
Linearity Properties of the SOBER-t32 Key
Loading� ��

Markus Dichtl and Marcus Schafheutle

Siemens AG, Corporate Technology, 81730 München, Germany,
Markus.Dichtl,Marcus.Schafheutle@mchp.siemens.de

Abstract. In the course of the evaluation of the stream cipher SOBER-
t32 submitted to NESSIE, a correlation between initial states has been
found for related keys. With high probability some sums of bits of the
initial state after key loading do not change their value when a bit of the
key is inverted. This holds also for the loading of frame keys. It is shown
that the required condition for the frame keys is met very naturally when
using counters as frame keys. The linearity properties of the SOBER-t32
key loading are caused by non-optimal diffusion of the non-linear filter
function of the cipher.

1 Introduction

SOBER-t32 is a synchronous additive stream cipher designed for key sizes up to
256 bits. SOBER-t32 was submitted to NESSIE by Philip Hawkes and Gregory
Rose at Qualcomm Australia. NESSIE (New European Schemes for Signatures,
Integrity, and Encryption) is a project within the IST program of the European
Commission. Its main purpose is to put forward a portfolio of strong crypto-
graphic primitives that has been obtained after an open call and been evaluated
using a transparent and open process.

2 Description of SOBER-t32

The stream cipher is constructed from a linear feedback shift register (LFSR),
a non-linear filter (NLF), and a form of irregular decimation, called stuttering.
SOBER-t32 outputs the key stream as 32-bit blocks. The LFSR is of length 17
and operates over GF (232).

The NLF consists of XOR (⊕), addition modulo 232 (�), and a 32-to-32 bit
transformation called f -function. The output of the non-linear filter at time t is
described as

NLF (t) = ((f(st � st+16)� st+1 � st+6)⊕ const)� st+13
� The work described in this paper has been supported by the Commission of the

European Communities through the IST program under contract IST-1999-12324.
�� The information in this document is provided as is, and no warranty is given or

implied that the information is fit for any particular purpose. The user thereof uses
the information at its sole risk and liability.

J. Daemen and V. Rijmen (Eds.): FSE 2002, LNCS 2365, pp. 225–230, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

226 M. Dichtl and M. Schafheutle

where st+k is the content of the k’th shift register cell at time t, const is a session
key dependent constant value, derived during the key loading phase.

The function f uses the 8 most significant bits of its input as an input to a
lookup table S-box with 32 bits of output. The 24 least significant bits of the
input are just XOR-ed to the output of the S-box in order to obtain the result
of the function f .

The stuttering decimates the output of the NLF in an irregular fashion. For
the stuttering of SOBER-t32 it can be shown that there is an average of 12

25 key
stream output per clock of the LFSR.

With the size of the LFSR and the size of the key dependent parameter const,
it is obvious that the initial state size of SOBER-t32 is 217·32+32.

A detailed specification of SOBER-t32 can be found at the NESSIE Web site
[NES].

3 SOBER-t32 Key Loading

The key loading determines the initial state of the LFSR and the value of const
from the key. It relies on the operations “Include()” and “Diffuse()”.

Include(X) adds the 32-bit word X to the LFSR cell r15. Diffuse() clocks
the register, computes the output of the NLF, and XORs this output to the
LFSR cell r4.

For key loading, the key is divided into 32-bit words. The Include() operator
is applied to each of these words, and each Include() operation is followed by
a Diffuse() operation. As an immediate consequence one observes that the key
words included last are diffused less than those included first. The Include() op-
eration is also applied to the key length in bytes. Then the Diffuse() operation
is applied 17 more times.

4 Diffusion Properties of the NLF

A closer inspection of NLF shows that its diffusion properties are not ideal.
Modifications in the most significant 8 bits of the input of f are very efficiently
diffused over the output word, whereas for modifications in the 24 least significant
bits of the input of f no diffusion by f occurs. The only way of diffusion for these
bit positions is by carry propagation. However, carry chains tend to be short.
Burks, Goldstine, and von Neumann found out in 1946 [BGvN46] that on average
the longest carry chain in adding k-bit numbers is of length log2(k). Hence carry
badly propagates bit modifications to bit positions far away from the bit position
of the modification.

Nevertheless long carry chains occur from time to time. This explains why the
linearity properties of the SOBER-t32 key loading described in the next section
do not hold always, but only with a very high probability. The low probability
long carry chains provide enough diffusion to disturb the linear relationships
occasionally.

Linearity Properties of the SOBER-t32 Key Loading 227

A lot of diffusion occurs by the clocking of the LFSR. However, this linear
operation in GF (232) is also linear in GF (2).

The linear recurrence over GF (232) of the SOBER-t32 LFSR can be shown,
see [Her85], to be equivalent to implementing 32 parallel bit-wise LFSRs, each
of length 17 ·32 = 544. These linear recurrences are identical, represented by the
primitive polynomial p32(x) over GF (2):

p32(x) = 1 + x
17 + x

19 + x
21 + x

23 + x
25 + x

27 + x
29 + x

30 + x
31 + x

33 + x
34 + x

35 + x
37 + x

38

+ x
39 + x

41 + x
42 + x

46 + x
47 + x

49 + x
50 + x

51 + x
53 + x

54 + x
55 + x

56 + x
57 + x

58

+ x
59 + x

61 + x
62 + x

63 + x
64 + x

65 + x
66 + x

67 + x
68 + x

70 + x
74 + x

76 + x
77 + x

78

+ x
79 + x

84 + x
85 + x

87 + x
89 + x

90 + x
91 + x

92 + x
95 + x

97 + x
98 + x

100 + x
101 + x

102

+ x
109 + x

111 + x
113 + x

114 + x
117 + x

118 + x
121 + x

125 + x
130 + x

131 + x
132 + x

133

+ x
137 + x

138 + x
140 + x

142 + x
143 + x

145 + x
146 + x

147 + x
148 + x

149 + x
151 + x

153

+ x
156 + x

160 + x
163 + x

164 + x
165 + x

172 + x
173 + x

175 + x
176 + x

177 + x
179 + x

180

+ x
184 + x

185 + x
186 + x

190 + x
191 + x

193 + x
198 + x

200 + x
201 + x

202 + x
206 + x

207

+ x
208 + x

209 + x
210 + x

211 + x
212 + x

213 + x
219 + x

220 + x
221 + x

225 + x
227 + x

229

+ x
231 + x

232 + x
233 + x

235 + x
236 + x

238 + x
239 + x

240 + x
241 + x

242 + x
244 + x

245

+ x
246 + x

247 + x
249 + x

252 + x
255 + x

258 + x
262 + x

263 + x
264 + x

265 + x
266 + x

277

+ x
279 + x

281 + x
284 + x

285 + x
288 + x

289 + x
290 + x

291 + x
292 + x

294 + x
296 + x

300

+ x
301 + x

302 + x
304 + x

306 + x
307 + x

309 + x
310 + x

316 + x
321 + x

323 + x
324 + x

325

+ x
327 + x

334 + x
335 + x

336 + x
337 + x

340 + x
341 + x

342 + x
344 + x

345 + x
346 + x

347

+ x
350 + x

352 + x
355 + x

357 + x
360 + x

361 + x
362 + x

363 + x
364 + x

365 + x
368 + x

373

+ x
377 + x

379 + x
381 + x

382 + x
383 + x

385 + x
388 + x

389 + x
390 + x

391 + x
392 + x

394

+ x
398 + x

403 + x
404 + x

405 + x
406 + x

407 + x
413 + x

416 + x
420 + x

421 + x
422 + x

425

+ x
426 + x

428 + x
430 + x

431 + x
433 + x

435 + x
436 + x

437 + x
438 + x

440 + x
441 + x

442

+ x
445 + x

446 + x
447 + x

448 + x
449 + x

450 + x
453 + x

458 + x
461 + x

463 + x
465 + x

466

+ x
469 + x

471 + x
473 + x

474 + x
477 + x

478 + x
479 + x

481 + x
483 + x

484 + x
487 + x

488

+ x
489 + x

490 + x
493 + x

494 + x
496 + x

499 + x
500 + x

503 + x
505 + x

506 + x
508 + x

511

+ x
513 + x

514 + x
516 + x

519 + x
521 + x

524 + x
527 + x

529 + x
532 + x

536 + x
540 + x

544

5 Linearity Properties of the SOBER-t32 Key Loading

The insufficient diffusion explained in the previous section is the reason for the
existence of sums of bits from the initial state of the shift register which keep
their value if some bit of the key is inverted. We denote the bits of the initial
state of the shift register by b1, b2, . . . where b1 is the least significant bit of the
17th LFSR cell, b32 the most significant bit of this word, b33 the least significant
bit of the 16th LFSR cell, We computed the sum

b542+b537+b531+b530+b529+b528+b527+b525+b524+b520+b519+b518+b516+
b514+b513+b478+b477+b474+b473+b471+b470+b469+b466+b465+b383+b382+
b381+b380+b379+b377+b371+b370+b369+b363+b362+b361+b360+b356+b256+
b254 + b250 + b249 + b248 + b247 + b241 + b238 + b235 + b234 + b232 + b231 + b229 +
b228 + b125 + b122 + b119 + b118 + b117 + b115 + b112 + b111 + b109 + b108 + b104 +
b103 + b102 + b100 + b98 + b97 + b62 + b61 + b58 + b57 + b55 + b54 + b53 + b50 + b49

228 M. Dichtl and M. Schafheutle

in GF (2) for 100000 keys chosen randomly. In 99957 cases the value of this
sum remained the same when the least significant bit of the last key word was
inverted.

We also found 16 other sums of this kind and 7 bit sums whose values change
with high probability when the least significant bit of the last key word is toggled.
In all cases the success probability determined from 100000 trials was at least
99.4 percent.

Of course, only linearly independent solutions were considered. By forming
linear combinations, many more sums of this kind could be found, which do not
provide additional information.

We also identified sums whose values remain invariant under the inversion of
other key bits with high probability or change their value with high probability.
In total, we found 249 such equations with a success probability of at least 98.6
percent. Again, these probabilities were determined by using 100000 random
keys.

For each of the 11 least significant bits of the last key word such sums were
found. Apparently from more significant bit positions, the carry chains reach
the 8 most significant bit positions with sufficient probability to provide enough
non-linear diffusion to destroy such linearity properties. For 8 of the 9 least
significant bit positions of the second to last key word such sums exist as well.

For earlier key words, the number of applications of the Diffuse() operation
seems to be sufficiently high in order to prevent the existence of such sums.

One way to strengthen SOBER-t32 against the linearity properties described
is to increase the number of final Diffuse() steps for key loading. Our experi-
ments showed 21 final steps instead of 17 to be sufficient.

6 Linearity Properties of the SOBER-t32 Rekeying

For some applications it is convenient to be able to generate more than one key
stream from one key. To make the streams different, SOBER-t32 can process
an initialization vector, called frame key, which can be assumed to be public.
Ideally, the streams generated with the same key but different frame keys should
be completely independent. We are not able to show correlations between the
streams generated, but between the initial states derived from different frame
keys but the same key. Since the loading of the frame key is very similar to the
key loading, it does not come as a big surprise that sums of the kind described
also exist for the frame key loading.

First the cipher key is loaded, then the frame key. The only difference is that
for key loading the value of const in the NLF is zero. For frame key loading the
const value determined in the key loading phase is used. (This values is also used
for the actual generation of the stream.)

The following sum of bits of the initial LFSR state almost never changed its
value when the second to least significant bit of the to last key frame word was
toggled:

Linearity Properties of the SOBER-t32 Key Loading 229

b511+ b508+ b507+ b506+ b505+ b501+ b494+ b492+ b491+ b488+ b487+ b486+
b448 + b447 + b445 + b444 + b441 + b440 + b437 + b436 + b434 + b433 + b432 + b431 +
b428 + b427 + b425 + b422 + b417 + b351 + b348 + b346 + b345 + b344 + b341 + b339 +
b336 + b335 + b334 + b333 + b331 + b330 + b325 + b224 + b222 + b221 + b218 + b217 +
b215+ b213+ b211+ b209+ b205+ b203+ b202+ b201+ b199+ b198+ b195+ b193+ b96+
b93+ b91+ b90+ b88+ b84+ b82+ b81+ b80+ b79+ b78+ b73+ b72+ b71+ b65+ b32+
b31+b29+b28+b25+b24+b21+b20+b18+b17+b16+b15+b12+b11+b9+b6+b1

The value of the sum did not change in 99806 cases of 100000 where both key
and frame key were chosen randomly. In total, 28 sums with probabilities above
99 percent were identified.

Our experiments suggest that the non-zero values of the variable const cause
the diffusion for the key frame loading to be a little better than for the key
loading, where const is zero.

Whereas it might look quite artificial that single key bits should be inverted as
required for the linearity properties of the key loading described in the previous
section, the inversion of individual bits of key frame bits occurs in real life. Most
commonly, the key frame is just a binary counter. Counter states where the only
bit difference is at a bit position of low significance occur very frequently. We
have seen in the case of the key loading that only bit positions of low significance
can be inverted with good probabilities for the linearity properties, and this holds
also for the key frame loading. So when using the counter method for key frames,
invariant sums of initial state bits occur frequently.

7 Relation to Other Attacks

The key loading of previous versions of SOBER has been the base for earlier
attacks. In the original version of SOBER, the key loading was linear. This was
exploited by the attack of Bleichenbacher and Patel [BP99].

In the description of the NESSIE submission of SOBER-t32 [NES] a paper
by Bleichenbacher, Patel, and Meier [BPM] is quoted in which a correlation
between initial states of SOBER-II (an attempt to fix the problems of SOBER)
for different key frames but the same initial key material was found. The updated
key and frame loading used in SOBER-t32 is claimed by the authors of the cipher
to destroy this correlation. Above, we have shown another correlation that they
did not succeed to destroy.

8 Applicability of the Linearity Properties to SOBER-t16

The linearity properties we identified for SOBER-t32, do not exist in SOBER-
t16. SOBER-t16 is very similar to SOBER-t32, but based on 16-bit words. As
we pointed out above, the non-linear diffusion of SOBER-t32 relies on carry
propagation. This also holds for SOBER-t16, but shorter carry chains, which
occur with higher probability, are sufficient for the non-linear diffusion within the
16-bit words. If the key loading of SOBER-t16 is reduced to 15 final Diffuse()
operations instead of 17, the linearity properties appear.

230 M. Dichtl and M. Schafheutle

9 Conclusion

We have found high probability correlations of sums of initial state bits of
SOBER-t32 for related keys and also for related key frames. Such correlations
are undesirable for a stream cipher, even when it is not clear how to exploit
them for an attack. As we have identified the non-optimal diffusion of the NLF
as the main source of the problem, we suggest not to rely on carry propagation
as a means of diffusion in the next version of SOBER.

References

[BGvN46] A.W. Burkes, H.H. Goldstine, and J. von Neumann, Preliminary discussion
of the logical design of an electronic computing instrument, Tech. report,
Institute for Advanced Study Report, Princeton, NJ, 1946.

[BP99] D. Bleichenbacher and S. Patel, SOBER cryptanalysis, Proceedings of Fast
Software Encryption ’99, Lecture Notes in Computer Science, Springer Ver-
lag, 1999, pp. 305–316.

[BPM] D. Bleichenbacher, S. Patel, and W. Meier, Analysis of the SOBER stream
cipher, Tech. report, TIA contribution TR45.AHAG/99.08.30.12.

[Her85] T. Herlestam, On functions of linear shift register sequences, Proceedings
of EUROCRYPT ’85, Lecture Notes in Computer Science, Springer Verlag,
1985, pp. 119–129.

[NES] NESSIE web site, http://www.cryptonessie.org.

http://www.cryptonessie.org

	Introduction
	Description of textsf {SOBER-t32}
	textsf {SOBER-t32} Key Loading
	Diffusion Properties of the textit {NLF}
	Linearity Properties of the textsf {SOBER-t32} Key Loading
	Linearity Properties of the textsf {SOBER-t32} Rekeying
	Relation to Other Attacks
	Applicability of the Linearity Properties to textsf {SOBER-t16}
	Conclusion

