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Abstract. We discuss the security of the block cipher Camellia against
differential attack and linear attack. The security of Camellia against
these attacks has been evaluated by upper bounds of maximum differen-
tial characteristic probability (MDCP) and maximum linear characteris-
tic probability (MLCP) calculated by the least numbers of active S-boxes
which are found by a search method[2]. However, we found some trun-
cated differential paths generated by the method have wrong properties.
We show a new evaluation method for truncated differential and linear
paths to discard such wrong paths by using linear equations systems
and sets of nonzero conditions. By applying this technique to Camellia,
we found tighter upper bounds of MDCP and MLCP for reduced-round
Camellia. As a result, 10-round Camellia without FL/FL−1 has no dif-
ferential and linear characteristic with probability higher than 2−128.

1 Introduction

Camellia[1] is a block cipher which was suggested as a candidate for the NESSIE
project[14] and recently selected for the 2nd phase of the project, and also sug-
gested as a candidate for the CRYPTREC project in Japan[15]. The security of
Camellia has been studied by many researchers [2,4,5,7,13]. Among them, de-
signers of Camellia tried to evaluate its security against differential attack[3] and
linear attack[11] by showing the upper bounds of maximum differential char-
acteristic probability (MDCP) and maximum linear characteristic probability
(MLCP) for each reduced round Camellia. Since both of maximum differential
probability and maximum linear probability of Camellia’s S-boxes are 2−6, the
MDCP and MLCP are upper-bounded by (2−6)d and (2−6)l, respectively, where
d is the least number of differentially active S-boxes, and l is the least number
of linearly active S-boxes. The designers modified a search method for truncated
differential probability[9,10,12] to count the least number of active S-boxes and
then searched d and l [2]. The search algorithm works fast because it treats one
byte differences at once by using truncated differences [8]. They also showed that
12-round Camellia and 11-round Camellia without FL/FL−1 has no differential
or linear characteristic with probability higher than 2−128.

But at the FSE2001, Kanda pointed out that the search algorithm using
truncated differential theory is not enough to evaluate the security of Camellia
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because it has SPN-type round function [5]. In SPS-type round function like
E2[6], each split data in F-functions are substituted by the second substitution
layer before output. But SPN-type round function doesn’t have such a second
substitution layer. Therefore, if a truncated differential is applied to SPN round
function, a strong relation appears between each byte in the output of the F-
function. By approximating these relationships, he showed the upper bounds of
truncated differential probability of Camellia.

In this paper, we investigate these relationships more strictly. And we show
a new evaluation method exploiting the relations all over the cipher to count
the least number of active S-box more strictly. Then we apply the proposed
evaluation method to Camellia, and we show that the upper bounds of MDCP
and MLCP for Camellia are tighter than ever. We reveal that 10-rounds Camellia
without FL/FL−1 has no differential or linear characteristic with probability
higher than 2−128.

This paper is organized as follows: In Section 2 we give the description of
Camellia and the SPN-type round function treated in this paper. In Section 3 we
use an example to show a contradiction in the truncated differential path gener-
ated by Camellia’s evaluation method. In Section 4 we present a new method to
evaluate the validity of truncated differential paths. In Section 5 we apply the
proposed method to Camellia in practice, and show the revised upper bound of
MDCP and MLCP for Camellia. Section 6 summarizes our conclusion.

2 Preliminaries

2.1 Description of SPN Round Function and Camellia

Camellia [1] is a Feistel network block cipher with block size of 128 bits and
applicable to 128, 192 and 256 key bits. The round numbers are determined by a
key length, 18 rounds for 128 bits key, 24 rounds for 192 and 256 bits keys. The
F-function of Camellia is composed of a so-called SPN(Substitution Permutation
Network) type structure. Fig 1 shows the i-th round of a Feistel cipher with SPN
round function to be treated in this paper.

The block size is 2 × m × n bits. m × n bits of key and m × n bits of data
are inputted to the F-function in each round. The input data of F-function is
split into m pieces of n bits data, represented by Xi = (Xi[1], Xi[2], . . . , Xi[m]).
After the key adding operation, each data is inputted to non-linear bijective
function S : {0, 1}n → {0, 1}n, (1 ≤ j ≤ m). Then the output of S-functions
Si = (Si[1], Si[2], . . . , Si[m]) are inputted to linear transformation layer P :
{0, 1}mn → {0, 1}mn. Yi = (Yi[1], Yi[2], . . . , Yi[m]) represents an output vector
of the P-function at the i-th round. Yi is also an output of the F-function at the
i-th round.

In general, any linear transformation P can be represented by a matrix form.
In this paper, we specially concentrate on a linear transformation P which can
be represented by a square matrix of order m over GF (2n) produced by some
irreducible polynomial f defined in the cipher. Let Pmat = (aij) be a matrix
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Fig. 1. Feistel Network with SPN round function

of order m over GF (2n) corresponding to the P-function. By using Pmat, the
relation between Si and Yi can be described as follows:




Y [1]
Y [2]

...
Y [m]


 =




a11 a12 . . . a1m

a21 a22 . . . a2m

...
...

. . .
...

am1 am2 . . . amm







S[1]
S[2]

...
S[m]




In the context of the matrix multiplication, each n bits of data are compre-
hended as a bit representation of an element in GF (2n). Throughout this paper,
we treat n bits of data as a bit representation of an element in GF (2n). Thus
the exclusive-or operation ⊕ and add operation + of n bits of data are same.

In the case of Camellia, the round function can be viewed as n = 8,m = 8
SPN-type F-function, and the P-function is represented by the following matrix:

PCamellia =




1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 1
1 1 1 0 1 1 0 1
0 1 1 1 1 1 1 0
1 1 0 0 0 1 1 1
0 1 1 0 1 0 1 1
0 0 1 1 1 1 0 1
1 0 0 1 1 1 1 0




All elements in Camellia’s matrix can be represented by only two elements,
0 and 1, in GF (28).

Camellia also has a key scheduling algorithm, a key whitening layer and key-
dependent linear functions FL and FL−1 which are inserted every 6 rounds.
Details of these are described in [1]. In this paper, we assume that round keys
are independent and uniformly random.
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2.2 Definitions

We use the following definitions in this paper.

Definition 1. (Active S-box)
An S-box which has non-zero input difference is called differentially active
S-box, and an S-box which has non-zero output linear mask is called linearly
active S-box.

Definition 2. (χ function)
For any difference ∆X ∈ {0, 1}n, a function χ : {0, 1}n → {0, 1} is defined as
follows:

χ(∆X) =
{

0 if ∆X = {0}n

1 if ∆X �= {0}n

For any differential vector ∆X = (∆X[1], ∆X[2], . . . , ∆X[m]), ∆X[i] ∈ {0, 1}n

truncated difference of ∆X is defined as

δX = χ(∆X) = (χ(∆X[1]), χ(∆X[2]), . . . , χ(∆X[m]))

Definition 3. (truncated differential probability of F-function)[5] Let
δX, δY be input truncated difference and output truncated difference of F-
function , respectively. Then the truncated differential probability pF (δX → δY )
is defined as follows:

pF (δX → δY ) =

∑
χ(∆X)=δX

∑
χ(∆Y )=δY

Pr
X∈({0,1}n)m

[F (X) ⊕ F (X ⊕ ∆X) = ∆Y ]

#{∆X|χ(∆X) = δX}
where #{A} denotes the number of elements in set A.

Specially, in the case of SPN-type round function defined above and the out-
put difference of the S-function is assumed to be uniform[9,10,12], the truncated
differential probability p′

F (δX → δY ) can be defined approximately as follows:

p′
F (δX → δY ) =

#{∆S|χ(∆S) = δX, χ(P (t∆S)) = δY }
#{∆S|χ(∆S) = δX}

3 Wrong Truncated Differential Paths

The algorithm used in Camellia’s evaluation counts the least number of active
S-boxes for any round of Camellia[2]. Since the algorithm has exploited an ap-
proximation at the XOR operation in each round function, some of truncated
differential paths generated by the algorithm cannot exist in reality.

Before proposing a new judgment method for the existence of truncated
differential paths, we show an example of such wrong truncated differential
paths and consider contradictions between truncated differences.

A truncated differential path is defined as follows:
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Definition 4. A truncated differential path
For an r round Feistel block cipher, let δPR be a truncated difference of the right
half of plain text and δCR be a truncated difference of the right half of cipher
text. For each i-th round, let δXi, δYi be input truncated difference and output
truncated difference of F-function, respectively. Then the truncated differential
path TP is represented by:

TP = (δPR, δX1, δY1, . . . , δXr, δYr, δCR) ∈ ({0, 1}m)2r+2

The truncated difference of left half of plain text δPL and cipher text δCL
can be represented by δX1, δXr, respectively.

For the i-th round, shown as Fig.1, let δILi, δIRi, (2 ≤ i ≤ r) be the left and
right input truncated differences, respectively. And let δOLi, δORi, (1 ≤ i ≤
r−1) be left and right output truncated differences, respectively. Then there are
following relations between these truncated differences and truncated differential
path: δIRi = δXi−1, δILi = δORi = δXi, δOLi = δXi+1.

3.1 Algorithm to Find Truncated Differential Paths

We show an outline of an algorithm used in the designer’s evaluation to count the
least number of active S-boxes of Camellia without FL/FL−1[2]. This algorithm
is modified version of Matsui’s algorithm[9,10] which is originally developed to
estimates truncated differential probabilities of E2[6].

Algorithm
INPUT: a round number N
OUTPUT: a table of the least number of active S-boxes for all pattern of output

truncated difference δCR, δCL for N round Camellia without FL/FL−1.

1. Make a table (F-table) of truncated differential probability of F-function for
all δX and δY . The number of entries in the F-table is 216.

2. Using the F-table, make a table (R-table) of truncated differential probability
of the round function for all δIL, δIR and δCL. The number of entries in
the R-table is 224.

3. (Inductive step) Using a table of the least number of active S-boxes for N−1
round of Camellia and R-table, calculate the least number of the active S-
boxes for N round’s output δCL, δCR and store it in a table. The number
of entries in the table is 216.

This algorithm only counts the least number of active S-boxes for each output
truncated difference. To recover and to evaluate truncated differential paths
which have the least number of active S-boxes, we have modified the algorithm
additionally as follows.

– In Step 2, store all candidates of the output truncated difference of F-
function.

– In Step 3, when the N round’s output is searching, store all candidates of
the N −1 round’s output truncated difference which realize the least number
of active S-boxes.
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3.2 Connection Errors in Truncated Differential Paths

We show an example of a truncated differential path holding wrong properties.
The search algorithm for the least number of active S-boxes found a Camellia’s
truncated differential path whose consecutive 3 rounds have truncated differen-
tial as in Fig. 2.

F

δIRi-2=(00000000)

δXi=(00010000)

δYi-2=(11010011)

F

F

δXi-2=(10101100)

δOLi=(00000000)

δXi-1=(11010011)

δIRi=(11010011)δYi=(11010011)

Round i-2

Round i-1

Round i

δYi-1=(10111100)

Fig. 2. A Example of Wrong Truncated Differential Path

The search algorithm exploits the following XOR rule of truncated difference
based on a property of truncated difference.

XOR rule of truncated difference

δOL[j] =




0 if δIR[j] = δY [j] = 0
∗ if δIR[j] = δY [j] = 1
1 else

(1)

for (1 ≤ j ≤ m). Value ∗ means arbitrary selection of 0, 1.

Obeying above rule, the XOR operation of δIRi = (11010011) and δYi =
(11010011) generates δOLi = (∗ ∗ 0 ∗ 00 ∗ ∗). Thus δOLi = (00000000) can be
obtained by the search algorithm.

But by considering a relationship of each output difference of F-function δYi

and δYi−2, we can prove such an XOR operation cannot be realized.

Proof. From δOLi = (00000000) and δIRi−2 = (00000000), we get an equation
of differences ∆Yi = ∆Yi−2. And from the linear relation ∆Y = P (∆S), then
∆Si[j] = ∆Si−2[j]. But considering given input truncated differences of S4 in
both round, we get ∆Si[4] �= ∆Si−2[4] because δXi[4] = 1 and δXi−2[4] = 0.
This is contradiction. Also in S1, S3, S5, S6, there are contradictions. Thus such
a path cannot exist in reality. �
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From above observations, wrong truncated paths have some contradictions
between input and output truncated differences of F-functions for every two
round. In the next section, we propose an algorithm which determines if the
target truncated differential path is wrong or not by checking solutions of the
linear equations system constructed from the path.

4 Validity Checking Method for Truncated Differential
Paths

We show a new algorithm to check the validity of truncated differential paths.
This algorithm exploits a method of checking solutions of a linear equations
system which is constructed from a truncated differential path. The basic steps
of checking the validity of a truncated differential path is as follows:

– Represent all differences in Feistel network by linear forms using output
difference of S-boxes

– Construct two linear equations systems and two sets of nonzero conditions
using truncated differential values

– Check solutions of each linear equations system under corresponding nonzero
conditions, and determine the validity of the truncated differential path.

4.1 Linear Forms Representation of Feistel Block Cipher

All differences in a Feistel cipher with SPN round function defined in Section
2 can be represented in linear form using differences ∆PL,∆PR and ∆Si. To
show this, we divide the Feistel block cipher in two parts the left chain and
the right chain as shown in Fig.3.

...

...

F F F F F

left chain

right chain

PR

PL
X1 Y2 X3 Xr-1 Yr

Y1 X2 Y3 Yr-1 Xr

CL

CR

(r: even)

Fig. 3. The left chain and the right chain

Without loss of generality, we assume that the round number r is even.
The left chain is a data path which starts from left half of plain text PL, while

the right chain starts from right half of plain text PR. In each chain, output of
F-functions Yi’s are added to the ongoing data. The left chain includes the data
X2i−1, Y2i, CR(1 ≤ i ≤ r

2 ), The right chain includes PR, Y2i−1, X2i(1 ≤ i ≤ r
2 ).

From these definitions we can show the following lemma.
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Lemma 1.
Let ∆X1[j](= ∆PL[j]), ∆PR[j](1 ≤ j ≤ m) be variables which are set differ-
ences of plain text. And Let ∆Si[j] be variables which are set differences of the
output of j-th S-box Sj for i-th round (1 ≤ j ≤ m, 1 ≤ i ≤ r), respectively. All
differential data in the left chain are represented by linear form of elements in
∆Xi, ∆S2i(1 ≤ i ≤ r

2 ). All differential data in the right chain are represented by
linear form of elements in ∆PR,∆S2i−1(1 ≤ i ≤ r

2 ).

Proof. In the right chain, we show that ∆PR,∆Y2i−1and∆X2i are represented
by linear form. ∆PR are monomials. And using elements in linear transformation
matrix Pmat, differences of output of F-functions ∆Y2i−1[j](1 ≤ i ≤ r/2, 1 ≤ j ≤
m) can be described as following linear form:

∆Y2i−1[j] =
m∑

k=1

ajk∆S2i−1[k] (2)

And the difference of the input data of the 2i-th round ∆X2i[j](1 ≤ i ≤ r/2, 1 ≤
j ≤ m) has the following equation:

∆X2i[j] = ∆PR[j] +
i∑

l=1

∆Y2l−1[j] (3)

By combining (2) and (3), ∆X2i[j] has the following linear form:

∆X2i[j] = ∆PR[j] +
i∑

l=1

m∑
k=1

ajk∆S2l−1[k] (4)

All differential data in the left chain are also represented in same manner. �


From the viewpoint of linear form representation, the sets of variables used
in both chains are completely separated. The left chain uses a set of differential
variables (∆X1, ∆S2, ∆S4, . . . , ∆Sr) , and the right chain uses a set of differ-
ential variables (∆PR,∆S1, ∆S3, . . . , ∆Sr−1). Thus, we can treat both chains
separately. Then we can describe the relation between the variables and the
differences in the right chain as follows.




t∆PR
t∆Y1
t∆X2
t∆Y3
t∆X4

...
t∆Yr−3
t∆Xr−2
t∆Yr−1
t∆Xr




=




I 0 0 . . . 0 0
0 Pmat 0 . . . 0 0
I Pmat 0 . . . 0 0
0 0 Pmat . . . 0 0
I Pmat Pmat . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . Pmat 0
I Pmat Pmat . . . Pmat 0
0 0 0 . . . 0 Pmat

I Pmat Pmat . . . Pmat Pmat







t∆PR
t∆S1
t∆S3

...
t∆Sr−3
t∆Sr−1



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I denotes a unit matrix of order m, 0 in the above matrix denotes zero matrix
of order m. The total number of linear forms are m(r+1), and the total number
of variables are m(r/2 + 1).

The data in left chain (∆X1, ∆Y2, ∆X3, . . . , ∆Yr, ∆CR) can be expressed
by using (∆X1, ∆S2, ∆S4, . . . , ∆Sr) in the same way. Thus, all differences in
the Feistel cipher with SPN round function defined in this paper have been
represented by linear forms.

4.2 Evaluation Algorithm for Truncated Differential Paths

Let TP be a r round truncated differential path. To evaluate TP , we check
whether there exist any differential characteristic which follow the truncated
differential path TP .

For the right chain, truncated differences δX1, δX3, . . . , δXr−1 in TP deter-
mine whether S-boxes, whose outputs are added to the right chain, are active
or not. If truncated difference δXi[j] = 0 the output differences of j-th S-box
in round i is always 0. Thus we can remove differential variables of such non
active S-boxes from all linear forms. And if δPR[i] = 0, we can also remove the
differential variable ∆PR[i] in linear forms. In this way, we obtain reduced linear
forms.

Next we construct linear equations systems and sets of linear conditions.
In the right chain, truncated differences δY1, δY3, . . . , δYr−1 determine whether
differential data of F-function’s output have a differential value or not. Let lfYi[j]
be a reduced linear form of differential data ∆Yi[j]. If δYi[j] = 0, we get a linear
equation lfYi[j] = 0. And if δYi[j] = 1, we get a nonzero condition lfYi[j] �= 0. The
other reduced linear forms ∆PR,∆X2, ∆X4, . . . , ∆Xr in the right chain can be
sorted according to their truncated differential values in same way. Letting z be
the total number of 0’s in truncated differences δPR, δY2i−1, δX2i, (1 ≤ i ≤ r/2),
we get a linear homogeneous equations system which has z equations and a set
of nonzero conditions which has m(r + 1) − z conditions for the right chain.

Definition 5. Let F be a r round Feistel cipher with SPN round function de-
fined in Section 2, and let TP be a truncated differential path of F . We define
LESRight, LESLeft as equation systems made of TP for the right chain and
the left chain, respectively. And we define NCRight, NCLeft as sets of nonzero
conditions made of TP for the right chain and the left chain, respectively.

Then we evaluate both chains by using LESRight,LESLeft,NCRight, NCLeft.
Moreover, we use the following useful definition.

Definition 6. (reduced row-echelon matrix) A matrix is a reduced row-
echelon matrix if

– All rows of zero (if exists) are at the bottom of the matrix.
– The first nonzero number in a row is a 1 (leading 1).
– Each leading 1 is to the right of the leading 1’s in the rows above it.
– Each column that contains a leading 1 has zeros everywhere else.
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Any matrix can be transformed into an unique reduced row-echelon ma-
trix by performing a finite sequence of elementally row operations (sweep out
method). Letting EM be the set of all matrices which are obtained by perform-
ing elementally row operations on M , every matrix in EM has the same reduced
row-echelon matrix M ′.

The following important properties related to a reduced row-echelon matrix
and a homogeneous linear equations system are obtained.

Property 1. (partial solution) Let Mx = 0 be a matrix and vector represen-
tation of a linear homogeneous equations system with a vector of variables
x = t(x1, x2, . . . , xk). And let M ′ be a reduced row-echelon matrix obtained
from M . If there is any row containing only a leading 1 in M ′. Letting i be the
column index of the leading 1, the system has a solution xi = 0.

Property 2. (property of kernel) Let Mx = 0 be a matrix and vector represen-
tation of a linear homogeneous equations system. And let Z = {z|Mz = 0} be
a set of solutions. And let M ′ be a reduced row-echelon matrix obtained from
M . Let v1, . . . , vr be each nonzero row vector in M ′. Let S be a subspace
spanned by (v1, . . . , vr). Then vS ∈ S, z ∈ Z satisfies vS · z = 0. (· denotes
inner products of vectors.)

Using the above properties we construct an evaluation algorithm as follows.

Algorithm
INPUT: LESRight, NCRight, LESLeft, NCLeft

OUTPUT: “wrong path” or “OK”

1. Represent linear equations system LESRight in matrix and vector form as
follows:

MRight xRight = 0

2. Perform elementary row operations on matrix MRight, and get a reduced
row-echelon matrix M ′

Right

3. If there is any row containing only leading 1 in M ′
Right, output “wrong

path”; else go to the next step.
4. For each nonzero condition nc ∈ NCRight do the following:

a) Represent nonzero condition nc by an inner product of vectors: n·xRight

b) Let v1, . . . , vr be nonzero row vectors in M ′
Right. If vector n can be

represented by a linear combination of v1, . . . , vr,

n = c1v1 + . . . + crvr

where ci ∈ GF (2n), (1 ≤ i ≤ r),
then output “wrong path”; else go to the next step.

5. For LESLeft and NCLeft, apply the same steps Step 1. ∼ Step 4.
6. Output “OK”
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In Step 3. if such a row containing only a leading 1 exists, the corresponding
variable in xRight has to be always 0 (property 1). But all variables in xRight

have been selected to have a nonzero value, the solution cannot be realized.
In Step 4.(b) the check whether vector n can be represented as a linear combi-

nation can be achieved by easy row operations of the matrix because v1, . . . , vr

are linearly independent and the vectors have the 4th condition of row echelon
matrix. And if such a linear combination exists, nc must have difference 0 in
spite of nonzero condition (property 2). This contradiction means the path is
wrong.

4.3 Complexity

Let r be the round number of truncated differential path, and let m be a number
of split data in F-function. Each chain has a m(r+1)×mr matrix of linear forms.
If LESRight has x rows, then NCRight has m(r + 1) − x rows. Complexity to
obtain reduced row-echelon matrix of LESRight is proportional to xm2r2. And
complexity to check NCRight rows is proportional to mrx(m(r + 1) − x). Since
we assume that x ≈ mr/c with some constant c, the total complexity of the
proposed method is O(m3r3).

4.4 Expansion to Truncated Linear Paths

The proposed method is also applicable to evaluation of truncated linear paths.
Let ΓS be an input linear mask and let ΓY be an output linear mask of linear
transformation layer P . Then there is a diffusion function P ∗ satisfying ΓS =
P ∗(ΓY ) determined by P . If the diffusion function P ∗ can be expressed as a
square matrix of order m on GF (2n), the proposed algorithm can be applied to
truncated linear paths of the Feistel cipher exploiting the dual property between
differential and linear mask[5].

In case of Camellia, matrix P ∗ can be expressed as tPCamellia which is a
square matrix of degree m on GF (2n). Thus, our method can be applied to
evaluation for both truncated differential and linear paths for Camellia.

5 Evaluation for Camellia

We applied the proposed method to block cipher Camellia to reevaluate the
upper bound of MDCP and MLCP. To obtain corrected values of the least num-
bers of active S-boxes, we also extracted truncated paths which have more than
the least number of active S-boxes searched by the algorithm used in designer’s
(previous) evaluation. We used the following definitions and lemma to extract
such truncated paths.

Definition 7. Let Lact(C,R) be the least number of active S-boxes of R round
truncated path with output truncated difference C in the previous evaluation.
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The algorithm for counting the least number of active S-boxes outputs
Lact(C,R) for all C ∈ {0, 1}16 with any round number R.

Definition 8. Let Cipher(ACT,R) = {c | Lact(c,R) = ACT}. And let
Paths(C,ACT,R) be a set of all R round truncated differential paths which have
ACT active S-boxes with output truncated difference C in the previous evalua-
tion. And let Paths(ACT,R) be a set of all R round truncated differential paths
which have ACT active S-boxes in the previous evaluation.

Lemma 2. Letting α be the least number of active S-boxes for r round Camellia,
truncated differential paths which have β(≥ α) active S-boxes can be written as
follows:

Paths(β, r) = {p | p ∈ Paths(c, β, r), c ∈
β⋃

i=α

Cipher(i, r)} (5)

Proof. Truncated differential paths which have β active S-boxes are also written
as follows:

Paths(β, r) = {p | p ∈ Paths(c, β, r), c ∈ {0, 1}16} (6)

Let D =
⋃∞

i=β+1 Cipher(i, r). For d ∈ D, we get following relations:

Paths(d, β, r) = ∅ (7)

Thus, we can reduce the candidates for c in (6) then obtain the equation (5). �

By using the above lemma, we obtain truncated paths which have variable

number of active S-boxes. To obtain Paths(c, β, r) of c ∈ Cipher(γ, r) where
β > γ, we extract paths by considering replacement of internal r′ round paths
Paths(c′, γ′, r′) in Paths(c, γ, r) as subset of Paths(γ′ + β − γ, r′), which are
connectable to r′ + 1 round’s output, for (1 ≤ r′ ≤ r − 1).

5.1 Result

We show the result of our re-estimation of the upper bound of MDCP and MLCP
in Table 1∼3.

Tables show the evaluation results of truncated differential paths and trun-
cated linear paths, respectively. The first row of each table indicates round num-
ber of reduced round Camellia without FL/FL−1(we call it Camellia*). The
rows below the first are divided into three parts. The upper part, the middle
part and the lower part include information about the least number, the sec-
ondary least number, and the tertiary or the tertiary and the forth least number
of active S-boxes, respectively. Each part has three rows. The first one indicates
the number of active S-boxes, the second one indicates the number of truncated
differential or linear paths which are evaluated to have the above number of ac-
tive S-boxes by the previous(old) evaluation method. The last row of each part
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Table 1. Check Result of Truncated Differential Paths (1∼12 rounds)

Round 1 2 3 4 5 6 7 8 9 10 11 12
Active S-box 0 1 2 7 9 11 13 15 18 21 22 25
Path Number 255 16 8 1368 160 8 16 48 48 320 4 64
OK 255 16 8 1328 80 0 0 0 0 0 0 0
Active S-box 1 2 3 8 10 12 14 16 19 22 23 26
Path Number 19440 292 0 9817 5564 3136 1160 368 2428 14732 224 1736
OK 19440 292 0 7431 4408 1008 196 36 0 156 0 0
Active S-box 2 3 4 9 11 13 15 17 20 23 24 27
Path Number 182228 5000 112 114256 66624 41576 16748 4360 42456 302784 4784 38672
OK 182228 5000 112 72432 17772 4336 1568 328 812 2176 16 0

Table 2. Check Result of Truncated Linear Paths (1∼12 rounds)

Round 1 2 3 4 5 6 7 8 9 10 11 12
Active S-box 0 1 2 6 9 11 13 14 18 20 22 25
Path Number 255 16 8 64 480 8 16 4 180 16 4 128
OK 255 16 8 16 240 0 0 0 0 0 0 0
Active S-box 1 2 3 7 10 12 14 15 19 21 23 26
Path Number 19440 292 0 1952 8732 4540 1208 24 4968 1040 448 3188
OK 19440 292 0 1656 4864 1948 192 0 144 0 0 0
Active S-box 2 3 4 8 11 13 15 16/17 20 22 24 27
Path Number 182228 4960 112 9733 76820 52072 21956 184/8142 63128 28640 10640 83800
OK 182228 4960 112 7327 26748 5680 5920 0/1560 4992 792 36 0

indicates the number of truncated differential or linear paths which are evaluated
as “OK” by proposed method.

In 6 ∼ 12 rounds Camellia*, truncated differential and linear paths which are
evaluated to have the least number of active S-boxes are all evaluated as wrong.
At some rounds, all truncated paths with the secondary or the tertiary number
of active S-boxes are evaluated as wrong.

The left side of table 3 shows new upper bounds of MDCP and MLCP for
Camellia and Camellia* while the right side shows the old result in [2]. Letting
a be the number of active S-boxes, each probability is calculated by (2−6)a. In
NEW table, 0 denotes the upper bounds which are updated. All upper bounds
of more than 6 round Camellia and Camellia* are as 2−6 ∼ 2−18 times low
as previous upper bounds. The horizontal lines between upper bounds denotes
probability 2−128. Thus, we obtain the new result that any characteristics of 10
rounds Camellia* cannot be distinguishable from random permutations.



Improved Upper Bounds 141

Table 3. Revised Upper bounds MDCP and MLCP

NEW OLD
Differential Linear Differential Linear

Camellia Camellia* Camellia Camellia* Camellia Camellia* Camellia Camellia*

1 1[0] 1[0] 1[0] 1[0] 1[0] 1[0] 1[0] 1[0]

2 2−6
[1] 2−6

[1] 2−6
[1] 2−6

[1] 2−6
[1] 2−6

[1] 2−6
[1] 2−6

[1]

3 2−12
[2] 2−12

[2] 2−12
[2] 2−12

[2] 2−12
[2] 2−12

[2] 2−12
[2] 2−12

[2]

4 2−42
[7] 2−42

[7] 2−36
[6] 2−36

[6] 2−42
[7] 2−42

[7] 2−36
[6] 2−36

[6]

5 2−54
[9] 2−54

[9] 2−54
[9] 2−54

[9] 2−54
[9] 2−54

[9] 2−54
[9] 2−54

[9]

6 �2−72
[12] �2−72

[12] �2−72
[12] �2−72

[12] ⇐= 2−66
[11] 2−66

[11] 2−66
[11] 2−66

[11]

7 �2−78
[13] �2−84

[14] �2−78
[13] �2−84

[14] 2−72
[12] 2−78

[13] 2−72
[12] 2−78

[13]

8 �2−78
[13] �2−96

[16] �2−78
[13] �2−102

[17] 2−72
[12] 2−90

[15] 2−72
[12] 2−84

[14]

9 �2−84
[14] �2−120

[20] �2−84
[14] �2−114

[19] 2−78
[13] 2−108

[18] 2−78
[13] 2−108

[18]

10 �2−114
[19] �2−132

[22] �2−108
[18] �2−132

[22] 2−108
[18] 2−126

[21] 2−102
[17] 2−120

[20]

11 �2−126
[21] �2−144

[24] �2−126
[21] �2−144

[24] 2−120
[20] 2−132

[22] 2−120
[20] 2−132

[22]

12 �2−144
[24] − �2−144

[24] − 2−132
[22] − 2−132

[22] −

Note: The numbers in brackets are the number of active S-boxes.

6 Conclusions and Future Research

In this paper we proposed a new algorithm to evaluate truncated differen-
tial/linear paths whether they are wrong or not. This algorithm is applicable
to Feistel ciphers whose data are represented by linear forms of the output dif-
ference of S-boxes and the difference of plain text. By applying the proposed
algorithm to evaluate the security of Camellia, we found tighter upper bounds
of MDCP and MLCP because the least number of active S-boxes are updated.
It is revealed that Camellia has a stronger immunity against differential attack
and linear attack than before.

Note that even though a truncated differential path is not judged as a wrong
path by proposed algorithm, it is not guaranteed that the path exists in reality.
Because we have only excluded wrong paths in the context of truncated differ-
ential, we haven’t taken into consideration of the variety of output differences
of active S-boxes for fixed input difference. The direction of next research con-
tains to find the MDCP, MLCP and paths which realize them by combining our
proposed evaluation method and the properties of S-boxes.
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