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Abstract. In this paper, we present the logic of Counter Arithmetic
with Lambda Expressions and Uninterpreted Functions (CLU). CLU
generalizes the logic of equality with uninterpreted functions (EUF) with
constrained lambda expressions, ordering, and successor and predecessor
functions. In addition to modeling pipelined processors that EUF has
proved useful for, CLU can be used to model many infinite-state sys-
tems including those with infinite memories, finite and infinite queues
including lossy channels, and networks of identical processes. Even with
this richer expressive power, the validity of a CLU formula can be ef-
ficiently decided by translating it to a propositional formula, and then
using Boolean methods to check validity. We give theoretical and empiri-
cal evidence for the efficiency of our decision procedure. We also describe
verification techniques that we have used on a variety of systems, includ-
ing an out-of-order execution unit and the load-store unit of an industrial
microprocessor.

1 Introduction

Systems with parameters of finite but arbitrary or large size are often modeled
as infinite-state systems. Such systems include superscalar processors, communi-
cation protocols with unbounded channels, and networks of an arbitrary number
of identical processes. Modeling and verification methods for these systems must
trade off between the expressiveness of the modeling formalism and the efficiency
and automation of the tool. Tools based on very general logics can express a va-
riety of systems but require greater human assistance.

To verify pipelined processors, Burch and Dill presented a logic of equality
with uninterpreted functions (EUF) [10], and then added interpreted operations
read and write to model unbounded, random-access memories. EUF thus allows
for abstract modeling of both data and data operations, as well as unbounded
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memories. In previous work, we presented PEUF, a logic of positive equality
with uninterpreted functions [7]. PEUF has the same expressive power as EUF,
but allows for a more efficient decision procedure based on Boolean methods.
The main source of efficiency is a technique for transforming a PEUF formula
into a propositional formula whose validity can be checked using either BDDs or
a satisfiability solver. The advantages of using PEUF have been demonstrated
in reasoning about pipelined processors [22].

In this paper, we continue our research into logics that have an efficient trans-
formation into propositional logic. We generalize EUF to yield a logic of Counter
Arithmetic with Lambda Expressions and Uninterpreted Functions (CLU). The
generalizations are of two kinds. The first is to include a restricted class of
lambda expressions as a means of defining state variables that are functions or
predicates. As we will discuss, this generalization subsumes the need for special
read and write operations. The second is to introduce ordering and a highly
restricted fragment of Peano arithmetic we call counter arithmetic. We do this
by use of the interpreted predicate symbol “<” and interpreted function sym-
bols succ (the successor function) and pred (the predecessor function). As with
EUF, we consider only a quantifier-free subset of first-order logic. However, our
generalizations give us richer expressiveness in modeling both data and control.

We make two main contributions in this paper. First, we demonstrate the
expressiveness of CLU by modeling constructs found in several infinite-state
systems, including processors, communication protocols, and unbounded process
arrays. Second, we describe our decision procedure for CLU that retains the
efficiencies of the decision procedure for PEUF. We give theoretical and empirical
evidence for our procedure’s efficiency, comparing it with the Stanford Validity
Checker (SVC) [3]. We have built UCLID1, a tool in which systems modeled
using CLU can be specified and checked for safety properties and have applied
it to a variety of systems including an out-of-order processor core, pipelined
processors, a complex load-store unit from an industrial microprocessor, a cache
coherence protocol, and the Alternating Bit Protocol. Our analysis of examples is
more general than that possible by many traditional model-checking approaches
in that we can handle arbitrary-size data structures and infinite data types
without abstracting them away.

Related Work A range of specification and verification methods currently ex-
ist for infinite-state systems. However, most of these methods are specialized for
classes of problems. For example, for communication protocols, existing queue
representations include QDDs [5] and regular expressions [1]. Regular expres-
sions have also been used to model networks of identical processes and systems
operating on unbounded data structures such as stacks [15,6]. While regular ex-
pressions are good for modeling control based on the form of process arrays or
data structures, they cannot be used to model data and operations on data. In
contrast, CLU can be used to model both data and control. The applicability of
1 UCLID stands for “Uninterpreted functions, Counter arithmetic and Lambda ex-
pressions for Infinite Domains”
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QDDs is restricted to modeling queues. Bultan et al. [9] have used Presburger
arithmetic to model process networks. Presburger arithmetic is a very powerful
as it allows quantification and integer addition. However it suffers two draw-
backs: First, the worst-case complexity of checking validity of formulas in this
logic is prohibitively high [11], and second, adding uninterpreted functions to the
logic makes it undecidable. The theory of separation predicates [19] differs from
CLU in that it has neither uninterpreted functions nor lambda expressions, but
can have real valued variables. Our work complements techniques for deciding
this logic (e.g., [4,20]) by adding the benefits of positive equality. Theorem prov-
ing systems (e.g., PVS [17] or HOL [13]) that use higher order logic can clearly
express all the systems that CLU can, but at the cost of reduced automation and
efficiency. Compositional model checking [14] can verify both safety and liveness
properties and is effective when the system can be easily decomposed into com-
ponents based on modularity, temporal separation, or if a “unit of work” uses
a small finite amount of resources, but it still suffers from state explosion. The
role played by lambda expressions in our logic is very similar to that played by
state variables of infinite-length array-type in Cadence SMV.

The rest of the paper is organized as follows. In the next two sections, we
present the syntax and semantics of CLU, and show how it can be used to
model various systems. We next discuss our decision procedure for CLU, and
describe UCLID, the verification tool we have built. Finally, we present results
demonstrating the efficiency of our decision procedure, and conclusions.

2 Counter Arithmetic with Lambda Expressions and
Uninterpreted Functions

Expressions in CLU describe a means of computing four different types of values.
Boolean expressions yield true or false. We also refer to Boolean expressions
as formulas. Integer expressions, also referred to as terms, yield integer values.
Predicate expressions denote functions from integers to Boolean values. Func-
tion expressions, on the other hand, denote functions from integers to integers.
Figure 1 summarizes the expression syntax.

The simplest truth expressions are the values true and false. Boolean ex-
pressions can also be formed by comparing two term expressions for equality
(referred to as an equation) or for ordering (referred to as an inequality), by
applying a predicate expression to a list of term expressions, and by combining
Boolean expressions using Boolean connectives. Integer expressions can be inte-
ger variables, used only as the formal arguments of lambda expressions. They can
also be formed by applying a function expression (including interpreted functions
succ and pred) to a set of integer expressions, or by applying the ITE (for “if-
then-else”) operator. The ITE operator chooses between two values based on a
Boolean control value, i.e., ITE(true, x1, x2) yields x1 while ITE(false, x1, x2)
yields x2. Function expressions can be either function symbols, representing un-
interpreted functions, or lambda expressions, defining the value of the function as
an integer expression containing references to a set of argument variables. Func-
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bool-expr ::= true | false | ¬bool-expr | (bool-expr ∧ bool-expr)

|(bool-expr ∨ bool-expr)| (int-expr= int-expr) | (int-expr< int-expr)

| predicate-expr(int-expr, . . . , int-expr)

int-expr ::= int-var | ITE(bool-expr, int-expr, int-expr)

| succ(int-expr) | pred(int-expr)

|function-expr(int-expr, . . . , int-expr)

predicate-expr ::= predicate-symbol | λ int-var, . . . , int-var . bool-expr

function-expr ::= function-symbol | λ int-var, . . . , int-var . int-expr

Fig. 1. Expression Syntax. Expressions can denote computations of Boolean
values, integers, or functions yielding Boolean values or integers

tion symbols of arity 0 are also called symbolic constants. They denote arbitrary
integer values. Since these symbols are instantiated without any arguments, we
will omit the parentheses, writing a instead of a(). Similarly, predicate expres-
sions can be either predicate symbols, representing uninterpreted predicates, or
lambda expressions, defining the value of the predicate as a Boolean expression
containing references to a set of argument variables. Predicate symbols of ar-
ity 0 are also called symbolic Boolean constants. They denote arbitrary Boolean
values. We will also omit the parentheses following the instantiation of such a
predicate.

Notice that we restrict the parameters to a lambda expression to be integers,
and not function or predicate expressions. There is no way in our logic to express
any form of iteration or recursion. The lambda expressions in CLU are very useful
for modeling, as we show in Section 3, but, in the theoretical sense, they do not
add expressive power to the logic.

An integer variable x is said to be bound in expression E when it occurs
inside a lambda expression for which x is one of the argument variables. We
say that an expression is well-formed when it contains no unbound variables.
The value denoted by a well-formed expression in CLU is defined relative to an
interpretation I of the function and predicate symbols. Let Z denote the set of
integers. Interpretation I assigns to each function symbol of arity k a function
from Zk to Z, and to each predicate symbol of arity k a function from Zk to
{true, false}. Given an interpretation I of the function and predicate symbols
and a well-formed expression E, we can define the valuation of E under I, de-
noted [E]I , according to its syntactic structure. The valuation of E is either a
Boolean value, an integer, a function from integers to Boolean values, or a func-
tion from integers to integers, according to whether E is a Boolean expression, an
integer expression, a predicate expression, or a function expression, respectively.
We omit the details. A well-formed formula F is true under interpretation I if
[F ]I is true. It is valid when it is true under all possible interpretations.
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In earlier work [7], it was shown that formulas in PEUF can be efficiently
decided by only considering maximally diverse interpretations. We will show in
Section 4 how the benefits of PEUF are retained to yield an efficient decision
procedure for CLU.

3 System Modeling

In this section, we give representative examples of structures modeled using CLU.
We use a record notation to represent data structures that are characterized by
multiple CLU expressions.

3.1 Memories

Lambda notation allows us to model the effect of a sequence of read and write
operations on a memory. At any point of system operation, a memory is repre-
sented by a function expression M denoting a mapping from addresses to values.
The initial state of the memory is given by an uninterpreted function symbol m0

indicating an arbitrary memory state. The effect of a write operation with inte-
ger expressions A and D denoting the address and data values yields a function
expression M ′:

M ′ = λ addr . ITE(addr =A, D, M (addr ))

Other forms of memory can be modeled as well. For example, we can model
a Content Addressable Memory (CAM) that stores associations between keys
and data. We represent a CAM C at any point in the system operation by two
expressions: a predicate expression C .present such that C .present(k) is true for
any key k that is stored in the CAM, and a function expression C .data, such that
C .data(k) yields the data associated with key k, assuming the key is present.
As an initial state in invariant checking we can represent a CAM C having
an arbitrary state by letting C .present = p0 and C .contents = c0, where p0
(respectively, c0) is an uninterpreted predicate (resp., function).

Insertion into a CAM is expressed by the operation Insert(C ,K ,D). This
operation yields a new CAM C ′ where:

C ′.present = λ key . key =K ∨ C .present(key)
C ′.data = λ key . ITE(key =K, D, C .data(key))

On the other hand, the effect of deleting the entry associated with key K is
expressed by the operation Delete(C ,K ). This operation yields a new CAM C ′

where

C ′.present = λ key . ¬(key =K) ∧ C .present(key)
C ′.data = C .data
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3.2 Queues

A queue of arbitrary length can be modeled as a record Q having components
Q .contents, Q .head , and Q .tail . Conceptually, the contents of the queue are
represented as some subsequence of an infinite sequence, where Q .contents is a
function expression mapping an integer index i to the value of sequence element i.
Q .head is an integer expression indicating the index of the head of the queue, i.e.,
the position of the oldest element in the queue. Q .tail is an integer expression
indicating the index at which to insert the next element. In general, we require
Q .head ≤ Q .tail as an invariant property. Q is modeled as having an arbitrary
state by letting Q .contents = c0, Q .head = h0, and Q .tail = t0, where c0 is
an uninterpreted function and h0 and t0 are symbolic constants satisfying the
constraint h0 ≤ t0. This constraint is enforced by including it in the antecedent
of the formula whose validity we wish to check.

The operation testing if the queue is empty can be expressed quite simply as:

isEmpty(Q) = (Q .head = Q .tail)

Using this operation we can define the following three operations on the queue:

1. Pop(Q): The pop operation on an non-empty queue returns a new queue Q′

with the first element removed; this is modeled by incrementing the head.

Q ′.head = ITE(isEmpty(Q), Q .head , succ(Q .head))

2. First(Q): This operation returns the element at the head of the queue, pro-
vided the queue is non-empty. It is defined as Q .contents(Q .head).

3. Push(Q ,X ): Pushing data item X into Q returns a new queue Q′ where

Q ′.tail = succ(Q .tail)
Q ′.contents = λ i . ITE(i=Q .tail , X, Q .contents(i))

Assuming we start in a state where h0 ≤ t0, Q .head will never be greater than
Q .tail because of the conditions under which we increment the head.

Bounded length queues can be similarly expressed, with an additional con-
straint in the case of the push operation disallowing a push when the queue is
full. In particular, to bound a queue to a maximum length of k (where k is an
integer, not a symbolic constant), we add the condition for pushing that Q .tail is
incremented only when Q .tail < succk(Q .head), where succk indicates k com-
positions of the successor operation. We can use similar guard conditions to to
model lossy behavior and duplication as well.

3.3 Process Arrays

Lambda expressions can be used to represent systems containing an arbitrary
number of identical processes, such as an array of processors in a cache coherence
protocol. For each integer state variable of the process state, we define a function
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expression S, where S(i) denotes the value of this state variable for process i.
Similarly, we represent a Boolean state variable as a predicate expression.

We implement an interleaving model of concurrency in CLU by defining a
process identifier state variable pid that is updated on each step of operation
to designate a single active process. Given uninterpreted function symbols A
and N of arity 1, pid is defined as having a value equal to A(ctr), where ctr is
an integer state variable with initial value c0 and next state value ctr ′ defined as
ctr ′ = N(ctr). Since our verifier checks the validity of the formula for all possible
interpretations of A and N , it will include the case where each successive value
of ctr is unique. The different possible interpretations of A will then cover all
possible sequences of process identifiers. Other concurrency models (e.g., parallel
updates to elements of the process array that satisfy a predicate) can also be
implemented quite readily.

As an example, consider an array Add1 of processes each having a single
state variable indicating the value of a counter. On each step of operation, one
process is selected to increment its counter. The process state table for this array
is thus a table of counts represented by a lambda expression cntTbl . The initial
value of cntTbl is given by an uninterpreted function symbol c0 of arity 1 and
the next state expression is given by

cntTbl ′ = λ i . ITE(i = pid , succ(cntTbl(i)), cntTbl(i))

3.4 Observations

Uninterpreted functions provide a natural means for abstracting data and data
operations. Lambda expressions provide a powerful notation for describing state
transformations. Counter arithmetic provides us the ability to express counters
and some forms of pointers. The combination of these three modeling constructs
enables CLU to express a wide variety of data structures and system types.

4 Decision Procedure

Assume we start with a well-formed formula Fver in CLU expressing some desired
system property. The decision procedure must determine whether it is valid, i.e.,
true under all possible interpretations of the function and predicate symbols.
Through a sequence of transformations, described below, we convert a formula
over the logic to a propositional formula and then use a Boolean satisfiability
checker to determine validity.

Expand Lambda Applications Since CLU syntax does not permit recursion
or iteration, each lambda application can be expanded by beta-substitution, i.e.,
by replacing each argument variable with the corresponding argument term. Let
us call the resulting formula Fexp .
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Identify P-Function Symbols As with PEUF, we can exploit the restricted
uses of equations and inequalities to greatly reduce the number of interpretations
that must be encoded when we reduce the formula to propositional logic. As
described in [7], we can automatically analyze an arbitrary formula to determine
those function symbols that satisfy the restrictions of p-functions. The general
idea is to determine the polarity of each equation, i.e., whether it appears under
an even (positive) or odd (negative) number of negations. Terms can then be
classified as either p-terms, i.e., used only under positive equalities, or g-terms,
i.e., general terms. Function symbols for which all applications are p-terms can
then be classified as p-function symbols. Applications of p-function symbols can
be encoded in propositional logic with fewer symbolic variables than can those
of general “g-function” symbols. The extensions required for CLU are to deal
with inequalities and the successor and predecessor operations.

The first stage in the analysis labels the subformulas occurring in Fexp as
being negative and/or positive. First, we start by labeling Fexp as being positive.
In addition, for each term of the form ITE(F, T1, T2), we label F as being both
negative and positive. Then we recursively label the subformulas as follows: If
formula F .= F1 ∧ F2 is labeled as being positive (respectively, negative), then
so are F1 and F2. Similarly for F .= F1 ∨ F2. If formula F .= ¬F1 is labeled
as being positive (respectively, negative), then F1 is labeled as being negative
(respectively, positive).

Once the subformulas have been labeled, we identify which subterms in Fexp

must be considered g-terms. We start by considering every formula F .= T1=T2

that was labeled as being negative, as well as every inequality T1<T2. For these,
we must mark T1 and T2 as g-terms. Then we recursively label the subterms
as follows: If T .= ITE(F, T1, T2) was labeled as a g-term, then so must be T1

and T2. If T
.= succ(T1) was labeled as a g-term, then so must be T1. Similarly

for T .= pred(T1).
Finally, we classify each function symbol as either a p-function or a g-function

symbol. For function symbol f , if any term of the form f(T1, . . . , Tk) was labeled
as a g-term, then f must be classified as a g-function symbol. Otherwise, it is a
p-function symbol.

Remove Function and Predicate Applications As described in [7], we can
replace all applications of uninterpreted functions or predicates of nonzero arity
by terms containing only symbolic constants. Our method differs from the more
common method introduced by Ackermann [2] in that it replaces each term
by a nested series of ITE operations rather than a single symbolic constant.
Our method makes it possible to exploit positive equality in encoding possible
instantiations of the constants.

As an example, if function symbol f has three occurrences: f(a1), f(a2),
and f(a3), then we would generate 3 new symbolic constants vf 1, vf 2, and vf 3.
We would then replace all instances of f(a1) by vf 1, all instances of f(a2) by
ITE(a2=a1, vf 1, vf 2), and all instances of f(a3) by ITE(a3=a1, vf 1, ITE(a3=
a2, vf 2, vf 3)).
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Predicate applications can be removed by a similar process. In eliminat-
ing applications of some predicate p, we introduce symbolic Boolean constants
vp1, vp2, . . ..

This leaves us with a formula Fconst containing only symbolic constants,
ITEs, successors, predecessors, equations, inequalities, and logical connectives.

Partition into Subdomains We first split the set of symbolic constants V
into two sets Vp and Vg. Vp consists of those symbolic constants occurring in
Fexp that were classified as p-function applications, as well as those constants
vf i that were introduced when eliminating an application of some p-function
symbol f . The remaining symbolic constants are in Vg.

We then partition the set of symbolic constants into classes V1, . . . , Vn. Each
constant in Vp is assigned to its own class. Constants in Vg are grouped ac-
cording to whether their values may be compared by equations or inequalities.
We start by assigning each constant in Vg to its own class. We then compute
the dependency set for each term in Fconst , denoting some subset of variables
in Vg to which this term could evaluate. While doing this, we merge some of the
classes so that each dependency set is a subset of some class. For term T

.= v,
its dependency set is ∅ if v ∈ Vp and is {v} if v ∈ Vg. For term T

.= succ(T1),
its dependency set is the same as that of T1. Similarly for T .= pred(T1). For
T
.= ITE(F, T1, T2), its dependency set is the union of those of T1 and T2. If the

dependency sets of T1 and T2 are subsets of two distinct classes, then we merge
those classes. For each equation T1=T2 and each inequality T1<T2, we perform
a similar merging if the dependency sets of T1 and T2 are subsets of distinct
classes.

Compute Ranges For each symbolic constant v in Fconst we must determine
the maximum amount it can be incremented or decremented by successor and
predecessor operations. We do this by labeling each distinct term T in Fconst by
an its lower bound l(T ) and its upper bound u(T ). These bounds indicate the
range over which the term may be decremented or incremented.

The labeling can be implemented as a fixed-point computation, starting with
l(T ) = u(T ) = 0 for each term T . Labels are then updated according to the
following rules: Eventually, this process will reach a point where the bounds do
not change. We then use the values of l(v) and u(v) to determine the range of
offsets for symbolic constant v.

Term T Lower Bound Upper Bound

ITE(F, T1, T2) l(T1)← min(l(T1), l(T )) u(T1)← max(u(T1), u(T ))
l(T2)← min(l(T2), l(T )) u(T2)← max(u(T2), u(T ))

succ(T1) l(T1)← min(l(T1), l(T ) + 1) u(T1)← max(u(T1), u(T ) + 1)

pred(T1) l(T1)← min(l(T1), l(T )− 1) u(T1)← max(u(T1), u(T )− 1)
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Instantiate Subdomains For each class Vi we compute its range as:

range(Vi) =
∑

v∈Vi

(u(v)− l(v) + 1).

This determines the size of the finite instantiation we must consider for each
symbolic constant in Vi.

Suppose there are K different classes and let M be the maximum value
of range(Vi) for any class Vi. Let k = �log2K� and m = �log2M�. Then we
encode each symbolic constant as a vector of k + m Boolean formulas v. For
variable v in class Vi, the high order k elements of v correspond to the binary
encoding of i. If class Vi contains just a single constant v, then the low order m
elements of v are simply the binary representation of −l(v). Since l(v) must be
less than or equal to zero, the effect of this is to bias the value used to encode
variable v such that this value will never be decremented below zero by any of the
pred operations. Otherwise, for each variable v we must introduce m′ Boolean
variables xv

.= xm′−1
v , . . . , x0

v, where m′ = �log2 |Vi|�. The low order m elements
of v are then the Boolean formulas expressing the bit-level representation of
xv − l(v).

We then recursively translate Fconst into a symbolic Boolean formula, where
each term is represented as a vector of k+m formulas and each subformula as a
single Boolean formula. Each symbolic constant v is represented by the vector v,
while each symbolic Boolean constant is represented by a Boolean variable. ITE
operators are translated to perform a bit-wise multiplexing of the arguments.
Successor and predecessor operations are translated as bit-level incrementers
and decrementers. Equations and inequalities are translated as comparators.
Boolean connectives are translated as Boolean operators.

This translation process takes advantage of the positive equality structure of
the formula in a manner similar to that described in [7]. Each symbolic constant
in Vp is assigned a fixed bit pattern, greatly reducing the number of Boolean
variables required. Beyond the optimizations described here, we could exploit
the equation structure between g-terms using some of the techniques described
in [18]. However, many of these optimizations cannot be used when terms are
compared by inequalities.

Let Fbool denote the resulting Boolean formula. We can then use Boolean
satisfiability to see if ¬Fbool is satisfiable. If it is, then our decision procedure
generates a counterexample to the macro-expanded formula Fexp by constructing
a partial interpretation of the function and predicate symbols over bit vectors
of length k +m. If ¬Fbool is not satisfiable, then we have determined that the
original formula Fver is valid.

Analysis The decision procedure is efficient because the translation to propo-
sitional logic only gives rise to a low-degree polynomial blowup in the formula
size. Suppose we represent a formula in CLU as a directed acyclic graph (DAG).
The size of the formula is the number of nodes in its DAG representation. Con-
sider the CLU formula Fexp of size N in which all lambda applications have
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been expanded. Assuming that the arities of function and predicate symbols are
bounded, we can prove that the size of the final propositional formula Fbool is
O((N +M2 +P 2)lg(N)), whereM and P are the number of function and pred-
icate application terms in Fexp respectively (including applications of succ and
pred). The M2 and P 2 terms come from introducing nested ITE expressions
while eliminating function and predicate applications, and the lg(N) comes from
the binary encoding of integer symbolic constants.

In practice, the number of function and predicate applications is far smaller
than the total number of DAG nodes, and so the size of Fbool grows as
O(Nlg(N)). In the worst case, expanding lambda applications can result in an
exponential blowup in formula size. In our experience, however, the expressions
tend to have a linear structure, with each lambda instantiated only once. With
this structure, there is no blowup from lambda expansion.

Modifications The decision procedure described above uses small-domain in-
stantiation to encode integer symbolic constants. We have also experimented
with using Boolean variables to encode equations, as in previous work on
PEUF [8]. The latter method performs better in some cases because it directly
encodes equations that control system operation. For brevity, we omit a detailed
comparison from this paper.

5 UCLID

We have built UCLID, a tool to specify and verify systems modeled in CLU.
The UCLID specification language can be used to specify a state machine,
where the state variables either have primitive types — Boolean, enumerated,
or (unbounded) integer — or are functions of integer arguments that evaluate to
these primitive types. Details about the specification language may be found in
the user’s guide [21]. We mention one notable feature about the internal encoding
of enumerated types in UCLID. A enumerated type E of k values is encoded as
an integer sequence {zE, succ(zE), . . . , succk−1(zE)}, where a different symbolic
constant zE is used for each type E. Since variables of an enumerated type can
only be compared for equality against other variables of the same enumerated
type2, the decision procedure assigns the function symbol zE to its own singleton
subdomain, and encodes values of the enumerated type with exactly �lg(k)� bits.

The UCLID verification engine comprises of a symbolic simulator that can
be “configured” for different kinds of verification tasks, and a decision procedure
for CLU. The following verification methods are supported:

1. Bounded property checking: The system is symbolically simulated for a fixed
number of steps starting from a reset state. At each step, the decision pro-
cedure is invoked to check the validity of a safety property. If the property
fails, we generate a counterexample trace from the reset state.

2 Enforced by the type-checker in the UCLID front-end
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2. Inductive invariant checking: The system is initialized in a most general
state satisfying the invariant to be proved, symbolically simulated for one
step, and the invariant is checked on the resulting state.

3. Proving simulation diagrams, showing that a specification machine simulates
an implementation machine. This includes the method of correspondence
checking for superscalar processors, such as in the style of Burch and Dill [10].
UCLID allows the user to set the values of control variables at different steps
of the symbolic simulation. For example, in verifying pipelined processors,
this allows the user to specify the steps at which the pipeline must be flushed.

UCLID’s decision procedure checks the satisfiability of ¬Fbool using either a
BDD package or a SAT solver. A very useful feature of UCLID is its ability
to generate counterexample traces, like a model checker. A counterexample to a
CLU formula Fver is a partial interpretation I to the function and predicate sym-
bols in the formula, which is generated from a satisfying assignment to ¬Fbool . If
the system has been symbolically simulated for k steps, then the interpretation I
generated above can be applied to the expressions at each step, thereby resulting
in a complete counterexample trace for k steps.

We have used UCLID to model and check safety properties of a variety
of systems, including an out-of-order execution unit, a complex load-store unit
of an industrial microprocessor, a cache coherence protocol [12], a 5-stage DLX
pipeline, and the Alternating Bit Protocol. In particular, using bounded property
checking we can handle models with large state spaces such as the load-store
unit (which has about 150 state variables with over half of integer type, after
abstraction from RTL). The specifications of most of these models are available
on the UCLID website [21].

6 Decision Procedure Benchmarking

We have run experiments to compare UCLID’s decision procedure with decision
procedures for logics of comparable expressiveness, such as the Stanford Validity
Checker (SVC) [3]. SVC can decide a superset of CLU, including, in addition,
linear arithmetic and bit-vector arithmetic. Most of the example formulas were
generated by performing bounded property checking for some number of steps.
By varying the number of steps we can generate benchmark formulas of different
lengths. All experiments were run on an Intel Pentium III 550 MHz processor
with 256 MB of main memory running Linux. For satisfiability checking, we used
the mChaff version of the Chaff SAT solver [16].

Figure 2 shows empirical results comparing UCLID against SVC 1.1 over a
set of valid formulas. We can draw four conclusions. First, the conversion from
Fexp to Fbool agrees with the theoretical O(Nlg(N)) bound. Second, exploiting
positive equality has substantial benefits as deciding satisfiability of ¬Fbool is
much faster. Third, for the CLU logic, UCLID’s decision procedure scales better
than SVC, outperforming it for large formulas. The times for UCLID, even on
the largest formulas, are less than 2 minutes. Finally, the time taken in converting
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Fexp to Fbool dominates the time taken by Chaff for small formulas, but the
conversion overhead reduces for larger formulas.

7 Conclusions and Future Work

Extending EUF by constrained lambda expressions, ordering and counter arith-
metic substantially increases the range of systems that can be modeled without
losing the benefits of the efficient decision procedure based on PEUF. Moreover,
recent advances in building efficient Boolean satisfiability solvers lend support
to our approach of deciding formulas in richer logics via efficient translations to
propositional logic.

In terms of future work, we have extended the method of encoding equations
with Boolean variables to integer equations and inequalities with constant offsets.
We have built some support for quantifiers in CLU using automatic quantifier
instantiation heuristics. Finally, we are also working on extending the verification
capabilities of UCLID to handle some form of reachability analysis.

Model steps #(int #(p #(prop Fexp Fbool UCLID time (sec.) SVC time
vars) -vars) vars) size size Conversion SAT Total No + (sec.)

in Fexp in Fexp in Fbool (total)

Load-Store 6 33 14 76 218 942 1.15 0.06 1.21 1.66 10.86
Unit 8 70 23 180 1085 4481 7.81 0.61 8.42 11.61 1851.60

10 104 39 317 2467 16453 27.46 3.16 30.62 62.87 > 1 day
12 149 65 466 4553 54288 78.00 33.09 111.09 295.35 > 1 day

Out-of-order 7 39 19 79 735 3658 4.58 0.20 4.78 9.79 2.96
Execution 9 53 24 158 1970 13775 16.29 2.00 18.29 37.71 102.35

Unit 11 67 30 255 3929 37179 44.90 17.00 61.90 149.46 4257.38

Cache 10 26 10 75 1829 6254 5.97 0.32 6.29 26.50 11.49
Coherence 12 30 12 102 2782 12144 11.72 4.41 16.13 165.91 231.12
Protocol 14 34 14 133 3939 21468 20.16 40.92 61.08 > 1 hr. 6640.00

DLX – 105 73 205 639 9476 11.13 2.09 13.22 1897 20.58
Pipeline

Fig. 2. Experimental results for decision procedure. “steps” indicates the
number of steps of symbolic simulation, except when the formula was generated
in correspondence checking. Fexp denotes the original CLU formula and Fbool

the final propositional formula UCLID generates. “int-vars” is the number of
integer symbolic constants in Fexp after eliminating function applications, and
“p-vars” is number of those symbolic constants that correspond to p-function
applications. “UCLID time – Total” is the time taken by our decision procedure.
This time has two components: the time for converting Fexp into Fbool , labeled
“Conversion”, and the time taken by the SAT solver, labeled “SAT”. “UCLID
time – No +” indicates the time taken without exploiting positive equality in
the conversion. “SVC time” is the time taken by SVC 1.1 to decide Fexp
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