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Abstract. We analyze the security of the simplified Paillier (S-Paillier)
cryptosystem, which was proposed by Catalano et al. We prove that the
one-wayness of the S-Paillier scheme is as intractable as the standard
RSA problem. We also prove that an adversary, which breaks the se-
mantic security, can compute the least significant bits of the nonce. This
observation is interesting, because the least significant bit of the nonce
is the hard core bit of the encryption function. Moreover, we proposed a
novel semantically secure cryptosystem, based on the one-way function
fe,n
MSBZ(l)(r) = (r−MSBl(r))e mod n, where (e, n) is the RSA public-key
and r −MSBl(r) means that the l most significant bits of r are zeroed.
We proved that the one-wayness of the proposed scheme is as intractable
as the standard RSA problem. An adversary, which breaks the semantic
security of the proposed scheme, can break the least significant bits of
the nonce. These security results of the proposed scheme are similar to
those of the S-Paillier cryptosystem. However, the proposed scheme is
more efficient than the S-Paillier cryptosystem.

1 Introduction

One of the requirements for a secure public-key cryptosystem is the semantic
security, which is assorted the indistinguishability against the chosen plaintext
attack (IND-CPA) and the indistinguishability against the chosen ciphertext
attack (IND-CCA) [BDPR98]. Although there is an IND-CCA public-key cryp-
tosystem from the discrete logarithm primitive in a standard model, namely the
Cramer-Shoup cryptosystem [CS98], there is no IND-CCA public-key cryptosys-
tem from the RSA primitive in a standard model. It is an interesting problem
to find such a public-key cryptosystem. The Cramer-Shoup cryptosystem is con-
verted a standard IND-CPA ElGamal cryptosystem to be an IND-CCA scheme
using hash functions. The security of the IND-CPA ElGamal cryptosystem relies
on the decisional Diffie-Hellman (DDH) assumption. On the contrary, the RSA
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primitive has no standard IND-CPA cryptosystem corresponding to the stan-
dard ElGamal. We first have to consider an IND-CPA public-key cryptosystem
from the RSA primitive in order to construct an IND-CCA public-key cryptosys-
tem from the RSA primitive in a standard model. Because there is no decisional
RSA problem, we need a contrivance for exploring a suitable decisional prob-
lem from the RSA primitive. In this paper, we investigate the security of an
IND-CPA cryptosystem from the RSA primitive and we call IND-CPA as se-
mantically secure in the following. The Pointcheval cryptosystem [Poi99] and
the simplified version of Paillier cryptosystem [CGHN01] are known as seman-
tically secure public-key cryptosystems from the RSA primitive. However, the
security of these cryptosystems is not well studied comparing with the standard
ElGamal cryptosystem. It is unknown that the one-wayness of these cryptosys-
tem is as hard as solving the standard problem, e.g. the RSA problem or factoring
problem. Although the semantic security of these scheme is proved equivalent to
a decisional number-theoretic problem, the decisional problem has not been well
studied, and no non-trivial relationship between the computational problem and
its corresponding decisional problem is known.
The Paillier cryptosystem is a probabilistic encryption scheme over the ring

ZZ/n2ZZ, where n is the RSA modulus [Pai99]. It encrypts a message m ∈ ZZ/nZZ
by computing E(m, r) = gmrn mod n2, where r is a random integer in ZZ/nZZ,
and g is an element whose order in ZZ/n2ZZ is divisible by n. The encryption
function E(m, r) has a homomorphic property: E(m1, r1)E(m2, r2) = E(m1 +
m2, r1r2). Therefore, the Paillier cryptosystem can be used as the primitives for
voting systems, commitment schemes, threshold schemes, etc [DJ01] [CGHN01].
The security of the Paillier cryptosystem has been investigated in [Pai99]. The
one-wayness of the Paillier cryptosystem is related to the computational compos-
ite residuosity (C-CR) problem, which findsm from its encryption gmrn mod n2.
It is known that an algorithm, which solves the RSA problem with the encryp-
tion exponent e = n, can solve the C-CR problem. The semantic security of the
Paillier cryptosystem is based on the decisional composite residuosity (D-CR)
problem, which determines whether an integer x of ZZ/n2ZZ is represented as
x = an mod n2 for an integer a of ZZ/n2ZZ. Then, Catalano et al. proved that
n − b least significant bits of the message are simultaneously secure under the
2b-hard C-CR assumption, where the 2b-hard C-CR assumption uses the short
message space such that m ∈ {0, 1, .., 2b} [CGH01]. The Paillier cryptosystem is
a generalization of the Goldwasser-Micali cryptosystem based on the quadratic
residuosity problem [GM84]. 1 Okamoto and Uchiyama proposed a similar con-
struction over the integer ring ZZ/(p2q)ZZ, where p, q are primes [OU98].
The simplified version of the Paillier cryptosystem is proposed by Catalano

et al. [CGHN01]. We call it the S-Paillier cryptosystem in this paper. The S-
Paillier cryptosystem is strongly related to the RSA cryptosystem modulo n2,
where n is the RSA modulus. They choose the public key g as g = (1+n), whose
order in ZZ/n2ZZ is n. Then gm mod n2 is represented by gm = (1 + n)m =

1 Recently, Cramer and Shoup proposed IND-CCA cryptosystems based on the Paillier
cryptosystem or the Goldwasser-Micali cryptosystem [CS01].



New Semantically Secure Public-Key Cryptosystems from the RSA-Primitive 3

(1 + mn) mod n2. The encryption of the S-Paillier scheme is carried out by
E(m, r) = re(1 +mn) mod n2 for a random integer r ∈ (ZZ/nZZ)×, where e is
an integer. They proved that the one-way security of the S-Paillier scheme is at
least as hard as the computational small e-root problem (C-SR) problem, which
computes x ∈ ZZ/nZZ from given xe mod n2. They also proved that the semantic
security of the S-Paillier scheme is as hard as to solve the decisional small e-root
problem (D-SR) problem, which decides whether y ∈ ZZ/n2ZZ is represented as
y = xe mod n2 for x ∈ ZZ/nZZ.

Contributions of This Paper

In this paper we investigate the security of the S-Paillier cryptosystem. At
first we prove that the one-way security of the S-Paillier cryptosystem is as in-
tractable as the standard RSA problem. Let an adversary A be an algorithm that
breaks the one-wayness of the S-Paillier cryptosystem. We construct an adver-
sary, which can compute the least significant bit of x for given xe mod n, where
x ∈R (ZZ/nZZ)×. An integer c of ZZ/n2ZZ is uniquely represented as c = [c]0+n[c]1,
where 0 ≤ [c]0, [c]1 < n. The adversary A can compute [xe mod n2]1 for a given
xe mod n. Then the difference between [2−exe mod n2]1 and A(2−exe mod n)
gives us the information about the least significant bit of x. Moreover, we prove
that an adversary, which breaks the semantic security of the S-Paillier cryptosys-
tem, can compute the least significant bits of the nonce r. This observation is
interesting, because the least significant bit of the nonce r is the hard core bit
of E(m, r) mod n. The adversary is equivalent to solving the D-SR problem and
can learn the least significant bit of r by multiplying 2−e mod n2 with y.

We also propose a general conversion technique, which enhances the RSA
cryptosystem to be semantically secure using a one-way function f , where f is
a function ZZ/nZZ→ ZZ/nZZ. A message m is encrypted by (c0 = re mod n, c1 =
f(r) +mc0 mod n). We analyze the requirements for the one-way function. The
computational RSA + one-way function (C-RSA+OW) problem is to find f(r)
for a given re mod n. The decisional RSA+OW (D-RSA+OW) problem is to
distinguish the distribution (re mod n, f(r)) from the uniform distribution. The
converted scheme is one-way if and only if the C-RSA+OW problem of f is hard,
and it is semantically secure if and only if the D-RSA+OW of f is hard. The
S-Paillier cryptosystem uses the one-way function f(r) : r mod n → [re]1. We
also discuss the relationship between the converted scheme and the Pointcheval
cryptosystem using the dependent RSA problem [Poi99]. The Pointcheval cryp-
tosystem encrypts a message m by (c0 = re mod n, c1 = m(r + 1)e mod n).
We generalized this encryption to (c0 = re mod n, c1 = mf(r) mod n) and its
security has the same properties as the above conversion.
Moreover, we propose a novel one-way function fe,nMSBZ(l)(r) = (r−MSBl(r))e

modn, where r−MSBl(r) makes the l most significant bits of r zero for a large
enough l. The computational RSA+MSBZ problem is to find the fe,nMSBZ(l)(r)
from a given re mod n. The RSA+MSBZ problem is different from the depen-
dent RSA problem, because we do not know theMSBl(r) of (r−MSB(r))e mod
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n and there is no dependence between re mod n and fe,nMSBZ(l)(r). The deci-
sional RSA+MSBZ problem is to distinguish (re mod n, fe,nMSBZ(l)(r)) from the
uniform distribution. We prove that the computational RSA+MSBZ is as in-
tractable as the standard RSA problem. An adversary, which breaks the deci-
sional RSA+MSBZ problem, can break the least significant bits of the compu-
tational RSA+MSBZ problem. These security results are similar to those of the
S-Paillier, but the encryption/decryption of our proposed cryptosystem are more
efficient than those of the S-Paillier.

Notation. In this paper we choose {0, 1, 2, ..,m−1} as the reduced residue class
of modulo m, namely the elements of ZZ/mZZ are {0, 1, 2, ..,m− 1}.

2 Simplified Paillier Cryptosystem

In this section we review the simplified Paillier (S-Paillier) cryptosystem pro-
posed by Catalano et al. [CGHN01]. The S-Paillier cryptosystem is related to
the RSA cryptosystem over ZZ/n2ZZ. The description of the S-Paillier cryptosys-
tem in this paper is a little different from the paper [CGHN01]. Indeed we use
the standard RSA key. Let RSApublic be the set of the RSA modulus n and the
RSA encryption exponent e of n, respectively.

RSApublic = {(n, e)|n← RSA modulus, e← ZZ>2, s.t. gcd(e, ϕ(n)) = 1} (1)

We explain the S-Paillier cryptosystem in the following.

Key generation: Let (n, e) ←R RSApublic. The integer d is computed by
ed = 1 mod ϕ(n). Then (n, e) is the public key and d is the secret key.
Encryption: Let m ∈ ZZ/nZZ be a message. We generate a random integer
r ∈ (ZZ/nZZ)× and encrypt the message m by c = re(1 +mn) mod n2.
Decryption: At first r is recovered with computing r = cd mod n. Then the
message m is decrypted by m = L(cr−e mod n2), where L(k) = (k − 1)/n.

Remark 1. In the key generation we do not assume gcd(e, ϕ(n2)) = 1 as de-
scribed in the paper [CGHN01], which guarantees that the function r → re mod
n2 is a permutation function over ZZ/n2ZZ. The difference to the RSA exponent e
is the condition gcd(e, n) = 1. This condition is not necessary for the decryption
of the S-Paillier cryptosystem and does not affect its security, as we will prove in
the next section. Moreover, the probability that an integer is relatively prime to
the primes p or q is upper-bounded 1/p+1/q, where n = pq. When we randomly
choose the exponent e from RSApublic, the probability is negligible in logn.

The problem of breaking the one-wayness of the S-Paillier cryptosystem is
to find the integer m for given (n, e) ← RSApublic, r ← (ZZ/nZZ)×, and re(1 +
mn) mod n2. The one-wayness assumption of the S-Paillier cryptosystem is that
for any probabilistic polynomial time algorithm AOWS−Paillier the probability

Prm∈RZZ/nZZ[(n, e)← RSApublic, r ←R (ZZ/nZZ)×,

c = re(1 +mn) mod n2 : AOWS-Paillier(c) = m]
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is negligible in logn. Catalano et al. proposed a number theoretic problem in
order to investigate the one-wayness of the S-Paillier cryptosystem. They defined
the computational small e-roots (C-SR) problem, which is to find the integer
r ∈ (ZZ/nZZ)× for given (n, e) ← RSApublic and re mod n2. The computational
small e-root (C-SR) assumption is as follows: for any probabilistic polynomial
time algorithm AC-SR the probability

Prr∈R(ZZ/nZZ)×
[
(n, e)← RSApublic, c = re mod n2 : AC-SR(c) = r

]
is negligible in logn. It is clear that the one-wayness of the S-Paillier cryptosys-
tem can be solved by the oracle that solves the C-SR problem. However the op-
posite direction is unknown and there is possibility of breaking the one-wayness
of the S-Paillier scheme without solving the C-SR problem.
We explain the semantic security of the S-Paillier cryptosystem. A semantic

security adversary ASSS-Paillier consists of the find stage A
SS1
S-Paillier and the guess

stage ASS2S-Paillier. The ASS1S-Paillier outputs two messages m0,m1 and a state in-
formation st for a public-key n. Let c be a ciphertext of either m0 or m1. The
ASS1S-Paillier guesses whether the ciphertext c is the encryption of mb(b ∈ {0, 1})
for given (c,m0,m1, st) and outputs b. The semantic security of the S-Paillier
cryptosystem is that for any probabilistic polynomial time algorithm ASSS-Paillier
the probability

2Pr [(n, e)← RSApublic, (m0,m1, st)← ASS1S-Paillier(e, n), b← {0, 1},
r ←R (ZZ/nZZ)×, c = re(1 +mbn) mod n2 : ASS2S-Paillier(c,m0,m1, st) = b]− 1

is negligible in logn. The semantic security of the S-Paillier cryptosystem is re-
lated to the decisional version of the C-SR problem, which distinguishes whether
an element of ZZ/n2ZZ comes from the distribution {re mod n2|r ∈ (ZZ/nZZ)×}.
The decisional small e-residue (D-SR) assumption is defined as follows: for any
probabilistic polynomial time algorithm AD-SR the probability of distinguishing
the two distributions

|Pr[x← (ZZ/n2ZZ)× : AD-SR(x) = 1]
−Pr[x← (ZZ/nZZ)×, y = xe mod n : AD-SR(y) = 1]|

is negligible in logn. Catalano et al. proved that the S-Paillier cryptosystem is
semantically secure if and only if the D-SR assumption holds.

2.1 One-Wayness of the S-Paillier Scheme

The one-wayness is the simplest requirement for public-key cryptosystems. We
prove that the one-way security of the S-Paillier scheme is as intractable as the
RSA problem. The RSA problem is to find the integer r ∈ (ZZ/nZZ)× for given
(n, e) ← RSApublic and re mod n. The RSA assumption is as follows: for any
probabilistic polynomial time algorithm ARSA, the probability

Prr∈R(ZZ/nZZ)× [(n, e)← RSApublic, c = re mod n : ARSA(c) = r] (2)

is negligible in logn.
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We define a novel problem in order to investigate the security of the S-
Paillier cryptosystem. We denote an element c of ZZ/n2ZZ by the unique n-adic
representation so that c = [c]0 + n[c]1, where 0 ≤ [c]0, [c]1 < n. The RSA
approximation (RSAaprx) problem is to find the integer [re]1 for given (n, e)←
RSApublic and [re]0 = re mod n. The value [re]1 is the first approximation of
the n-adic representation of re mod n2 = [re]0 + n[re]1. A similar problem is
discussed for the ESIGN [Oka90].
The RSA approximation (RSAaprx) assumption is as follows: for any prob-

abilistic polynomial time algorithm ARSAaprx the probability

Prr∈R(ZZ/nZZ)× [(n, e)← RSApublic, c = re mod n : ARSAaprx(c) = [re]1] (3)

is negligible in logn.
The RSAaprx problem and the S-Paillier cryptosystem are nicely related.

Indeed, we prove the following theorem.

Theorem 1. The encryption function of the S-Paillier cryptosystem is one-way
if and only if the RSAaprx assumption holds.

Proof. Note that we can compute the value [re]0 = re mod n from the ciphertext
c = re(1+mn) mod n2. If the RSAaprx assumption is not true, we can find the
first approximation [re]1 from [re]0 and we obtain re mod n2 = [re]0 + n[re]1.
Thus we can break the one-wayness of the S-Paillier cryptosystem by computing
m = k/n, k = c(re)−1−1 mod n2. On the contrary, assume that there is an algo-
rithm AOWS-Paillier, which breaks the one-wayness of the S-Paillier cryptosystem.
We will construct an algorithm ARSAaprx, which breaks the RSAaprx problem
using the algorithm AOWS-Paillier. Let b = ae mod n be a random ciphertext of
the RSA cryptosystem for (n, e) as the input of the algorithm ARSAaprx. The
algorithm ARSAaprx works as follows:

1. ARSAaprx generates a random t in ZZ/nZZ and computes c = b+ nt.
2. ARSAaprx runs AOWS-Paillier(c) and obtains the message m of c.
3. ARSAaprx outputs t− bm mod n.

In step 1, the algorithm ARSAaprx generates a random number t ∈ ZZ/nZZ and
computes c = b+nt. The distribution of c is equivalent to that of the ciphertext of
the S-Paillier cryptosystem. Indeed, the ciphertext of the S-Paillier cryptosystem
is represented by [re]0 + ([re]1 + [re]0m)n, and the value ([re]1 + [re]0m) is uni-
formly distributed over ZZ/nZZ, because the message m is uniformly distributed
over ZZ/nZZ and gcd([re]0, n) = 1. Thus, in step 2, the algorithm ARSAaprx finds
the message m for input c = b+ nt. Finally, in step 3, the algorithm ARSAaprx
outputs [ae]1 by computing [ae]1 = t− [ae]0m = t− bm mod n, which is the first
approximation of ae mod n2.

It is obvious that the RSAaprx problem can be solved by the oracle that
solves the RSA problem. Indeed, for inputs re mod n and (e, n)← RSApublic, the
oracle can find the integer r. Then [re]1 can be easily computed by [re]1 = k/n
for k = (re mod n2)− re mod n. The opposite direction is not trivial. However,
we prove the following theorem.
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Theorem 2. The RSAaprx assumption holds if and only if the RSA assumption
holds.

Proof. Let ARSAaprx be an algorithm, which solves the RSAaprx problem with
advantage ε in time t. We will construct an algorithm ARSA-LSB , which finds the
least significant bit of the RSA problem with advantage ε2 in time 2t+O((log n)3)
using the algorithm ARSAaprx. Let b0 = re mod n be a random ciphertext of
the RSA cryptosystem for (n, e) as the input of the algorithm ARSA-LSB . The
algorithm ARSA−LSB works as follows:

1. ARSA-LSB runs ARSAaprx(b0) and obtains the first approximation b1 of b0.
2. ARSA-LSB computes a0 = b02−e mod n, runs ARSAaprx(a0), and obtains the
first approximation a1 of a0.

3. ARSA-LSB returns 1 as the least significant bit of r, if a0 + na1 = 2−e(b0 +
nb1) mod n2 holds, otherwise it returns 0.

In step 1, the algorithm ARSA-LSB obtains the first approximation b1 of b0, so
that it knows re mod n2. In step 2, the algorithm ARSA-LSB computes a0 =
b02−e mod n and obtains the first approximation a1 of a0, so that it knows a0+
na1. In step 3, the algorithm ARSA-LSB compares the two values (2−1r)e mod n2

and a0 + na1. Note that 2−1 ≡ n2+1
2 mod n2 and n2+1

2 = n+1
2 + nn−12 . Thus if

gcd(e, n) = 1 we have the following relations:

LSB(r) = 0⇔ (2−1r)e mod n2 = (r/2)e mod n2

⇔ a0 + na1 = (r/2)e mod n2,

LSB(r) = 1⇔ (2−1r)e mod n2 =
(
r + n

2
+ n

n− 1
2

)e
mod n2

⇔ a0 + na1 =
(
r + n

2

)e
mod n2,

where LSB(r) is the least significant bit of r. The probability gcd(n, e) = 1 is
upper-bounded by the negligible probability (1/p+1/q). Thus, in the step 3, we
have 2−e(b0 + nb1) mod n2 = a0 + na1 if and only if the least significant bit of
r is equal to 0.
We estimate the advantage and the time of the algorithm ARSA-LSB in the

following. In step 1 and step 2 the algorithm ARSAaprx is used as an oracle, and
in step 2 and step 3 two modular exponentiations are computed. The advantage
and the time of the algorithm ARSA-LSB are ε2 and 2t + O((log n)3), respec-
tively. Next, Fishlin and Schnorr proved that the RSA problem is solved in time
O((log n)2ε−2t + (log n)2ε−6) using an oracle that predicts the least significant
bit with advantage ε and in time t [FS00]. Thus the algorithm ARSA-LSB solves
the RSA problem in time O((log n)2ε−4t+(logn)5ε−4+(log n)2ε−12). When we
choose ε−1 as the polynomial of logn, the time becomes the polynomial time in
log n. Thus we have proven the theorem.

From theorem 1 and theorem 2 we have proven that the encryption func-
tion of the S-Paillier cryptosystem is one-way if and only if the standard RSA
assumption holds.
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2.2 Semantic Security of the S-Paillier Cryptosystem

Let c be the ciphertext of either the message m0 or m1. Loosely speaking, if the
cryptosystem is semantically secure, any adversary can not distinguish whether
the ciphertext c is the encryption of m0 or m1 with more than negligible prob-
ability. Several public-key cryptosystems have been proven semantically secure
under a standard model [OU98], [CS98], [Pai99], [Poi99]. The reduced number-
theoretic problems are not computational problems but decisional problems,
e.g. the decisional p-subgroup problem, the decisional Diffie-Hellman problem,
the decisional n-residue problem, and the decisional dependent-RSA problem.
The difficulties of these decisional problems have not been studied well. Then a
new number-theoretic problem, the so called Gap problem, has been proposed
[OP01]. The Gap problem is a problem to solve the computational problem with
the help of its decisional problem. Several fundamental security problems can be
reduced to the Gap problem. To investigate the relation between the computa-
tional problem and its decisional problem is an important problem.
Catalano et al. proved that the semantic security of the S-Paillier cryptosys-

tem is as hard as the decisional small e-root problem (D-SR) problem [CGHN01].
In this section we study how to relate the D-SR problem with the C-SR problem.
We can prove the following theorem:

Theorem 3. Let (n, e) ← RSApublic and c = re mod n2(0 ≤ r < n) be the
inputs of the computational small e-root problem. An adversary, which breaks
the decisional small e-root problem, can compute the least significant bit of r. If
the least significant bits of r are zero, the next bit after the zeros can be compute
by the adversary.

Proof. Let AD-SR be an adversary, which solves the D-SR problem. We can as-
sume that with non-negligible probability the adversaryAD-SR answersAD-SR(y)
= 1 if y is the small e-root residue, and it answers AD-SR(y) = 0 otherwise. We
will construct an algorithm ALSB , which computes the least significant bit of r
using algorithm AD-SR. The algorithm ALSB works as follows:

1. ALSB computes y = 2−ece mod n2.
2. ALSB runs algorithm AD-SR(y), and obtains b = AD-SR(y)
3. ALSB returns b.

In step 1 the integer y is computed as y = 2−ec mod n2. As we showed in the
proof of theorem 2, the least significant bit of r is 0 if and only if 2−1r mod n2 =
r/2, and it is 1 if and only if 2−1r mod n2 = r+n

2 + n−1
2 n. Therefore, the least

significant bit of r is 0 if and only if y is the small e-root residue, and it is
1 if and only if y is not the small e-root residue. Thus, the output b of the
ALSB is the least significant bit of r. If the k least significant bits r are zero,
(r/2k)e = 2−kere mod n2 is the small e-root residue. We can detect the (k+1)-th
bit of r using the above algorithm.

The S-Paillier cryptosystem encrypts a message m by c = re(1+mn) mod n2

where r ∈ (ZZ/nZZ)×. By the result of Catalano et al., the adversary AD-SR,
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which breaks the D-SR problem, can break the semantic security of the S-Paillier
cryptosystem [CGHN01]. Then, we can obtain the re mod n2. With the theorem
the least significant bit of the nonce r can be computed by invoking AD-SR.
Thus the least significant bit of r can be computed. If the k-th least significant
bits of r is zero, then we learn the (k+ 1)-th bit of r. Thus, we have proven the
following corollary.

Corollary 1. An adversary, which breaks the decisional small e-root problem,
can compute the least significant bit of the nonce r of the S-Paillier cryptosystem.
If the least significant bits of r are zero, then the adversary can compute the next
bit after the zeros.

This observation is interesting because the least significant bits of the nonce
r is the hard core bit of the ciphertext c mod n.

3 General Conversion of the RSA Cryptosystem

In this section we generalize the encryption mechanism of the S-Paillier cryp-
tosystem to a general RSA-type encryption scheme. We discuss the one-way
security and the semantic security of the general RSA-type encryption scheme.
The scheme is also related to the dependent RSA cryptosystem proposed by
Pointcheval [Poi99]. Moreover, we propose a novel cryptosystem based on the
most significant bits zero problem.
The S-Paillier cryptosystem encrypts a message m by c = re(1+mn) mod n2

where (n, e)← RSApublic and r is a random integer in (ZZ/nZZ)×. If we represent
the ciphertext c as the n-adic expansion c = [c]0+[c]1n, where 0 ≤ [c]0, [c]1 < n,
we have the following relationship:

[c]0 = re mod n, [c]1 = [re]1 +mre mod n. (4)

The message is randomized by the value [re]1. Let f be a function f : r → [re]1
for r ∈ (ZZ/nZZ)×. We proved that computing the value f(r) from re mod n is
as hard as breaking the RSA problem.
Our proposed scheme uses a general one-way function f : ZZ/nZZ → ZZ/nZZ

instead of the function r → [re]1. The proposed scheme is as follow:

Key generation: Let (n, e) ←R RSApublic. The integer d is computed by
ed = 1 mod ϕ(n). Then (n, e) is the public key and d is the secret key.
Moreover, we use a one-way function f : ZZ/nZZ → ZZ/nZZ as a system
parameter.
Encryption: Let m ∈ ZZ/nZZ be a message. We generate a random integer
r ∈ (ZZ/nZZ)× and encrypt the message m by c0 = re mod n and c1 =
f(r) +mc0 mod n. The ciphertext is (c0, c1).
Decryption: At first r is recovered by r = cd0 mod n. Then the message m
is decrypted by m = (c1 − f(r))c−10 mod n.

We call this scheme the G-RSA cryptosystem in this paper and define sev-
eral assumptions of this G-RSA cryptosystem. Let OW be a class of the one-way
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function ZZ/nZZ → ZZ/nZZ. The one-wayness assumption of the G-RSA cryp-
tosystem is that, for any probabilistic polynomial time algorithm AOWG-RSA, the
probability

Prm∈R(ZZ/nZZ)[(n, e)← RSApublic, f ← OW, r ←R (ZZ/nZZ)×,

c0 = re mod n, c1 = f(r) +mc0 mod n : AOWG-RSA((c0, c1)) = m]

is negligible in logn. A semantic security adversary ASSG-RSA against the G-RSA
cryptosystem consists of the find stage ASS1G-RSA and the guess stage ASS2G-RSA.
The semantic security of the G-RSA cryptosystem is that, for any probabilistic
polynomial time algorithm ASSG-RSA, the probability

2Pr [(n, e)← RSApublic, f ← OW, (m0,m1, st)← ASS1G-RSA(e, n),
b← {0, 1}, r ←R (ZZ/nZZ)×, c0 = re mod n,

c1 = f(r) +mbc0 mod n2 : ASS2G-RSA((c0, c1),m0,m1, st) = b]− 1

is negligible in logn.

3.1 Security of the G-RSA Cryptosystem

We define the following two problems in order to investigate the security of the
G-RSA cryptosystem based on a one-way function f : ZZ/nZZ → ZZ/nZZ. The
computational RSA + one-way function (C-RSA+OW) problem is to compute
the value f(r) for a given RSA public-key (e, n) and a ciphertext re mod n. The
C-RSA+OW assumption is as follows: for any probabilistic polynomial time
algorithm AC-RSA+OW , the probability

Prr∈R(ZZ/nZZ)× [(n, e)← RSApublic, f ← OW,

c = re mod n2 : AC-RSA+OW (c) = f(r)]

is negligible in logn. The decisional version of the C-RSA+OW problem is to
distinguish whether an element (x, y) ∈ ZZ/nZZ × ZZ/nZZ comes from the dis-
tribution (re mod n, f(r)) for r ∈ (ZZ/nZZ)×. The decisional RSA + one-way
function (D-RSA+OW) assumption is defined as follows: for any probabilistic
polynomial time algorithm AD-RSA+OW , the probability of distinguishing the
two distributions

|Pr[(x, y)← ZZ/nZZ× ZZ/nZZ : AD-RSA+OW (x, y) = 1]− Pr[r ← (ZZ/nZZ)×,
x = re mod n, f ← OW, y = f(r) : AD-RSA+OW (x, y) = 1]|

is negligible in logn.
The one-way security and the semantic security are as intractable as the C-

RSA+OW problem and the D-RSA+OW problem, respectively. These properties
can be proved by applying the same techniques used in theorem 1 and for the
S-Paillier cryptosystem [CGHN01], respectively. The statements are as follows:
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Theorem 4. The encryption function of the G-RSA cryptosystem is one-way
if and only if the C-RSA+OW assumption holds.

Theorem 5. The G-RSA cryptosystem is semantically secure if and only if the
D-RSA+OW assumption holds.

We can recognize that the G-RSA cryptosystem is a conversion technique,
which enhances the security of the RSA cryptosystem to be semantically secure.
If we find a one-way function, whose C-RSA+OW problem and D-RSA+OW
problem are intractable, then we can construct a semantically secure encryption
scheme. The S-Paillier cryptosystem is an example of the G-RSA cryptosystem,
whose security is based on the RSA+RSAaprx problem.
To find another one-way function for the G-RSA cryptosystem is a quite

difficult problem. Consider the function f : r → r2 mod n. Computing f(r) for
a given re mod n is as hard as the RSA problem, because r = (re)x(r2)y mod n
holds for integers x, y such that ex+2y = 1. Therefore this C-RSA+OW problem
of the function f is as intractable as the RSA problem. However, the distribution
(re, r2) can be distinguished from the random distribution using the same gcd
computation, and this D-RSA+OW problem is easily broken.

3.2 Relation to the Pointcheval Cryptosystem

The Pointcheval public-key cryptosystem encrypts a message m by c0 = re mod
n and c1 = m(r + 1)e mod n [Poi99]. The one-way security of the Pointcheval
scheme is based on the difficulty of computing (r+1)e mod n for given (n, e)←
RSApublic and re mod n, which is called the computational dependent RSA (C-
DpdRSA) problem. The semantic security of the Pointcheval scheme is as hard as
to distinguishes the distribution (re mod n, (r+1)e mod n) from the uniform dis-
tribution, which is called the decisional dependent RSA (D-DpdRSA) problem.
The one-way function that the Pointcheval scheme uses is r → (r + 1)e mod n
for r ∈ (ZZ/nZZ)×.
We can generalize the Pointcheval scheme using a general one-way function

f : ZZ/nZZ→ ZZ/nZZ instead of the function r → (r+1)e mod n. The encryption
is carried out as follows:

c0 = re mod n, c1 = mf(r) mod n. (5)

The difference to the G-RSA cryptosystem is to mask the message m using
c1 = mf(r) mod n instead of c1 = f(r) + mc0 mod n. In the same manner as
in the previous section, we can prove that the one-way security and semantic
security of the generalized Pointcheval scheme is as intractable as solving the C-
RSA+OW problem and the D-RSA+OW problem, respectively. Our generalized
Pointcheval cryptosystem is another conversion technique, which depends on the
same security requirements as the G-RSA cryptosystem.
We can also choose different conversion forms like c1 = m(f(r)+c0) mod n or

c1 = f(r)+m mod n, whose one-way and semantic security are equivalent to the
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C-RSA+OW and the D-RSA+OW, respectively. Let g be a function, which can
efficiently compute both c1 = g(m, f(r), c0) and m = g−1(c1, f(r), c0). Then we
can generate the secure conversion analogue to the G-RSA cryptosystem using
the function g.
If we apply the one-way function of the S-Paillier cryptosystem to the Point-

cheval conversion, the converted encryption scheme encrypts a message m by
c0 = re mod n and c1 = m[re]1 mod n. This encryption method is also observed
by Catalano et al. [CGHN01].

3.3 A New One-Way Function

We propose a new one-way function, which is provably secure in the sense of the
RSA+OW problem. We prove that the C-RSA+OW problem of the proposed
one-way function is as intractable as the standard RSA problem. We prove that
an adversary, which breaks the D-CRSA+OW problem of the proposed one-way
function, can break the least significant bits of the C-RSA+OW problem.
We explain our new one-way function in the following. Let r be a k-bit

random integer in (ZZ/nZZ)×. The binary presentation of r is r = r020 + r121 +
...+rk−12k−1, where rk−1 = 1. Denote byMSBl(r) the l-bit upper part of r such
that rk−l2k−l + rk−l+12k−l+1 + ... + rk−12k−1. The proposed one-way function
is defined by

fe,nMSBZ(l)(r) = (r −MSBl(r))e mod n, (6)

where l is large enough. The l most significant bits of r are chosen as zeros
by r −MSBl(r). We call the one-way function the RSA most significant bits
zero (MSBZ) function. Micali and Schnorr proposed a similar one-way function,
which is used for a parallel generation of a pseudo random number generator
[MS88].
The computational RSA+MSBZ (C-RSA+MSBZ) problem is to compute

fe,nMSBZ(l)(r) for a given re mod n, where r is a random integer r in (ZZ/nZZ)×.
The C-RSA+MSBZ assumption is that, for any probabilistic polynomial time
algorithm AC-RSA+MSBZ , the probability

Prr∈R(ZZ/nZZ)× [(n, e)← RSApublic, c = re mod n :
AC-RSA+MSBZ(c) = fe,nMSBZ(l)(r)]

is negligible in logn.
The RSA+MSBZ problem is different from the DpdRSA problem by the

Pointcheval cryptosystem [Poi99], because MSBl(r) of the fe,nMSBZ(l)(r) = (r −
MSBl(r))e mod n is unknown. We have no known dependences between re mod
n and (r −MSBl(r))e mod n. A possible attack to break the C-RSA+MSBZ
problem is to use the Coppersmith algorithm [Cop96]. The Coppersmith algo-
rithm can find the integer r from two values re mod n and (r+ t)e mod n, where
t is a unknown random integer with |t| < n1/e

2
. Therefore, if l is small for small

exponent e, the Coppersmith attack finds the r. When n is 1024 bits, we have
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to choose l > 114 for e = 3 and l > 21 for e = 7. The other attack is the low ex-
ponent attack with known related messages from Coppersmith et al. [CFPR96].
In this case an attacker computes gcd(xe, (x + t)e) over the polynomial ring
ZZ/nZZ[x] for all possible t. If l is small, the attacker can find the r. Therefore,
we have to make l enough large. For example, we recommend l = 160 for a
1024-bit RSA modulus n.
The decisional RSA+MSBZ (D-RSA+MSBZ) problem is to distinguish

(re mod n, fMSBZ(l)(r))

from the uniform distribution. The D-RSA+MSBZ assumption is defined as
follows: for any probabilistic polynomial time algorithm AD-RSA+MSBZ , the
probability to distinguish the two distributions

|Pr[x, y ← ZZ/nZZ× ZZ/nZZ : AD-RSA+MSBZ(x, y) = 1]− Pr[r ← (ZZ/nZZ)×,
c = re mod n, z = fe,nMSBZ(l)(r) mod n : AD-RSA+MSBZ(c, z) = 1]|

is negligible in logn. We prove the following theorem:

Theorem 6. The C-RSA+MSBZ assumption holds if and only if the RSA as-
sumption holds

Proof. The proof of the theorem is similar to that of theorem 2. We compare
2−efe,nMSBZ(l)(r) mod n with fe,nMSBZ(l)(2

−1r mod n). Let AC-RSA+MSBZ be an
adversary, which breaks the C-RSA+MSBZ assumption. Then we construct an
algorithm ARSA-LSB , which breaks the least significant bit of the RSA prob-
lem using AC-RSA+MSBZ . Let y = re mod n be a random input for the RSA
problem. At first, the algorithm ARSA-LSB runs the adversary AC-RSA+MSBZ

and obtains fe,nMSBZ(l)(r). Second, it computes w = y2−e mod n, runs the adver-
sary AC-RSA+MSBZ , and obtains f

e,n
MSBZ(l)(2

−1r mod n). Finally, the algorithm
ARSA-LSB outputs 0 if 2−e fe,nMSBZ(l)(r) modn = fe,nMSBZ(l)(2

−1r mod n) holds,
and it outputs 1 otherwise.
The least significant bit of r (we denote it by LSB(r)) is zero if and only if

r/2 = 2−1r mod n. The LSB(r) is one if and only if (r+n)/2 = 2−1r mod n. Let
r′ = r−MSBl(r), so that r′e mod n = fe,nMSBZ(l)(r) holds. Note that LSB(r

′) =
LSB(r) and MSBl(a/2) = MSBl(a)/2 for all at least (l + 2)-bit integers a.
Here, for LSB(r) = 0, we have

2−1r′ mod n = r′/2 = (r −MSBl(r))/2 = r/2−MSBl(r/2). (7)

On the contrary, for LSB(r) = 1, we have 2−1r′ mod n = (r−MSBl(r)+n)/2,
which is not equivalent to 2−1r mod n − MSBl(2−1r mod n) = (r + n)/2 −
MSBl((r + n)/2), because of MSBl(r) 
= MSBl(r + n). Therefore, the least
significant bit of r is zero if and only if 2−efe,nMSBZ(l)(r) mod n = fe,nMSBZ(l)(w)
holds.
Let ε and t be the advantage and the time of the adversary AC-RSA+MSBZ ,

respectively. Then the advantage and time of algorithm ARSA-LSB are ε2 and
2t+O((log n)3), respectively. By the result of [FS00], the algorithm ARSA-LSB
can solve the RSA problem. Thus we have proven the theorem.
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There is a relation between the D-RSA+MSBZ problem and C-RSA+MSBZ
problem. It is similar with that of the D-RSAaprx problem and the C-RSAaprx
problem. We prove the following theorem.

Theorem 7. Let (n, e) ← RSApublic and c = re mod n be the input of the
computational RSA+MSBZ problem. An adversary, which breaks the decisional
RSA+MSBZ problem, can compute the least significant bit of r. If the least
significant bits of r are zero, the next bit after the zeros can be computed by the
adversary.

Proof. The proof of the theorem is similar to that of theorem3. LetAD-RSA+MSBZ

be an adversary, which solves the D-RSA+MSBZ problem. We can assume that,
with non-negligible probability, the adversary AD-RSA+MSBZ answers AD-RSA+
MSBZ(y) = 1 if y comes from the distribution (xe mod n, fe,nMSBZ(l)(x)) for
an integer x ∈ (ZZ/nZZ)×, and it answers AD-RSA+MSBZ(y) = 0 otherwise.
We will construct an algorithm ALSB , which computes the least significant
bit of r using algorithm AD-RSA+MSBZ . At first the algorithm ALSB com-
putes y = (2−ec mod n, 2−efe,nMSBZ(l) (r) mod n). Second, ALSB runs algorithm
AD-RSA+MSBZ(y) and obtains b = AD-RSA +MSBZ(y). Finally, ALSB returns
b. As we showed in the proof of theorem 6, the least significant bit of r is 0 if
and only if y comes from the distribution (xe mod n, fe,nMSBZ(l)(x)) for an integer
x ∈ (ZZ/nZZ)×. If the k least significant bits of r are zero, (r/2k)e = 2−kere mod n
is the image of fe,nMSBZ(l)(r/2

k). We can detect the (k + 1)-th bit of r using the
above algorithm.

By these theorems, the G-RSA cryptosystem using the one-way function
fe,nMSBZ(l) has similar security conditions as the S-Paillier cryptosystem. An ad-
versary, which breaks the D-RSA+MSBZ problem, can compute the least sig-
nificant bits of the nonce of the G-RSA cryptosystem with fe,nMSBZ(l).

3.4 Comparison

We compare the public-key cryptosystems discussed in this paper, i.e., the Pail-
lier cryptosystem, the S-Paillier cryptosystem, the Pointcheval cryptosystem,
and the proposed cryptosystem. The security and the efficiency of these cryp-
tosystems are compared. For the efficiency we count the number of modular
exponentiations in the encryption and decryption process, because the compu-
tation of the modular exponents is dominant for the efficiency. Denote byME(k)
a modular exponentiation modulo k. We assume that these cryptosystems use
the same length RSA keys n. In table 1 we indicate the comparison.
The Paillier cryptosystem encrypts a messagem by c = gmrn mod n2 and de-

crypts it bym = L(cϕ(n) mod n2)/L(gϕ(n) mod n2), where L(u) = (u−1)/n. The
encryption and the decryption of the Paillier cryptosystem require two ME(n2)
and two ME(n2), respectively. If we use the key g = 1 + n, the encryption
requires only one ME(n2). If we precompute the g, the decryption needs only
one ME(n2). The one-way security and the semantic security are as hard as the
C-CR problem and the D-CR problem, respectively.
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Table 1. Comparison of security and efficiency among several schemes

Paillier S-Paillier Pointcheval Proposed scheme

One-wayness C-CR RSA C-DpdRSA RSA

Semantic security D-CR D-RSA+RSAaprx D-DpdRSA D-RSA+MSBZ

Encryption 1 ME(n2) 1 ME(n2) 2 ME(n) 2 ME(n)

Decryption 1 ME(n2) 1 ME(n2) + 1 ME(n) 2 ME(n) 2 ME(n)

The S-Paillier cryptosystem requires one ME(n2) for the encryption c =
re(1 + nm) mod n2, and one ME(n) and one ME(n2) for the decryption m =
L(cr−e mod n2) and r = cd mod n. Note that a small encryption exponent e can
be used. We proved that the one-way security and the semantic security are as
hard as the RSA problem and the D-RSA+RSAaprx problem, respectively. We
also proved that an adversary, which breaks the semantic security, can compute
the least significant bits of the nonce r.
The Pointcheval cryptosystem requires two ME(n) for the encryption c0 =

re mod n and c1 = m(r + 1)e mod n, and two ME(n) for the decryption m =
c1(r+1)−e mod n and r = cd0 mod n. Note that a small exponent e is not secure
for this scheme because of the message related attack and e must be at least 32
bits [CFPR96]. The one-way security and the semantic security are as hard as
the C-DpdRSA problem and the D-DpdRSA problem, respectively.
The proposed cryptosystem encrypts a message m by c0 = re mod n, c1 =

fe,nMSBZ(l)(r) +mc0 mod n and decrypts it by m = (c1 − fe,nMSBZ(l)(r))c
−1
0 mod

n, r = cd0 mod n, where fe,nMSBZ(l)(r) = (r −MSBZl(r))e mod n. Therefore, the
encryption and the decryption of the proposed cryptosystem require twoME(n)
and twoME(n), respectively. The computation time of the function fe,nMSBZ(l)(r)
is about 4 times faster than that of the S-Paillier cryptosystem re mod n2. Thus
the encryption/decryption of the proposed cryptosystem are more efficient than
those of the S-Paillier cryptosystem. Because a small exponent key e can be
used for a enough large l, the proposed cryptosystem is more efficient than the
Pointcheval cryptosystem. We proved that the one-way security and the seman-
tic security are as hard as the RSA problem and the D-RSA+MSBZ problem,
respectively. An adversary, which breaks the semantic security, can break the
least significant bits of the nonce r. The proposed cryptosystem has the similar
security properties as the S-Paillier cryptosystem.
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