Fair Simulation Minimization*

Sankar Gurumurthy', Roderick Bloem?, and Fabio Somenzi'
! University of Colorado at Boulder
{gurumurt ,Fabio}@Colorado.EDU
2 Technical University of Graz
rbloem@ist.tu-graz.ac.at

Abstract. We present an algorithm for the minimization of Biichi au-
tomata based on the notion of fair simulation introduced in [6]. Un-
like direct simulation, fair simulation allows flexibility in the satisfaction
of the acceptance conditions, and hence leads to larger relations. How-
ever, it is not always possible to remove edges to simulated states or
merge simulation-equivalent states without altering the language of the
automaton. Solutions proposed in the past consisted in checking suffi-
cient conditions [11, Theorem 3], or resorting to more restrictive notions
like delayed simulation [5]. By contrast, our algorithm exploits the full
power of fair simulation by efficiently checking the correctness of changes
to the automaton (both merging of states and removal of edges).

1 Introduction

Optimizing Biichi automata is an important step in efficient model checking for
linear-time specification [13, 9]. It is usually cost-effective to invest time in the
optimization of the automaton representing the negation of the LTL property
because this small automaton is composed with the much larger system to be
verified. Any savings obtained on the automaton are therefore amplified by the
size of the system. As a side effect of minimizing the automaton, the acceptance
conditions may also simplify, thus compounding the advantages of state space re-
duction. Omega-regular automata are also used to specify properties directly [3];
minimization techniques are applicable to this case as well.

An automaton A’ can replace another automaton A in model checking if
A and A’ accept the same language. Since checking language equivalence is in
general hard, practical approaches [11, 4, 5] resort to various notions of simula-
tions [10] that account for the acceptance conditions of the automata. Simulation
is a stronger notion than language containment because the simulating automa-
ton cannot look ahead the moves of the simulated one. On the other hand,
several variants of simulation relations can be computed in polynomial time;
among them, direct simulation, fair simulation, and delayed simulation.

Direct simulation (BSR-aa in [2]) is the most restrictive of these notions: It
requires that the simulating state satisfy all the acceptance conditions of the

* This work was supported in part by SRC contract 2001-TJ-920 and NSF grant
CCR-99-71195.

D. Brinksma and K. G. Larsen (Eds.): CAV 2002, LNCS 2404, pp. 610-623, 2002.
© Springer-Verlag Berlin Heidelberg 2002

Fair Simulation Minimization 611

simulated one.! Fair simulation, proposed in [6], relaxes the restriction on the
acceptance condition, but it can still be computed in polynomial time. However,
its use for minimization of a Biichi automaton is non-trivial because, unlike with
direct simulation, one cannot always collapse two states that are fair-simulation
equivalent without changing the language accepted by the automaton [5, Propo-
sition 4]. It is also not always possible to remove an edge from state r to state p
provided there is a edge from r to ¢ and ¢ fair simulates p. An example is the
automaton for G F a and the corresponding game automaton shown in Fig. 4 and
discussed in Section 2.

Two approaches have been described in the literature to overcome these
limitations of fair simulation. Theorem 3 of [11] says that it is safe to remove the
edge described above, provided there is no path in the automaton from ¢ to p.
Indeed, the removed edge cannot be used in the accepting run going through ¢
whose existence is guaranteed by the fact that ¢ simulates p.

Etessami et al. [5], on the other hand, have proposed a new notion of simula-
tion called delayed simulation, which guarantees that states that are simulation
equivalent can be safely merged. Delayed simulation restricts fair simulation by
imposing an additional constraint on the non-accepting runs from two related
states: If ¢ simulates p, and the i-th state of a run from p is accepting, then there
must be a matching run from ¢ such that its j-th state is accepting, and j > 1.

Neither palliative dominates the other. Minimization of the automata fam-
ily A, of [5, Proposition 3] is not allowed by [I1, Theorem 3] but is possible
using delayed simulation, while for the automaton of Fig. 1 the situation is re-
versed. The word a—a—aa® has (unique) infinite non-accepting runs from both ng
and n3. The run starting from ns has an accepting state in first position that
is not matched in the run from ns. Hence, no does not delayed-simulate ns.
However, it does fair-simulate ng, and [11, Theorem 3] leads to the removal of
the edge from nj to ng, effectively eliminating n3 and ns from the automaton.

For the family of automata A,, exemplified in Fig. 2 for n = 4, neither method
allows any reduction in the number of states. State n;; delayed-simulates 7 ;
for ¢ > ¢, but not vice-versa; hence collapsing is impossible. The automata
consist of one SCC, and thus [11, Theorem 3] does not apply either. However,
the equivalence class of state n;; according to fair simulation is [n;;] = {ng; : 1 <
k < n}, and each such equivalence class can be collapsed reducing the number
of states from n? 4+ 2 to n + 2.

Another problem with delayed simulation is that it is not safe for edge re-
moval. Consider the automaton of Fig. 3, which accepts the language X* - {a}“.
It is not difficult to see that ¢ delayed-simulates p. Indeed, a run moving from p
can only take the self-loop, which can be matched from ¢ by going to p.

Even though ¢ is a predecessor of both ¢ and p, one cannot remove the edge
(¢,p). That is, one cannot use delayed simulation as one would use direct simu-
lation. Since optimization methods based on removal and addition of edges are
strictly more powerful than methods based on collapsing simulation equivalent

! Reverse simulation [11] is a variant of direct simulation that looks at runs reaching
a state, instead of runs departing from it.

612 Sankar Gurumurthy et al.

Fig. 1. A sub-optimal automaton that cannot be minimized by delayed simula-
tion

Fig. 2. An automaton that cannot be minimized by either delayed simulation
or application of [11, Theorem 3|

Fig. 3. An automaton showing that delayed simulation is not safe for edge re-
moval

Fair Simulation Minimization 613

states (collapsing can be achieved by adding and removing edges), this inability
limits the optimization potential of methods based on delayed simulation.

The method we propose overcomes the problems seen so far by using fair
simulation to select states to be merged and edges to be removed, but checking
for their validity before accepting them. The check amounts to verifying whether
the modified automaton is still fair-simulation equivalent to the given one. To
gain efficiency, we incrementally compute the new simulation relation from the
self-simulation relation of the given automaton.

As in [6, 5], the computation of a fair simulation is reduced to the compu-
tation of the winning positions for the protagonist in a Streett game [3, 12].
Noting that in the case of non-generalized Biichi automata, the Streett game is
equivalent to a parity game with three priorities, Etessami et al. [5] have applied
to the problem the recent algorithm of Jurdziriski [7], specialized for the case at
hand.

Jurdzinski’s algorithm for parity games assigns a progress measure to the
nodes of the game graph by computing the least fixpoint of a monotonic function.
If the game graph is changed judiciously, it is therefore possible to update the
new progress measure starting the fixpoint computation from the old one. We
show how one can produce a locally optimal automaton by a sequence of state
mergings or, alternatively, edge removals. Because of the incremental update of
the simulation relation, the worst-case complexity of the resulting algorithm is
within a factor of k£ from the complexity of computing the fair simulation once,
where k is the number of attempted changes in the sequence that are rejected.

An automaton produced by our procedure is optimal in the sense that if any
states are merged at the end of a sequence of mergings, or any edge removed at
the end of a sequence of removals, the resulting automaton is not fair simulation
equivalent to the old one.

We have implemented the new algorithm for fair simulation minimization in
Wring [11], and we report the results of its evaluation in Section 5.

2 Preliminaries

Definition 1. An infinite game is a tuple (Qq, @p,d, F). Here, Qq and Q, are
finite, disjoint sets of antagonist and protagonist states, respectively. We write
Q = Q,UQ, for the set of all states. Furthermore, 6 C Q x Q is the transition
relation, and F C Q% is the acceptance condition.

An infinite game is played by an antagonist and a protagonist. Starting from
a given state ¢o € @, the antagonist moves from the states in @, and the
protagonist moves from the states in ()p. In this manner, the two build a play
P =qo,q1,--.. The game ends if a state with no successors is reached, in which
case the protagonist wins the game iff the last state is an antagonist state. If a
state without successors is never reached, an infinite play results. In this case,
the protagonist wins the game iff p € F. The antagonist wins iff the protagonist
does not.

614 Sankar Gurumurthy et al.

We shall consider Streett acceptance conditions, which depend on inf(p), the
set, of states that occur infinitely often in a play p. A Streett acceptance condition
is described by a set of pairs of sets of states {(E1, F1), ..., (En, Fn)} C 29 x 29,
A play is winning if for all 1 < i < n, either inf(p) N E; = () or inf(p) N F; # (). Of
special interest to us are I-pair Streett conditions, Streett conditions for which
n = 1. A parity condition is a sequence of sets of states (Fy, Fi,...) such that
the sets listed form a partition of). A play is winning if the lowest index i such
that inf(p) N F; # 0 is even. The 1-pair Streett condition {(F, F)} is equivalent
to the parity condition (F, E\ F,Q\ E\ F). We shall identify the description of
an acceptance condition with the subset of Q“ that it describes.

A (memoryless) strategy for the protagonist is a function o : @, — @ such
that for all ¢ € Qp, (¢,0(q)) € 0. A state qo € Q is winning for the protagonist
if there is a strategy for the protagonist such that any play p = qo,q1,... for
which ¢; € Qp implies ¢;+1 = o(¢;) is winning for the protagonist. The definitions
of a strategy and a winning state for the antagonist are analogous. For parity,
and hence for 1-pair Streett games, there is a partition (Q, @Q;) of @ such that
all states in @, are winning for the protagonist, and all states in @); are winning
for the antagonist. Hence, a state is winning for one player iff it is losing for the
other. As usual, we shall identify with the protagonist, and simply call a state
winning if it is winning for the protagonist.

Definition 2. A Biichi automaton over a finite domain X is a tuple A =
(V,Vo,T,C, A), where V is the finite set of states, Vo C V is the set of initial
states, T : V x V 1is the transition relation, C C 'V is the acceptance condition,
and A :V — 2% is the labeling function.

As usual, for a set of states V' C V, we shall write T(V') to mean {v' | Jv €
V' (v,v") € T}, and we shall write T'(v) for T({v}). A run of A is an infinite
sequence p = pg, p1, . .. over V, such that py € Vp, and for all i > 0, p;11 € T(p;).
A tun p is accepting if inf(p) N C # (.

The automaton accepts an infinite word o = g, 01, ... in X¢ if there exists
an accepting run p such that, for all ¢ > 0, o; € A(p;). The language of A,
denoted by L(A), is the subset of X accepted by A. We write A" for the Biichi
automaton (V, {v}, T, C, A).

Simulation relations play a central role in this paper. A simulation relation
is a relation between nodes of two graphs. If p is simulated by ¢, from state ¢
we can mimic any run from p without knowing the input string ahead of time.
Hence, simulation implies language inclusion. We recapitulate the notions of fair
simulation [6] and delayed simulation [5].

Definition 3. Given Bichi automata

Al == <‘/1;V01;T1;CI;A1> and AQ - <‘/27‘/027T27027A2>)

Fair Simulation Minimization 615

we define the game automaton Ga, 4, = (Qa,Qp, 9, F), where

[v1,v2] |v1 € Vi, va € Vi, and Ay (v1) C As(va)},

(v1,v2) | v1 € V1 and vy € Va},

([, ve], (v1,02)) | (v1,v1) € 01, [v1,v2] € Qa} U
{((1)1,'02) [vlvvé]) | (v27v2) € 52,[lvvl2] € Qa}a

F={{w,w)|veCweVa},{(v,w)|veVi,weCa})} .

{
={
{

The first subscript in G 4,4, identifies the antagonist, while the second identifies
the protagonist. The style of brackets is used to differentiate between antago-
nist and protagonist states: Square brackets denote an antagonist state, while
round parentheses indicate a protagonist state. Intuitively, the protagonist tries
to prove the simulation relation by matching the moves of the antagonist. The
antagonist’s task is to find a series of moves that cannot be matched.

State v of automaton A is fairly simulated by v’ of automaton A’ if [v,v']
is winning in G4 4/. For different simulation relations we adapt the acceptance
criteria of the game graph. We say that v is delayed simulated by v' if there
is a strategy such that for any play p starting from [v,v'], if p; = (w,w’) with
w € Cy, then there is a j > ¢ such that p; = (w,w’) and w’ € Cs.

Ezxample 1. A Biichi automaton B for the LTL property GF a and the corre-
sponding game automaton Gi s are shown in Fig. 4. The set of winning antag-

onist states is
{1, 1], 1, 2], 2, 2]} -

Therefore, State 2 fair-simulates State 1. However, B’ obtained from B by remov-
ing transition (2, 1), is not simulation equivalent to B. Fig. 5 shows the modified
automaton and the game graph required to prove that B’ fair simulates 5. (The
transition from (1, 2) to [1, 1] is missing.) Notice that, irrespective of the starting

C;%D

Fig. 4. Automaton for GFa (left) and corresponding game automaton (right).
Boxes are antagonist nodes, and circles are protagonist nodes. The label shows
the antagonist and protagonist components, respectively. A double border on
the left indicates antagonist acceptance; a double border on the right or on the
entire node indicates protagonist acceptance

616 Sankar Gurumurthy et al.

oD

Fig. 5. Automaton B’ (left) and game automaton Gg p (right). Black arrow-
heads identify the antagonist’s winning strategy

state, the antagonist can constrain the play to the states [1, 2] and (1, 2) of Gg 5,
and therefore win from any initial position. One can verify that removal from
B of the self-loop on State 1 corresponds to removing the transition from (1,1)
to [1,1] from Gp ;. Since the protagonist still has a winning strategy from all
states, the removal from B of the self-loop preserves simulation equivalence. 0O

3 Computing Fair Simulations Incrementally

In this section we shall describe the theory underlying the algorithm. We shall
describe how we can use modifications of the game graph to verify proposed
changes of a given automaton. Then, we shall quickly review Jurdzinski’s algo-
rithm for parity games. We shall show that for a series of successful modifications
of one kind, we can extend upon the evaluation of the original game graph with
no overhead in complexity.

Our use of simulation relations is based on the fact that if v simulates w,
then L(A"Y) O L(A"™). Hence, given two automata A and A’, for the language of
A’ to be included in that of A, it is sufficient (though not necessary) that for all
initial states v{, of A’ there is an initial state vy of A that fairly simulates v{,. In
this case, we say that A fairly simulates A’. We consider simulation instead of
language equivalence since computing the latter is prohibitively expensive.

Given a Biichi automaton A = (V,V;,T,C, A), we build the game graph
Ga,.4. We consider edges of A for removal or addition , and we check correctness
of the proposed change by a modification of the game graph.

Definition 4. Let A = (V.V,,T,C, Ay and A’ be Biichi automata with the
same state space, and let AT C V x V be a set of transitions. We define
rem(A, AT) = (V, Vo, T\ AT, C, A). For an infinite game Ga 4 = (Qa, Qp, 9, F),
rem(Ga a, AT) is the game graph (Qa, Qp,d’, F), where

8 =6\ {((v1,v),[v1,0]) | (v1,v) € Qp, [v1,V'] € Qq, (v,0") € AT} .

Fair Simulation Minimization 617

Similarly, add(A, AT) = (V,V,, T U AT, C, A), and add(Ga,a, AT) is the
game graph (Qq, Qp, ', F), where

& =4dU {([vaUQ]a (vlvv2)) | [vva] € Qa, (1)/,1)2) € QP; (vavl) € AT} :

Intuitively, if we add transitions to the automaton, we know that the new au-
tomaton simulates the old one. We have to check whether simulation holds in
the opposite direction. To do this, we add transitions to the antagonist states
in the game, reflecting the new edges in the modified automaton. The following
theorem is easily proven.

Theorem 1. Let A be a Biichi automaton, and let AT C V x V be a set of
transitions. We have G4 rem(a,aT) = rem(Ga 4, AT). Furthermore,

rem(rem(Ga 4, AT), AT")) = rem(Ga, a, AT U AT") .
Similarly, Gaada(a,ar),A = add(Ga,a, AT). Furthermore,
add(add(gA,A, AT), AT’)) = add(gAyA, AT U AT’) .

This theorem says that we can obtain the game graph of the original automaton
A and a modified version A’, that is obtained by adding or removing edges, by
modifying the game graph. Furthermore, it states that edges can be deleted a
few at a time, or all at once. Hence, we can modify the game graph instead
of building it from scratch. After a recapitulation of Jurdzinski’s algorithm, we
shall show that this means that we can efficiently reuse information.

We use Jurdzinski’s algorithm [7] for parity games as specialized in [5] to com-
pute the simulation relation. We can use this algorithm because 1-pair Streett
conditions correspond to length-3 parity conditions. Let n; be the number of pro-
tagonist states (v, v2) such that vy satisfies the fairness constraint of A;, but v9
does not satisfy the fairness constraint of As, i.e., ny = [{(v1,v2) € Q | v1 €
Ci,v9 ¢ Cy}|. Jurdziniski’s algorithm for three priorities computes a progress
measure on the states of the game automaton: r: Q — {0,...,n;} U{oo}, such
that r(q) # oo iff ny is a winning state. The measure is computed as a least
fixpoint of the following lifting function.

update(r,q) if p=gq,

lift(r,q) = Ap. {

r(p) otherwise.

Here, update(r, ¢) is a function that is monotonic in the measures of the suc-
cessors of ¢, and hence lift is (pointwise) monotonic. Because of monotonic-
ity, the measure can be updated at most n; + 1 times per node. Combined
with the fact that update(r,q) can be performed in time proportional to the
number of successors of g, this implies that the complexity of the algorithm is
O(6] - n1) = O(QP - my).

To be more precise, if ¢ € Q,, then update(r, ¢) is monotonic in max{r(p) |
(q,p) € 0}, and if ¢ € @), then update(r, ¢) is monotonic in min{r(p) | (¢,p)€d}.

618 Sankar Gurumurthy et al.

It should be noted that the measure of an antagonist (protagonist) node without
successors is 0 (00).

We can check the validity of a proposed addition of an edge to, or removal
of an edge from A by constructing the game graph G4 4, and modifying it as
described above. If for every initial state v there is an initial state w such that
[v,w] is winning, then the proposed modification does not change the language of
the graph. In the naive implementation, this implies that for every modification
Jurdzinski’s algorithm has to be rerun. We shall now show the modification of
the game graph allows us to quickly evaluate a proposed modification.

Lemma 1. If transitions from protagonist states are removed from the game
graph, the measure of a node cannot decrease. Similarly, if transitions from an-
tagonist states are added, the measure cannot decrease.

Proof. Since the measure of a protagonist node is a monotonic function of the
minimum of the measures of its successors, removing one successor cannot de-
crease the measure. Similarly for antagonist nodes. ad

Intuitively, if we add transitions from antagonist states, or remove transitions
from protagonist states, the game becomes harder to win. This result has the
advantage that for a given sequence of additions of transitions from antagonist
states, the correctness of all additions can be checked within the same complexity
bound that holds for the original algorithm: O(|Q|? - n1), assuming that all such
modifications are legal.

Given a sequence of additions or removals of sets of edges, there may be
candidates that change the language of the automaton. Work done evaluating
such modifications is lost, and hence the complexity of validating such a set
of modifications is O(|Q|? - ny - k), where k the number of failed modifications.
Clearly, k = O(|Q]?).

To merge fair-simulation equivalent states, the algorithm will try to change
the graph in such a way as to create states with the same predecessors and
successors. One of such a pair of states can be dropped, assuming that either
the remaining state is accepting or the dropped state is not.

Theorem 2. Let A= (V,Vy,T,C, A) be a Biichi automaton such that there are
v, € V with T(v) = T, T~ (v) = T71(v'), A(v) € A(W') and v € C implies
v' € C. Then, L(A) = L(A"), where V' = V\{v}, Vj = VoU{v'}\{v} ifv eV}
and Vo = Vo otherwise, T' =T N (V' x V'), and C" = C \ {v}.

We do not have to consider changes to the graph more than once. This is
another consequence of monotonicity of the measure. If add(A, AT is not sim-
ulated by A, then add(add(A, AT"), AT) is not simulated by add(.A, AT"). This
follows because the measure of the game graph add(Ga 4, AT”) is not smaller
than that of G4 4, and hence the measure of add(add(Ga, 4, AT"), AT) is not
smaller than that of add(Ga 4, AT"), AT'). Recalling that a state is winning if
its measure is smaller than oo, it is clear that the latter game graph does not
have more winning positions, and hence does not define a greater simulation
relation.

A similar observation can be made for removing edges.

Fair Simulation Minimization 619

4 A Fair Minimization Algorithm

In this section we describe a method to minimize a Biichi automaton using
the game graph. The proposed method uses the fair-simulation relation to find
states that are candidates for merger and edges that are candidates for removal.
By manipulating the game graph, the algorithm checks whether the proposed
merger of two states or removal of an edge is correct, i.e., whether it results
in a simulation-equivalent automaton. Because the simulation relation does not
have to be recomputed every time from scratch, this method is efficient. Further-
more, it is more effective than known methods that can be applied statically, as
discussed in Section 1.

The algorithm proceeds in two phases: First it tries to merge equivalent
states, and then it tries to remove redundant edges.

The algorithm attempts to merge two fair-simulation equivalent states v
and w by adding edges such that the successors of v become successors of w
and vice-versa, and likewise for predecessors. Validation of the correctness of a
modification is performed as described in Section 3.

In detail, we construct G4 4 and compute the progress measure using Jur-
dzinski’s algorithm. Then, we pick a pair of states v, w that we wish to merge. We
construct G’ = add(Ga, 4, AT), where AT = ({v, w}xT({v, w}))U(T ! ({v,w})x
{v,w})). We then update the progress measure, thereby computing the simula-
tion relation between A and A’, where A" = add(A, AT). If we find that the A
still simulates A’, then the merge is accepted, a new pair is proposed for merger,
Gar, 4 is computed, etc.

As discussed, pairs of simulation-equivalent states are picked as candidates
for merger. Though [5] shows that fair-simulation equivalence is no guarantee for
mergeability (and in fact the number of equivalent states that cannot be merged
can be in the order of |Q|?), the chances that two equivalent states are mergeable
are quite high in practice. The number of rejected modifications is thus limited
by the number of pairs of simulation-equivalent states that cannot be merged.

The second stage of the algorithm proceeds likewise to attempt to remove
edges. The candidates for removal are edges (u,v) for which there is a state w
that simulates v and an edge (u,w).

In Stage 1, if we find a pair of states (v, w) such that v and w are delayed-
simulation equivalent, the merge is guaranteed to succeed. Similarly in Stage 2,
if w direct-simulates v. Each stage of the algorithm leads to a graph that is
optimal, in that no candidate for removal has to be checked again.

Backtracking can be implemented efficiently by using time stamps. Every
assignment of a measure to a state receives a time stamp—initially 0. Before
the measure is updated, the time stamp is increased. When r(v) is changed, its
time stamp is checked. If it is not the current timestamp, the value is saved. If
one needs to backtrack, one looks for all the nodes such that r(v) has the most
recent timestamp. One replaces these values with the old values, and the old
time stamp. Then, one decreases the current time stamp to the previous value.
A list of nodes with new values is kept, so that the cost of undoing the changes
is proportional to the extent of the changes, and not the size of the game graph.

620 Sankar Gurumurthy et al.

Likewise, when an arc is added or removed from the game graph, a change
record with the current time stamp is appended to the list. As pointed out in [7],
another way to improve performance is to exploit the decomposition of the game
graph into SCCs, processing them in reverse topological order.

5 Experiments

In this section we present preliminary experimental results for our algorithm.
We have implemented the approach described in Section 4 in Wring [11], and
compared it to other methods for the minimization of Biichi automata. As test
cases we have used 1000 automata generated by translation of as many random
LTL formulae distributed with Wring [1, Table 2]. In addition, we report re-
sults for 23 hard-to-minimize cases, partly derived from examples found in the
literature [0, 11, 5].

In Wring, the sequence of optimization steps applied to a Biichi automaton
starts with a pruning step (P) that removes states that cannot reach a fair
cycle, and simplifies the acceptance conditions. This is followed by a pass of
peep-hole minimization (M), which is of limited power, but is fast, and includes
transformations that simulation-based methods cannot accomplish. After that,
direct (D) and reverse (R) simulations are used to merge states and remove arcs.
Finally, a second pruning step is applied. We refer to this standard sequence by
the following abbreviation: PMDRP.

We compare this standard optimization sequence to others that use in ad-
dition or alternative to the other steps, fair simulation minimization (F), and
delayed simulation minimization (d). Since neither of these two alternative meth-
ods can deal with generalized Biichi automata, they are applied only to the cases
in which there is exactly one fairness condition. (For the 1000 automata of Ta-
ble 1, this happens 465 times.) The notation F/D designates the application of
fair simulation minimization to automata with one acceptance condition, and
direct simulation to the other automata. Likewise for d/D.

The results for the automata derived from LTL formulae are summarized
in Table 1. For each method, we give the total number of states, transitions,

Table 1. Experimental results for 1000 automata derived from LTL formulae

method |states trans fair init weak term time
PMDRP | 5620 9973 487 1584 400 523 125.5
PMDRFP | 5581 9827 487 1560 396 529 158.0
PMDRAP | 5618 9980 488 1584 400 523 160.1
PMF/DRP| 5587 9869 488 1556 395 529 162.5
PMd/DRP| 5618 9980 488 1584 400 523 159.9
PDP 5704 10722 489 1587 396 523 114.7
PF/DP | 5688 10625 489 1561 392 529 153.5
Pd/DP | 5910 11522 488 1626 383 520 155.0

Fair Simulation Minimization 621

fairness conditions, initial states, and we report how many automata were weak
or terminal [1]. Finally, we include the total CPU time. In comparing the numbers
it should be kept in mind that the results are affected by a small noise component,
since they depend on the order in which operations are attempted, and this order
is affected by the addresses in memory of the data structure.

The result for PMDRFP shows that our algorithm can still improve au-
tomata that have undergone extensive optimization. The CPU times increase
w.r.t. PMDRP, but remain quite acceptable. In spite of having to check each
modification of the automata, fair simulation minimization is about as fast as
delayed simulation.

There are several reasons for this. First, the time to build the game graph
dominates the time to find the winning positions, and delayed simulation pro-
duces larger game graphs (up to twice the size, and about 10% larger on average)
in which each state has four components instead of three. Second, most modifi-
cation attempted by the fair simulation algorithm do not change the language of
the given automaton (78% in our experiments); hence, as discussed in Section 3,
their cost is low.

Finally, Jurdzinski’s algorithm converges faster for the fair simulation game
when the delayed simulation relation is a proper subset of the fair simulation
relation.

The shorter optimization sequences are meant to compare fair simulation
minimization to delayed simulation minimization without too much interference
from the other techniques. In particular, one can see from comparing PF/DP
and Pd/DP that removal of transitions, as opposed to merging of simulation
equivalent states, does play a significant role in reducing the automata. Indeed,
direct simulation, which can be safely used for that purpose, does better than
delayed simulation.

Finally, Table 2 summarizes the results for the hard-to-minimize automata.

Table 2. Experimental results for 23 hard-to-minimize automata

method |states trans fair init weak term time
PMDRP | 131 219 21 29 3 2 049
PMDRFP | 106 165 21 25 4 2 1.05
PMDRdAP | 128 212 21 29 3 2 1.22
PMF/DRP| 106 167 21 25 4 2 1.38
PMd/DRP 138 229 21 29 3 2 1.40
PDP 133 222 22 30 3 2 047
PF/DP 106 168 21 25 4 2 2.60
Pd/DP 130 217 21 30 3 2 342

622 Sankar Gurumurthy et al.

6 Conclusions

We have presented an algorithm for the minimization of Biichi automata based
on fair simulation. We have shown that existing approaches are limited in their
optimization power, and that our new algorithms can remove more redundan-
cies than the other approaches based on simulation relations. We have presented
preliminary experimental results showing that fair simulation minimization im-
proves results even when applied after an extensive battery of optimization tech-
niques like the one implemented in Wring [11]. Our implementation is still ex-
perimental, and we expect greater efficiency as it matures, but the CPU times
are already quite reasonable.

The approach of checking the validity of moves by updating the solution
of a game incrementally can be applied to other notions of simulation that do
not allow safe collapsing of states or removal of edges. In particular, we plan to
apply it to a relaxed versions of reverse simulation. We also plan to address the
open issue of extending our approach to generalized Biichi automata, that is, to
automata with multiple acceptance conditions.

Acknowledgment

We thank Kavita Ravi for many insightful observations on simulation minimiza-
tion.

References

[1] R. Bloem, K. Ravi, and F. Somenzi. Efficient decision procedures for model
checking of linear time logic properties. In N. Halbwachs and D. Peled, editors,
FEleventh Conference on Computer Aided Verification (CAV’99), pages 222-235.
Springer-Verlag, Berlin, 1999. LNCS 1633. 621

[2] D. L. Dill, A. J. Hu, and H. Wong-Toi. Checking for language inclusion using
simulation relations. In K. G. Larsen and A. Skou, editors, Third Workshop
on Computer Aided Verification (CAV’91), pages 255-265. Springer, Berlin, July
1991. LNCS 575. 610

[3] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determinacy. In
Proc. 32nd IEEE Symposium on Foundations of Computer Science, pages 368—
377, October 1991. 613

[4] K. Etessami and G. J. Holzmann. Optimizing Biichi automata. In Proc. 11th
International Conference on Concurrency Theory (CONCURZ2000), pages 153—
167. Springer, 2000. LNCS 1877. 610

[5] K. Etessami, T. Wilke, and A. Schuller. Fair simulation relations, parity games,
and state space reduction for Biichi automata. In F. Orejas, P. G. Spirakis, and
J. van Leeuwen, editors, Automata, Languages and Programming: 28th Interna-
tional Colloguium, pages 694-707, Crete, Greece, July 2001. Springer. LNCS 2076.
610, 611, 613, 614, 617, 619, 620

[6] T.Henzinger, O. Kupferman, and S. Rajamani. Fair simulation. In Proceedings of
the 9th International Conference on Concurrency Theory (CONCUR’97), pages
273-287. Springer-Verlag, 1997. LNCS 1243. 610, 611, 613, 614, 620

(7]

8]

[9]

[10]

[11]

[12]

[13]

Fair Simulation Minimization 623

M. Jurdzinski. Small progress measures for solving parity games. In STACS 2000,
17th Annual Symposium on Theoretical Aspects of Computer Science, pages 290—
301, Lille, France, February 2000. Springer. LNCS 1770. 613, 617, 620

R. P. Kurshan. Computer-Aided Verification of Coordinating Processes. Princeton
University Press, Princeton, NJ, 1994. 610

O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs
satisfy their linear specification. In Proceedings of the Twelfth Annual ACM Sym-
posium on Principles of Programming Languages, pages 97-107, New Orleans,
January 1985. 610

R. Milner. Communication and Concurrency. Prentice Hall, Englewood Cliffs,
NJ, 1989. 610

F. Somenzi and R. Bloem. Efficient Biichi automata from LTL formulae. In
E. A. Emerson and A. P. Sistla, editors, Twelfth Conference on Computer Aided
Verification (CAV’00), pages 248-263. Springer-Verlag, Berlin, July 2000. LNCS
1855. 610, 611, 612, 613, 620, 622

W. Thomas. On the synthesis of strategies in infinite games. In Proc. 12th Annual
Symposium on Theoretical Aspects of Computer Science, pages 1-13. Springer-
Verlag, 1995. LNCS 900. 613

P. Wolper, M. Y. Vardi, and A. P. Sistla. Reasoning about infinite computation
paths. In Proceedings of the 24th IEEE Symposium on Foundations of Computer
Science, pages 185-194, 1983. 610

	Fair Simulation Minimization
	Introduction
	Preliminaries
	Computing Fair Simulations Incrementally
	A Fair Minimization Algorithm
	Experiments
	Conclusions

