes the reflexive transitive closure of R(D).

Lemma 2. For a transducer D and its history transducer H, we have R(H) =
(R(D))∗.
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Symbolic Transducers For a transducer D, the symbolic transducer S of D
is a compact representation of the history transducer H of D. More precisely,
each state of S is a (word) regular expression over the states of D. A state φ in
S represents all states in the history transducer which are (words) belonging to
the language of φ.

Formally, we assume a transducer D = (Q,F, δ) and the corresponding his-
tory transducer H = (QH , FH , δH). To define symbolic transducers, we first need
the following definition.

For regular expressions φ1, . . . , φp and symbols f, f ′, define (φ1, . . . , φp)
(f,f ′)−→

to be the set {w| ∃w1 ∈ φ1. . . . .∃wp ∈ φp. (w1, . . . , wp)
(f,f ′)−→ w ∈ δH} .

Lemma 3. For regular expressions φ1, . . . , φp and symbols f, f ′, the set

(φ1, . . . , φp)
(f,f ′)−→ is effectively regular.

Consider a tree transducer D = (Q,F, δ) over a ranked alphabet Σ. We
define the symbolic (tree) transducer S for D to be the (possibly infinite-state)
transducer (QS , FS , δS), where QS is a set of regular expressions over Q, FS is
a set of regular expressions over Q, and δS contains a set of rules each of the

form (φ1, . . . , φp)
(f,f ′)−→ φ . The transducer S is derived from D according to

Algorithm 1 (see Figure 1). Observe that, by Lemma 3, the regular expression
φ at line 4 of the code is always computable. Notice that in the first iteration,
we have to choose p = 0 at line 3.

Input: Tree Transducer D = (Q, F, δ)
Output: Symbolic Transducer S = (QS, FS , δS)
begin

1. QS = ∅, FS = ∅, δS = ∅,
2. repeat

3. for each p, f, f ′ ∈ Σp,and φ1, . . . , φp ∈ QS do

4. φ := (φ1, . . . , φp)
(f,f ′)−→

5. QS := QS ∪ {φ}
6. δS := δS ∪ {(φ1, . . . , φp)

f,f ′
−→ φ}

7. od
8. until no new states or rules can be added to QS and δS

9. FS := {φ ∈ QS| (φ ∩ F ∗) 
= ∅}
end

Fig. 1. Algorithm 1 : Computing symbolic transducer

The following lemmas state the relationship between symbolic and history
transducers.
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Lemma 4. Consider a transducer D and its corresponding history and symbolic
transducers H and S. For trees T and T ′

– if (T × T ′) =⇒S φ then (T × T ′) =⇒H w for each w ∈ φ.
– if (T × T ′) =⇒H w then (T × T ′) =⇒S φ for some φ with w ∈ φ.

Corollary 1. For a transducer D and its corresponding history and symbolic
transducers H and S, we have R(S) = R(H).

From Lemma 2 and Corollary 1 we get

Theorem 1. For a transducer D and its corresponding symbolic transducer S,
we have R(S) = (R(D))∗.

Termination Since there are infinitely many regular expressions over the set
of states of D, the algorithm in Figure 1 may in general not terminate.

Example 3. Consider the token tree transducer of Example 2.

A transition of the corresponding history transducer is (q0q0q0, q1q0q0)
(N,N)−→

q2q1q0 corresponding to the three transductions (q0, q1)
(N,T )−→ q2, followed by

(q0, q0)
(T,N)−→ q1, followed by (q0, q0)

(N,N)−→ q0.

When we run Algorithm 1 on the protocol, we get e.g. φ0 = q0
∗ =

(n,n)−→ and

φ1 = q1q0
∗ =

(t,n)−→ . If we consider the pair of symbols (N,N) and the regular
expressions (φ0, φ1), we get, in the next step of the algorithm, the new expression

φ2 = q2q1q
∗
0 = (φ0, φ1)

(N,N)−→ . These steps give the rules
(n,n)−→ φ0,

(t,n)−→ φ1, and

(φ0, φ1)
(N,N)−→ φ2, respectively.

6 Saturation

In order to make the algorithm in Figure 1 terminate more often, we present in
this section a method to accelerate the iterations of the algorithm. We do that
by defining the notion of idempotent states and then saturating all generated
regular expressions by such states.

Idempotent States To define idempotent states, we need some preliminaries.
First, we define the notion of context. Intuitively, a context is a tree with a single
“hole” at one of its leaves. Formally, we consider a special symbol ✷ �∈ Σ with
arity 0. A context over Σ is a tree (SC , λC) over Σ ∪ {✷} such that there is
exactly one nc ∈ SC with λC(nc) = ✷. In the sequel, we will always assume
nc ∈ SC to be the unique node with λC(nc) = ✷.

For a context C = (SC , λC) and a tree T = (S, λ), we define C[T ] to be the
tree (S1, λ1), where
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– S1 = SC ∪ {nc · n| nc ∈ SC and λC(nc) = ✷ and n ∈ S}.
– for each n ∈ SC with n �= nc we have λ1(n) = λC(n).
– for each n1 = nc · n with n ∈ S we have λ1(n1) = λ(n).

Notice that the above operation represents a substitution, where we replace the
hole in C by T .

Consider a tree transducer D = (Q,F, δ) over a ranked alphabet Σ. We
extend the notion of runs to contexts. Let q be a state and C = (SC , λC) a
context. A run r of D on C from q is defined in a similar manner to a run
(Section 4) except that r(nc) = q. In other words, the leaf labeled with ✷ is
annotated by q. We use C(q1)

r=⇒A q2 to denote that r is a run of A on C from
q1 such that r(ε) = q2. The notation C(q1) =⇒A q2 and the extension to sets of
states are explained in a similar manner to runs on trees.

A context C = (SC , λC) over Σ•(2) is said to be copying if for each n ∈ SC

with n �= nc we have λC(n) = (f, f) for some f ∈ Σ. In other words, the context
corresponds to a copy operation on all its nodes.

For an automaton A = (Q,F, δ) we define the suffix of a state q ∈ Q as
follows:

suff (q) = {C : context| C(q) =⇒A F}
For a set X ⊆ Q, we define its suffix: suff (X) =

⋃
q∈X suff (q).

Then, we define a state q to be idempotent if and only if suff (q) contains
only copying contexts. Intuitively, idempotent states denote states from which
the transducer only accepts contexts corresponding to a copy operation on nodes.
Note that idempotent states can be syntactically characterized (see full version
of the paper).

Saturation Consider a transducer D = (Q,F, δ), its history transducer H =
(QH , FH , δH), and its symbolic transducer S = (QS , FS , δS). Consider W ⊆ QH

and X ⊆ Q. We define the saturation of W by X , denoted �W �X as the smallest
set W ′ containing W and closed under the following two rules for each q ∈ X

– if w1 · w2 ∈ W ′ then w1 · q · w2 ∈ W ′.
– if w1 · q · q · w2 ∈ W ′ then w1 · q · w2 ∈ W ′.

Let Qidm ⊆ Q to be the set of all idempotent states in Q. For W ⊆ QH , we
use �W � to denote the set �W �Qidm

. The saturation operation obviously defines
an equivalence relation on sets of states of H , and therefore also the states QS

of the symbolic transducer S. This allows us to derive a new transducer SSAT

by merging all equivalent states in S. We can achieve that by changing the
termination condition of Algorithm 1 (line 8), so that the algorithm stops if
all new states generated are equivalent to the previous ones. Notice that this
guarantees termination in case the number of equivalence classes is finite. The
following theorem states that saturation does not affect the relation recognized
by the symbolic transducer.

Theorem 2. R(S) = R(SSAT ).
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We devote the rest of this subsection to the proof of Theorem 2 (achieved through
Lemmas 5 to 7).

The following lemma states that the saturation operation does not add any
element to the suffix of a set of states in H .

Lemma 5. Let w1, w2 ∈ QH and let q ∈ Q be an idempotent state.

– suff (w1 · q · w2) ⊆ suff (w1 · w2).
– suff (w1 · q · w2) ⊆ suff (w1 · q · q · w2).

From Lemma 5 we get the next lemma stating that equivalent states have
identical suffixes.

Lemma 6. For W1,W2 ⊆ QH , if �W1� = �W2� then suff (W1) = suff (W2).

A consequence of Lemma 6 follows in the next lemma. This lemma states
that the equivalence relation we consider is in fact a congruence. In the proof of
the lemma, we will assume that S contains no useless states (φuwith suff (φu) =
∅) since these states do not change the language recognized by S and can be
removed.

Lemma 7. If (φ1, . . . , φi, . . . , φp)
(f,f ′)−→ φ ∈ δS, and suff (φi) = suff (φ′

i) for
some i : 1 ≤ i ≤ p, then there exists φ′ such that suff (φ) = suff (φ′) and

(φ1, . . . , φ
′
i, . . . , φp)

(f,f ′)−→ φ′ ∈ δS.

The fact that our equivalence relation is a congruence (Lemma 7) implies that
we can apply the extension of the MyHill-Nerode theorem to trees (described
in [CDG+99]).

Example 4. When we run Algorithm 1 on our token tree protocol, we get ex-
pressions like φ0 = q0

∗ and φ1 = q1q0
∗. Their saturated version (q2 being the

idempotent state) is �φ0� = (q0 + q2)∗ and �φ1� = q∗2 · q1 · (q0 + q2)∗.

7 Termination

As noted earlier, saturation enables us to define an equivalence relation on reg-
ular expressions, and thus to collapse several states of S together. However, to
have termination of Algorithm 1, we need to make sure that we generate only
a finite number of equivalence classes. In this section, we introduce a class of
transducers which include all the protocols we consider in this paper, and for
which termination is guaranteed.

More precisely, we consider transducers where the set of states can be par-
titioned into three parts: states whose prefixes only perform copy operations,
states which are idempotent i.e. states whose suffixes only perform copy oper-
ations (Section 6), and states which perform the changes. For the latter, we
require that they satisfy the finite local depth property (described below).
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To simplify the proofs, we first consider the class of well-behaved transducers
satisfying the above condition on state partitioning. In the full version of this
paper, we indicate how to lift these restrictions to a larger class of systems.

Notice that well-behaviour is just one sufficient condition for termination.
The algorithm may still terminate even in cases where the given transducer is
not well-behaved.

Through this section, we let D = (Q,F, δ) be a transducer, and H and S be
its history and symbolic transducers. We first need some definitions.

Copying Prefix States For a state q ∈ Q, its prefix is the set of trees:

pref(q) = {T : tree| T =⇒D q}

We now define the notion of copying tree: a tree T = (S, λ) is copying if for
each node n ∈ S we have λ(n) = (f, f) for some symbol f . We say that q is a
copying prefix state if pref(q) only contains copying trees.

Local Depth

Let Q1 ⊆ Q. For a regular relation R(D) and a natural number k, we say that
R has local depth k with respect to Q1 if R satisfies the following condition:
Consider any two trees T = (S, λ) and T ′ = (S, λ′), with (T, T ′) ∈ Rm. Then,
there are trees Ti = (S, λi) for i : 0 ≤ i ≤ m such that T0 = T , Tm = T ′, related
by accepting runs Ti × Ti+1

ri=⇒D F , and for each node n ∈ S, there are at
most k different j with rj(n) ∈ Q1.

We are now ready to state the conditions that will allow us to ensure termi-
nation.

Well-Behaved Transducer A transducer D = (Q,F, δ) is said to be well-
behaved if Q contains a single copying prefix state qcpy , a single idempotent
state qidm , and R(D) has a finite local depth with respect to Q \ {qcpy , qidm}.

We devote the rest of this section to proving that if the transducer we are
considering is well-behaved, then Algorithm 1 terminates.

The following lemma means that a state qcpy can only appear as q∗cpy in the
regular expressions we generate.

Lemma 8. For any regular expression φ generated by Algorithm 1, if wl · qcpy ·
wr ∈ φ then wl · z · wr ∈ φ for any z ∈ q∗cpy .

We recall (Theorem 2) that we can assume that all sets generated in Algo-
rithm 1 are saturated with qidm . This (together with Lemma 8) leads to the the
following Lemma.
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Lemma 9. Let φ be a regular expression generated by Algorithm 1. If φ ⊆
{qcpy , qidm}∗ then �φ�{qidm} is the union of one or more of the following seven
regular expressions:

1. q∗idm 2. q+
idm 3. (qcpy+qidm)∗

4. qidm (qcpy+qidm)∗ 5. (qcpy+qidm)∗ qidm

6. qidm (qcpy+qidm)∗ qidm 7. (qcpy+qidm)∗ qidm (qcpy+qidm)∗

Lemma 9 and finite local depth imply that we only need to consider regular
expressions of a restricted form:

Lemma 10. For a well-behaved transducer D with local depth k, Algorithm 1
needs only consider regular expressions of the form

φ0 · q1 · φ1 · q2 · · ·φn−1 · qn · φn

with n ≤ k, each �φi� is the union of one or more of the seven regular expressions
described in Lemma 9, and qi �∈ {qcpy , qidm}.

Consequently, we can conclude that for a well-behaved system, Algorithm 1
terminates.

Theorem 3. Algorithm 1 terminates for any well-behaved transducer.

Example 5. In Example 2, we have qcpy = q0 and qidm = q2. The local depth of
R(D) with respect to {q1} is 1.

8 Experimental Results

We have implemented a prototype based on Algorithm 1 and its modifications
described in Section 6 and Section 7. In this section, we give a description of the
protocols we have verified with our algorithm.

We describe and report more thoroughly these examples in the full version
of this paper.

1. Simple Token Protocol This porotocol is detailed in Example 2.

2. Two-Way Token Protocol This example is a generalization of the previous
one. Here, we allow the token to move downwards as well as upwards.

3. The Percolate Protocol The protocolPercolate, described in [KMM+97],
operates on a tree of processes. Each process has a local variable with values {0,1}
for the leaf nodes and {U,0,1} for internal nodes1 (U is interpreted as ”undefined
yet”). The system percolates the disjunction of values in the leaves up to the
root.
1 To simplify the notation, we do not distinguish between the nullary and binary

versions of the symbols 0 and 1.
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4. Tree Arbiter The tree arbiter protocol [ABH+97] operates on a tree of pro-
cesses and aims at preserving mutual exclusion. The leaf nodes try to access a
shared resource, while the interior nodes are used to manage the resource. Access
to the resource is represented by a token which can move inside the tree.
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