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Abstract. We consider the problem of proving that a user has selected
and correctly employed a truly random seed in the generation of her
RSA key pair. This task is related to the problem of key validation, the
process whereby a user proves to another party that her key pair has
been generated securely. The aim of key validation is to pursuade the
verifying party that the user has not intentionally weakened or reused
her key or unintentionally made use of bad software. Previous approaches
to this problem have been ad hoc, aiming to prove that a private key is
secure against specific types of attacks, e.g., that an RSA modulus is
resistant to elliptic-curve-based factoring attacks. This approach results
in a rather unsatisfying laundry list of security tests for keys.
We propose a new approach that we refer to as key generation with veri-
fiable randomness (KEGVER). Our aim is to show in zero knowledge that
a private key has been generated at random according to a prescribed
process, and is therefore likely to benefit from the full strength of the
underlying cryptosystem. Our proposal may be viewed as a kind of dis-
tributed key generation protocol involving the user and verifying party.
Because the resulting private key is held solely by the user, however, we
are able to propose a protocol much more practical than conventional
distributed key generation. We focus here on a KEGVER protocol for
RSA key generation.

Key words: certificate authority, key generation, non-repudiation, public-
key infrastructure, verifiable randomness, zero knowledge

1 Introduction

In this paper, we consider the problem of demonstrating that a public key PK
is well selected, in other words, that it has been chosen so as to benefit strongly
from the security properties of the underlying cryptosystem. This problem has
been typically refered to in the literature as that of key validation. Interest in
key validation arises when a user registers a public key PK of some kind with a
certificate authority (CA) or presents it for use in some other application, such
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as a group signature scheme. The structure of PK offers only limited assurance
about the strength of the corresponding private key SK. For example, in the
RSA cryptosystem, it may be that the public modulus n is long, ensuring se-
curity against the general number field sieve. At the same time, one of the two
component primes may be short, creating vulnerability to elliptic-curve-based
factoring attacks. Thus, it is easily possible for a user to generate SK of some
weak form so as to render it vulnerable to any of a range of common attacks,
without the knowledge of the CA. If SK is, say, a private signing key, then a
malicious user of this sort can seek to repudiate transactions based on digital
signatures generated using SK, claiming that the vulnerability of SK led to key
compromise. The user might, for instance, place an order for a purchase of stock,
and then repudiate it if the market subsequently goes down. Weakness in a key
may alternatively result because a user has made inappropriate use of the same
“stale” key across multiple platforms. For example, a user might choose to make
use of the same key for her magazine subscription as for her financial trans-
actions. Finally, and probably most importantly, a weak key may be produced
by bad software. Faulty or malicious software might induce a subtle weakness
by using a “stale” prime in RSA keys, i.e., using the same component prime in
different moduli. As demonstrated by Young and Yung [36], malicious software
might create a key that appears to have been correctly generated, but is primed
for theft by the creator of the software, a process dubbed “kleptography”. A
software package may also generate a key that is weak simply because of faulty
programming. This last is of perhaps the greatest concern to security architects.

Such concerns and the liability risks they create for certificate issuers have
been a recurrent issue in standards bodies for some time, and have thus served
as an impetus for investigation into key validation techniques. A key validation
protocol aims at enabling a user to prove to a verifying party, with minimal
information leakage, that her private key SK has a particular security property
that may not be evident from inspection of PK. For example, researchers have
proposed protocols enabling the possessor of an RSA private key to prove to a
CA with little information leakage that the corresponding public modulus n is
the product of two primes p and q of roughly equal length. Such a protocol is
included in the appendix to the ANSI X9.31 standard for digital signatures used
in financial services applications [2].

Note, however, that an RSA key can also be constructed in such a way that it
is vulnerable to any of an arbitrarily long list of special-form factoring algorithms:
examples of ones popular in the literature include the so-called p− 1 attack and
p + 1 attack [27]. Recognizing that a host of different types of attacks against
the RSA cryptosystem are possible, ANSI X9.31 for example includes discussion
of a range of key validation tests. It is clear from the outset, though, that this
kind of ad hoc approach is fundamentally limited: One can always devise a new
type of attack and corresponding key validation protocol to add to the list, and
no set of litmus tests can guard against use of a stale key.

In this paper, we propose a novel alternative to or enhancement of key vali-
dation that we refer to as key generation with verifiable randomness, and denote
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for brevity by KEGVER. A KEGVER protocol shows not that a key is resistant to
a list specific attacks, but instead that the key has been generated as an honest
party would, and is therefore unlikely to be weak with respect to any known
attack and unlikely to be stale. The starting point for our approach may be
thought of as an ideal process in which a trusted dealer or trusted third party
(TTP) generates a key pair (SK,PK) according to a universally agreed upon
process, e.g., the example methods presented in the IEEE P1363 standard [1]. In
this ideal process, the TTP sends (SK,PK) privately to the user and PK to the
CA. The user is assured here that the privacy of her key SK is as good as if she
had generated it herself. The CA is assured that the key pair (SK,PK) was gen-
erated securely, namely according to published guidelines, and therefore benefits
from the full strength of the underlying cryptosystem. It should be noted that
TTPs form a component of many secret sharing and key distribution schemes,
e.g., [32]. The role of the TTPs in these schemes, however, is to effect a correct
sharing of secrets. In our ideal process, it is to ensure correct key generation.

Of course, involvement by a TTP in real-world settings is generally undesir-
able and impractical. It is well known, however, that such a TTP can be sim-
ulated by the user and CA alone using fundamental cryptographic techniques
known as general secure function evaluation [21,35]. While offering rigorously
provable security characteristics, such techniques remain highly impractical, par-
ticularly for such computationally intensive operations as key generation. Our
contribution in this paper is a technique that simulates the TTP efficiently in
a practical sense. The one drawback to our proposal is that it involves a slight
weakening of the ideal process: The user is able to influence the TTP to a small
(but negligible) degree. We believe that our proposal is of great practical inter-
est, and note that it can even be achieved in a non-interactive setting. We focus
on KEGVER protocols for RSA in this paper.

A capsule description of our KEGVER protocol for RSA is as follows. The
user and CA jointly select random integers x and y; these integers are known
to the user, but not the CA. The user then produces an RSA modulus n. She
proves to the CA that n is a Blum integer and the product of two primes, p and
q. She furthermore proves that p and q lie in intervals [x, x+ l] and [y, y + l] for
some public parameter l, i.e., that they are “close” to x and y. The parameter
l is selected to be small enough to constrain the user in her construction of the
modulus n, but large enough to ensure that she can very likely find primes in the
desired intervals. Secure, joint generation of x and y, judicious selection of l, and
a number of implementation details form the crux of our work in this paper. As
an additional contribution, we propose new definitions required to characterize
the security of a KEGVER protocol.

1.1 Previous Work

While general secure function evaluation and zero-knowledge proof techniques
are largely impractical, researchers have devised a number of efficient protocols
to prove specific properties of public keys. One of the earliest such protocols
is due to van de Graaf and Peralta [33], who present a practical scheme for
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proving in zero knowledge that an integer n is of the form prqs for primes p
and q such that p, q ≡ 3 mod 4 and the integers r and s are odd. Boyar et al.
[7] show how to prove that an integer n is square-free, i.e., is not divisible by
the square of any prime factor. Together, these two proof protocols demonstrate
that an integer n is a Blum integer, i.e., an RSA modulus that n = pq such that
p, q ≡ 3 mod 4. Gennaro et al. [19] build on these two protocols to demonstrate
a proof system showing that a number n is the product of quasi-safe primes,
i.e., that n = pq such that (p − 1)/2 and (q − 1)/2 are prime powers (with
some additional, technical properties). Camenisch and Michels [8] extend these
proof techniques still further, demonstrating a protocol for proving that an RSA
integer is the product of two safe primes, i.e., primes p and q such that (p−1)/2
and (q − 1)/2 are themselves primes. While asymptotically efficient, however,
this last protocol is not very practical.

Chan et al. [11]1 and Mao [25] provide protocols for showing that an RSA
modulus n consists of the product of two primes p and q of large size. Liskov
and Silverman [23] describe a protocol interesting for its direct use of number-
theoretic properties of n to show that p and q are of nearly equal length. Fu-
jisaki and Okamoto [15,16] present related protocols for proving in statistical
zero knowledge that a committed integer lies within a given range. All of these
protocols are largely superseded for practical purposes by the work of Boudot
[6], who, under the Strong RSA Assumption, demonstrates highly efficient, sta-
tistical zero-knowledge protocols for proving that a committed number lies in
a given range. The Boudot protocols permit proofs of very precise statements
about the sizes of p and q.

Loosely stated, all of these protocols demonstrate that a committed number
(or public key) lies in a particular set or language. Our aim, which may be
viewed as complementary, is to show that a committed number has been selected
from a given set at random according to some publicly specified process. Thus,
these previous protocols, and particularly the Boudot protocols, are useful in
the construction of our KEGVER scheme. Our focus in this paper, however, is on
the additional apparatus required to make broader statements about adherence
to a prescribed key-generation protocol.

A simple approach to ensuring freshness in RSA key generation is for the
CA to select a random string s of, say, 100 bits, and require that the leading
bits of the public key PK be equal to s. This method, however, has several
drawbacks. It only ensures freshness in a narrow sense: While the CA can be
assured with high probability that the user has not registered PK before, there
is no assurance that the user has not re-used one of the constituent primes of the
modulus before. Moreover, by constraining the form of PK, the CA naturally
constrains the possible set of private keys SK, leading to some degradation in
security. Finally, the required alteration to the key generation process limits
compatibility with current prime generation techniques.

1 The original version of this paper contained a technical flaw, and was subsequently
republished as a GTE technical report.
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A broader but still simple approach proposed for verification of the key gen-
eration process is to derive all underlying randomness from application of a
pseudo-random number generator to a random initial seed s. Of course, this ap-
proach only provides ex post facto arbitration of potential disputes, as revelation
of s also discloses the private key.

Distributed key generation is an area closer in spirit to our work in this
paper, and can in fact serve directly to achieve a KEGVER scheme for RSA. (For
discrete-log based systems, the idea is straightforward and very practical, but we
do not have space enough to describe it here.) The best basis is a distributed key
generation protocol presented by Boneh and Franklin [5] and further explored
most recently in, e.g., [10,20,24]. In this protocol, a minimum of three players
(or two, in some variants) jointly generate an RSA modulus n. At the end of
this protocol, each of the players holds a share of the corresponding private key.
No player learns the whole private key at any point.

To see how such a distributed key generation protocol for RSA can serve as
the basis for a KEGVER protocol, consider the two-party case. The idea here is
to have the CA act as one player and the user as the other. At the end of the
protocol, the CA sends its private key share to the user, who is able then to
reconstruct and verify the correctness of the entire private key. This approach
enables the CA to be assured that n is generated according to a prescribed
protocol, e.g., that p and q are generated uniformly at random from a prescribed
range. Likewise, the user in this case can be assured that her private key is
not exposed to the CA or to an eavesdropper. The idea for the three-party (or
multi-party) case is analogous.

The main drawback to distributed key generation for RSA is that it is quite
slow. Malkin et al. [24] present experiments involving a highly optimized version
of the three-party Boneh and Franklin protocol [5]. These experiments suggest
that about 6 minutes of work is required to generate a 1024-bit modulus across
the Internet using fast servers. In contrast, convention generation of a 1024-bit
RSA on a fast workstation requires less than a second [34]. The basic Boneh
and Franklin protocol, moreover, is not secure against active adversaries, and
thus would not be suitable by itself as the basis for a KEGVER protocol. Instead,
it would be necessary to employ a variant with robustness against malicious
players, e.g., [24]. These variants are even less efficient than that of Boneh and
Franklin. It is possible to construct a non-interactive KEGVER protocol based
on distributed RSA key generation by having the user simulate other players
(by analogy with our discrete-log-based example above). The overall costs and
complexity of such an approach remain high, however.

Since our aim is not sharing, but rather correct generation of a private key,
we adopt an approach in this paper rather different in its technical details from
distributed key generation. As a result, we are able to present a KEGVER protocol
for RSA that is quite efficient and also has a natural, fully non-interactive variant.
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1.2 Our Approach

Let us sketch the intuition behind our KEGVER protocol for RSA, expanding on
our capsule description in the introduction to the paper. One common technique
for generating a component prime of an RSA modulus n is to pick a random
starting point r in an appropriate range, and apply a primality test to successive
candidate integers greater than r until a (highly probable) prime p is found. This
basic approach may be enhanced by means of sieving or other techniques, but is
essentially the same in almost all systems in use today. The pivotal idea behind
our KEGVER scheme is for the user and CA to generate r jointly in such a
way that r has three properties: (1) r is selected uniformly at random from an
appropriate interval; (2) The user knows r; and (3) The CA holds a commitment
to r, but does not know r itself. The user performs the same process to derive a
starting point s for a second component prime.

Ideally, we would then like the user to furnish an RSA modulus n and prove
that the constituent primes p and q are the smallest primes larger than r and s.
In the absence of any known practical technique to accomplish this, we adopt a
slightly weaker approach. We restrict the user to selection of a modulus n that
is a Blum integer, i.e., the product of primes p and q such that p, q ≡ 3 mod 4.
We use well known protocols to have the user prove in zero knowledge that
n is indeed a Blum integer. We then employ techniques for proofs involving
committed integers, and for range proofs in particular. These enable the user to
prove in zero knowledge that p is “close” to r and that q is “close” to s.

As a result of this last proof and the fact that r and s are generated jointly,
the user is greatly restricted in her choice of p and q. In particular, she must
choose each of these primes from a small interval generated uniformly at random.
The result is that the user has very little flexibility in her choice of n, and must
therefore select a modulus n nearly as strong as if she had adhered honestly to
the prescribed key generation protocol. As a tradeoff against the high efficiency
of our protocol, a malicious user does in fact have a little “wiggle room” in her
choice of n, but this is small for practical purposes. At the same time, use of
zero-knowledge (and statistical zero-knowledge) protocols ensures that the CA
gains no information about the private key other than that contained in n itself.

Although we do not dilate on the idea in our paper, we note also that KEGVER
can also be employed by a user as a local check against “kleptographic” attacks
by an RSA key-generation module [36]. For this, the user employs a separate
KEGVER module (generated by a separate entity) to check the correct behavior
of the key-generation module.

Organization

In section 2, we present formal definitions for the notion of key generation with
verifiable randomness, along with brief description of the cryptographic and
conceptual building blocks. We present protocol details in section 3. We offer
security and performance analyses in sections 4 and 5 respectively. Due to space
limitations, we have omitted many details from this version of the paper. A full
version is available from the authors on request.
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2 Definitions

Thusfar we have described a KEGVER protocol as one in which the user, through
joint computation with a CA, is constrained to produce keys in a manner “close”
to honest adherence to some standard key generation algorithm. Our first task is
to characterize formally this notion of “closeness”. We assume for the sake of sim-
plicity a cryptosystem in which every public key PK has a unique corresponding
private key SK. We refer to a probability d as overwhelming in parameter l if
for any polynomial poly there is some L such that d > 1− 1

|poly(l)| for l > L. We
let ∈U denote uniform random selection from a set.

We begin by defining key generation and key generation with verifiable ran-
domness. We let keygen denote a key generation algorithm that takes as input a
soundness parameter t and a key-size parameter k. With probability overwhelm-
ing in t, the algorithm outputs a well-formed private/public key pair (SK,PK).
The length of the public key is specified by k: For example, in our RSA-based
key generation algorithm, it is convenient to let the output key length be 2k− 1
or 2k bits. Let PKk denote the set of public keys specified by key-size parameter
k, i.e., the set of all such possible outputs PK of keygen. We assume that mem-
bership in PKk is efficiently computable without knowledge of SK. We let Pk,t
denote the probability distribution induced by keygen over PKk for parameter
k, and let Pk,t(PK) be the probability associated with key PK in particular.

A KEGVER protocol involves the participation of a user and a CA. The pro-
tocol takes as input a key-size parameter k and security parameters l, m, and t.
Here, l and t are soundness parameters, while m is a security parameter govern-
ing statistical hiding of committed values, as we explain below. If the protocol
is successful, the public output of the protocol is a public key PK ∈ PKk, and
the private output to the user is a corresponding private key SK. Otherwise,
the protocol fails, and we represent the public output by ∅. The probability of
protocol failure when the participants are honest is characterized by security pa-
rameter l. We let Qk;l,m,t denote the probability distribution induced by output
PK over PKk by the KEGVER protocol when the two participants are honest.
We say that the CA accepts if the CA is persuaded that PK has been properly
generated; otherwise the CA rejects the protocol output.

Definition 1. Let QAk;l,m,t be probability distribution induced by the output of
KEGVER with fixed key-size parameter k and security parameters l,m and t over
executions accepted by an honest CA when the user is represented by an algorithm
A (not necessarily honest). We say that KEGVER is a µ-sound KEGVER protocol
for keygen if, for any algorithm A with running time polynomial in k, we have

max
PK∈Pk

QAk;l,m,t(PK)
Pk,t(PK)

≤ µ. (1)

�	
This definition specifies the soundness of KEGVER, stating that a dishonest user
can generate a given key with probability only µ times that of an honest user
executing keygen. For small µ, this means that it is infeasible for a dishonest
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user to persuade the CA to accept the output of the protocol unless its output
distribution is similar to that of keygen. Suppose, for example, that keygen is
a standard RSA key-generation algorithm for which the RSA assumption [27]
is believed to hold. Then if µ is polynomial in k, it is hard for an attacker to
weaken her own key effectively in KEGVER.2 We make the following observation;
all quantities here are relative to key-size k, while security parameters are fixed.

Observation 1. Suppose there exist polynomial-time algorithms A and B such
that with non-negligible probability, B(PK) = SK for pairs (SK,PK) dis-
tributed according to QAk;l,m,t. Then if µ is polynomial, it follows that there is a
polynomial-time B′ such that B′(PK) = SK with non-negligible probability over
Pk,t, and thus that the RSA assumption does not hold on keygen. �	

The other feature we want is for KEGVER is privacy. In particular, we do not
want the CA to obtain any (non-negligible) information about SK other than
PK. To make this notion more precise, let us consider the following experiment
with an adversary A1. Adversary A1 engages (not necessarily honestly) in pro-
tocol KEGVER with an honest user with parameters k and m. If the protocol is
successful, i.e., outputs a public key PK, then A1 computes and outputs a guess
of the corresponding private key SK at the conclusion of the protocol. Let us
then consider a second adversary A2 that is given a public key PK ∈Qk;l,m,t PKk,
i.e., a public key drawn from the distribution specified by Qk;l,m,t. This adver-
sary likewise computes a guess at the corresponding private key SK, but without
the benefit of a transcript from execution of KEGVER.

Definition 2. We say that KEGVER is private if for any polynomial-time ad-
versary A1, there exists a polynomial-time adversary A2 such that for any poly-
nomial poly there is an L such that m > L implies

pr[A1 guesses SK]− pr[A2 guesses SK] < 1/|poly(m)|. (2)

�	

This definition states informally that by participating in protocol KEGVER yield-
ing public key PK, a CA – or an arbitrary eavesdropper – gains only a non-
negligible advantage in its ability to compute the private key SK.

We can extend this definition to consider an adversary A1 that engages adap-
tively in some polynomial number of invocations of KEGVER. As we assume in-
dependent randomness for each invocation of the protocols in this paper, this
extended definition is no stronger for our purposes than Definition 2.

2 Of course, a malicious user seeking to weaken her own key can tailor an efficient at-
tack algorithm A for factoring n and then promulgate A. For example, Amay contain
implicit knowledge of one of the component primes of n. The case for repudiation
will be difficult to support in such cases, though, as A will be self-indicting.
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2.1 Building Blocks

In our scheme, we work over a group G published by the CA, with order o(G)
unknown to the user. We describe G in the paper as being of “unknown order”,
as contrasted with a group of “known order”, i.e., order known to all players.
Additionally, the order o(G) must be larger than the maximum value of the target
public RSA key n to be generated by the user. Note that if o(G) is small, this
may permit the user to cheat, but will not in fact degrade user privacy. Thus it is
in the interest of the CA to choose G with the appropriate order. In our scheme,
it is convenient for the group G to be generated as a large subgroup of Z∗N for
an RSA modulus N with unpublished factorization. Because of exploitation of
the properties of a group of unknown order, many of our sub-protocols rely for
security on the Strong RSA Assumption.

The CA additionally publishes two generators of G, denoted by g and h.
These generators are selected such that logg h and logh g are unknown to the
user. We believe that the best setup for our protocol is one in which the CA
lets N = PQ, where P = 2P ′ + 1 and Q = 2Q′ + 1 for primes P ′ and Q′, and
selects G as the cyclic group of order 2P ′Q′, i.e., the group of elements with
Jacobi symbol 1.3 The CA would then, e.g., select g, h ∈U G. The CA proves
to users that <g>=<h>. This is accomplished through proofs of knowledge
of logg h and logh g, as described below. Since the CA has freedom in selecting
N and can therefore manipulate the orders of the groups generated by g and
h, however, these proofs of knowledge require t rounds with binary challenges.
(This is equivalent to a cut-and-choose proof.) This involves a non-negligible
overhead, but the proofs need only be generated by the CA once and checked
by each user only upon key registration.

Fujisaki-Okamoto commitment scheme: This commitment scheme, introduced
in [15], is essentially a variant on the commitment scheme of Pedersen [28],
but adjusted for application to groups G of unknown order of the form de-
scribed above. The Fujisaki-Okamoto scheme is statistically hiding in a secu-
rity parameter m. To commit to a value x ∈ Z, the user selects a commit-
ment factor w ∈U {−2mN + 1, 2mN − 1}. She then computes the commitment
C(x,w) = gxhw mod N . For further details, see [6,15]. Note that this commit-
ment scheme is only certain to be hiding provided that the CA has selected g and
h such that <g>=<h>. The Fujisaki-Okamoto commitment scheme is binding
assuming the hardness of factoring, i.e., that the user cannot factor N .

Proof of knowledge of discrete log: Suppose that for some a ∈<g>, a prover
wishes to prove knowledge of x ∈ ZN such that y = gx mod N . The prover may
use a variant of the Schnorr proof of knowledge [31] as follows, with soundness
parameter t and privacy parameter m. The prover selects z ∈U [1, 2mN ] and
computes w = gz. The verifier computes a challenge c ∈U [0, 2t − 1]. The prover
3 One must select G carefully. For example, while certain papers, e.g., [6], state that
G can be any large subgroup of Z∗N , Mao and Lim [26] provide some caveats on such
subgroups with prime order.
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returns r = cx + z (over Z). The verifier checks that elements of the prover’s
proof are in <g>. (In our setting, where N is a safe prime and <g> is the cyclic
group of order 2P ′Q′, as described above, the verifier checks that elements have
Jacobi symbol 1). Then the verifier checks the equality gr = wyc mod N . The
protocol is statistical zero-knowledge provided that 1/2m is negligible. It is sound
under the Strong RSA Assumption [15]; without breaking this assumption, a
cheating prover is able to succeed with probability at most 2−t+1 [8]. This proof
of knowledge may be rendered non-interactive if the challenge is generated as
c = H(N ‖ g ‖ y ‖ w) for an appropriate hash function H. Security may then
be demonsrated upon invocation of the random oracle model on H. We assume
use of non-interactive proofs in our protocols, and write POK{x : y = gx} to
denote a proof of knowledge of the form described here.

Generalized proofs of knowledge of discrete log: As shown in [13,14], it is pos-
sible to construct efficient, general, monotone boolean predicates on statements
of knowledge of discrete logs. Efficient proofs across multiple bases are also pos-
sible. In [8], it is observed that these general proof techniques may be applied
to the setting we describe here involving groups of unknown order. We em-
ploy here the notation developed by Camenisch and Stadler [9], in which a
proof statement is written in the form POK{variables : predicate}, where
predicate is a monotone boolean formula on statements of knowledge of dis-
crete logs, potentially over multiple bases. For example, a proof of equality of
two values represented by commitments C1 and C2 would be written as fol-
lows: POK{a, r1, r2 : (C1 = gahr1)

∧
(C2 = gahr2)}. More recently, Damg̊ard

and Fujisaki [30] study a generalization of Fujisaki-Okamoto committments and
proofs of knowledge for these, making some minor corrections to [15]. A related
generalization permits proof that one committed value is equal to the product
of two other committed values [8,25].

Interval proof: An interval proof is a statistical zero-knowledge proof that a
committed value lies within some explicitly specified interval. For commitment
C = gxhr, for example, the prover may wish to prove that x ∈ [0, 2512]. Boudot
[6] presents two highly efficient interval proof techniques. We consider here the
interval proof in [6] without tolerance. The goal is for the prover to demonstrate,
for explicit integers a and b such that b > a and on commitment C of value x
that x ∈ [a, b]. We represent this by POK{x, r : (C = gxhr)

∧
(x ∈ [a, b])}.

Soundness here depends on the Strong RSA Assumption.

Blum integer proof: As noted above, combination of the protocols in [7,33] yields
an efficient proof that an integer n is a Blum integer. We denote this proof
protocol by Blum(n)[t], where t is a security parameter. If successful, the protocol
yields output ‘yes’, otherwise output ‘no’. The protocol can be either interactive
or non-interactive. The soundness of the protocol is overwhelming in t, while the
computational and communication costs are linear in t.
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3 Protocol

We take as our starting point the following algorithm keygen for RSA key gener-
ation. We assume that keygen takes as input an even-valued key-size parameter
k (essentially half of the modulus length). We also assume the availability of
a probabilistic algorithm primetest(z, t), that takes as input an integer z and
soundness parameter t; this algorithm outputs ‘yes’ if the input element is prime
and otherwise, with overwhelming probability in t, outputs ‘no’. For technical
reasons, our protocol keygen generates RSA moduli n that are Blum integers.

Algorithm keygen(e, k)[t]
r ∈u [2k−1, 2k − 1];
s ∈u [2k−1, 2k − 1];
while gcd(e, r − 1) > 1 or r �≡ 3 mod 4
or primetest[r, t] = ‘no’

r ← r + 1;
while gcd(e, s− 1) > 1 or s �≡ 3 mod 4
or primetest[s, t] = ‘no’

s← s+ 1;
p← r; q ← s;
d← e−1 mod (p− 1)(q − 1);
output (n = pq, d);

The algorithm keygen outputs with overwhelming probability in k and t a Blum
integer (and thus RSA modulus) n with a bit length of 2k − 1 or 2k. Note that
for the sake of efficiency, one would generally use a sieving technique in practice
to compute p and q. Adoption of sieving would have no impact, however, on the
output of the algorithm. Another common practice is to fix a target bit length
for n and adjust the intervals for p and q accordingly. We specify keygen as above
for simplicity of presentation.

3.1 KEGVER Protocol

We are now ready to present the details of our KEGVER protocol for RSA key
generation. Prior to execution of the protocol, the CA publishes key-size param-
eter k and security parameters l,m, and t, along with an RSA modulus N such
that |N | > 2k+1, and whose factorization it keeps private. The CA additionally
publishes g and h of a subgroup G of Z∗N such that |o(G)| > 2k+ 1, and a proof
Proof1 = POK{a, b : (ga = h)

∧
(hb = g)}. As explained above, the ability of

the CA to select N means that the soundness of this proof of knowledge depends
upon execution with binary challenges over t rounds.

We begin by introducing a sub-protocol unigen. This protocol enables the
user and the CA jointly to select a value z ∈ [A,B] such that if at least one
party is honest, z is distributed across [A,B] uniformly at random. As may be
seen from the properties of the building blocks, the soundness of the protocol
depends on both the Strong RSA Assumption and the discrete log assumption
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over G, while privacy is statistical in m. The public output of the protocol is
a commitment Cz; the private output, revealed to the user, is z. We let [A,B]
denote the input bounds and (n, t) denote the security parameters. We write
(Cz, z) ← unigen[A,B](n, t) to denote output of public value Cz and private
value z from the protocol.

Protocol unigen[A,B](m, t).

1. The user checks the correctness of Proof1, which demonstrates that h and
g generate the same group. If Proof1 is incorrect, she aborts.

2. Let L = B−A+1. The user selects v ∈U [0, L−1] and wv ∈U [−2mN, 2mN ].
She computes Cv = C(v, wv), and sends Cv to the CA.

3. The CA selects u ∈U [0, L− 1] and sends u to the user.
4. The user checks that u ∈ [0, L− 1]. If not, she aborts.
5. If v + u ≥ L, then o = gL; otherwise o = 0. The user selects wo ∈U

[−2mN, 2mN ], computes Co = C(o, wo), and sends Co to the CA.
6. The user executes Proofo = POK{a : ha = (Co/gL)

∨
(ha = Co)}. This

demonstrates that Co represents a commitment of gL or of 0.
7. Let Cz′ = Cvg

u/Co, a quantity computable by both the user and the CA.
The user executes Proofz′ = POK{a, b : (Cz′ = gahb)

∧
(a ∈ [0, L − 1])}.

Together, Proofo and Proofz′ demonstrate that Cz′ represents a commit-
ment of (u+ v) mod L.

8. If the CA is unable to verify either Proofo or Proofz′ , then the CA aborts.
Otherwise, the public output of the protocol is Cz = Cz′g

A, and the private
output is z = ((u+ v) mod L) +A.

Given unigen as a building block, we are ready to present the full protocol
for KEGVER. The basic strategy is for the user and CA to employ unigen to
generate r and s, private values from which the user initiates a search for primes
p and q. The user then proves, by way of commitments on her private values,
that p and q are “close” to r and s respectively, and then that n = pq is a Blum
integer. The pair [e, k] is input such that e represents the public exponent and k
specifies the bit length of p and q, and thus n. Security parameters are l,m and
t. The public output of the protocol is n = pq, while the private output is (p, q).

Protocol KEGVER[e, k](l,m, t).

1. (Cr, r)← unigen[2k−1, 2k − 1](m, t).
2. (Cs, s) ← unigen[2k−1, 2k − 1](m, t). (Note that the expensive verification

step 1 in unigen can be omitted here, as it was already executed in the
previous invocation.)

3. The user generates a prime p ≥ r meeting the conditions: (1) gcd(e, p−1) = 1;
(2) p ≡ 3 mod 4; and (3) p− r is minimal. If p− r > l, the user aborts, and
the protocol output is ∅.

4. The user generates a prime q ≥ smeeting the conditions: (1) gcd(e, q−1) = 1;
(2) q ≡ 3 mod 4; and (3) q − s is minimal. If q − s > l, the user halts, and
the protocol output is ∅.
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5. The user selects wp, wq ∈U [−2mN, 2mN ] and computes Cp = C(p, wp) and
Cq = C(q, wq).

6. The user sends Cp to the CA and proves POK{a, b : (Cp/Cr = gahb)
∧

(a ∈
[0, l])}, and analogously for Cq.

7. The user sends n = pq to the CA and proves POK{a, b, c, d : (Cp =
gahb)

∧
(Cq = gchd)

∧
(gn = gac)}. In other words, the user proves that

Cp and Cq are commitments to factors of n.
8. The user executes Blum(n)[t].
9. If the CA is unable to verify one or more proofs, or if Blum(n)[t] outputs ‘no’,

the CA rejects and the protocol output is ∅. Otherwise, the public output of
the protocol is n and the private output, obtained by the user, is (p, q).

Non-interactive variant of KEGVER: The protocol KEGVER can be rendered
non-interactive by having the user execute all proofs non-interactively and gen-
erate the value u in unigen as H(Cv) for an appropriate hash function H. In
this case, we really have two algorithms KEGVERuser and KEGVERCA, where
KEGVERuser produces a public key PK and proof transcript T , and KEGVERCA
decides whether to accept or not to accept a key/transcript pair (PK ′, T ′). To
guard against reuse of stale keys, a CA may require that the hash function
H be keyed uniquely to that CA. Of course, this does not prevent intentional
subsequent use of stale keys with CAs that do not adopt such a precaution.

Definition 1 must be altered for the non-interactive case. In particular, we
define the probability QAk;l,m,t so that the probability distribution over keys
PK ′ yielded by polynomial-time attack algorithm A also produces an accom-
panying transcript T ′ accepted by the CA. The algorithm A can of course run
KEGVERuser or some variant algorithm any number of times polynomial in k.

4 Security

If <g>=<h>, the protocol KEGVER is statistical zero-knowledge with privacy
dependent on the parameter m used for the construction of commitments [6,15].
Details on simulator construction for the CA are available in security proofs for
the underlying primitives as presented in the literature. If the proof protocols
in KEGVER are to be realized non-interactively (as is better for most practical
purposes), then the zero-knowledge property depends additionally on a random
oracle assumption on an underlying hash function used for challenge generation
[29]. In the case that <g>�=<h>, the commitments of the user may not in fact be
statistically secure. Hence, the privacy of KEGVER also depends on the soundness
of Proof1. The soundness of all proof protocols depends on the challenge sizes
and also, for non-interactive proofs, on the random oracle assumption.

The new and critical security issue we focus on here is the choice of security
parameter l and its impact on the soundness bound µ of Definition 1. To address
this issue, we require use of a number theoretic conjecture regarding the density
of primes. Most relevant here the view of prime density offered by Gallagher [17].
Gallagher shows that number of primes in the interval (x, x+ λ lnx] is Poisson
distributed with mean λ as x→∞.
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The security of our construction depends on a slightly different quantity. In
particular, our aim is to find a value l such that for a random k-bit value r, the
interval [r, r + l] with overwhelming probability contains a prime p such that
p ≡ 3 mod 4 and gcd(e, p− 1) = 1. For this, we make two heuristic assumptions.
Our first assumption is that the distribution of primes in the range used to
construct RSA moduli is roughly Poisson distributed in accordance with the
conjecture of Gallagher. We assume, second, that e is an odd prime constant (as
is the case in most applications). Finally, let d1 denote the probability density of
primes p of general form; let d2 denote the probability density of primes p such
that p ≡ 3 mod 4 and e� | (p−1). We assume, as one would naturally expect, that
d2/d1 = (e− 1)/2e. Let X be a Poisson-distributed random variable with mean
λ. The probability that X = 0 is e−λ. Thus we obtain the following conjecture.

Conjecture 1. For large r, the probability that the interval [r, r + l] contains no
prime p ≡ 3 mod 4 such that e� | (p − 1) is at most e−λ for l = λ ln r( 2e

e−1 ) or,
equivalently, for λ = l

ln r (
e−1
2e ). �	

This conjecture yields the following observation on the best parameterization
of λ and l in accordance with Definition 1. It is easy to see that this observation
extends to the non-interactive variant of KEGVER.

Observation 2. Suppose that λ = ω(ln ln r) = ω(ln k), t = ω(ln k) and λ 2e
e−1 ln r

< l = O(kc) for some constant c. Then the failure probability for an honest user,
i.e., the probability that an honest user cannot find suitable primes p and q in
KEGVER is negligible in k, and the soundness bound µ is polynomial in k. �	

Example 1. Let us consider a concrete example involving the generation of 512-
bit primes (i.e., roughly a 1024-bit RSA modulus) and public exponent e = 3.
Choosing λ = 57 yields a failure probability for an honest user in KEGVER of less
than 2−80 by Conjecture 1. This corresponds to l = λ 2e

e−1 ln r < 60, 687. Clearly,
given that at most one in four integers has the form p ≡ 3 mod 4, the maximum
number of primes p in an interval of this size is at most 15,171. It follows then
that our KEGVER protocol is µ-sound for µ < 15, 1712 = 230, 159, 241. This
assumes that the soundness parameter t is large enough so that the ability of an
attacker to cheat in any zero-knowledge proof is negligible, e.g., t = 100.

Stronger concrete security bounds: The concrete security bounds demonstrated
in Example 1 above are deceptively weak. First, we note that µ is a bound on the
ability of an attacker to distort the output distribution of KEGVER. For this, the
ideal strategy is for a malicious user to choose a prime p in the interval [r, r+ l]
such that the preceding prime p′ is as close as possible to p. In fact, though,
the aim of a malicious user is entirely different, namely to generate a key that is
weak with respect to some attack algorithm or algorithms. Hence, the attacker
is much more tightly constrained than our analysis according to Definition 1
suggests at first glance.

We can achieve substantially stronger concrete security bounds by relaxing
Definition 1 in a probabilistic sense across intervals. We do not dilate formally
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on the idea here. Instead, we note simply that in Example 1 above involving
generation of 512-bit primes with l = 60, 687, the average number of primes of
the form p ≡ 3 mod 4 in the interval [r, r + l] is about 86, and the distribution
of such primes is very tightly concentrated around this mean. In fact, under the
Gallagher conjecture, the probability that the interval contains more than 250
such primes is well less than 2−80. Thus, given a sufficiently large soundness
parameter t (e.g., t = 100), the soundness bound µ < 2502 = 62, 500 is a more
accurate one for our purposes in Example 1.

5 Performance

One of the desirable features of KEGVER is that it places the bulk of the com-
putational burden (primarily in the protocol Blum) on the user, rather than the
CA. This preserves the usual balance of computational effort by the two parties.
In particular, RSA key generation, which the user must perform in any case, is
a computationally intensive task. In contrast, certification of an RSA key by a
CA is, in its basic form, a relatively lightweight operation.

We can substantially reduce the computational requirements for the CA
through use of such techniques as batch verification, as introduced in [12], and
improved in many subsequent works such as [3], combined with addition chains,
as explored in, e.g., [4]. We estimate that such enhancements would yield a
speedup for the CA of approximately a factor of six. An additional protocol
modification we can exploit is elimination of square-freeness proof protocol of
van de Graaf and Peralta [33]: It can be proven that the KEGVER protocol itself
implicitly enforces the condition of square-freeness with high probability. Due to
space limitations, we omit proof of this fact from this version of the paper.

Given these observations, we can express the computational cost of the proto-
col very roughly in terms of the number of modular exponentiations required by
the two parties (disregarding small added costs, such as the fact that Fujisaki-
Okamoto commitments require exponents slightly longer than the modulus).
Given soundness parameter t = 100, the computational requirement for the user
in KEGVER is the equivalent of about 153 full modular exponentiations. The
overall computational cost for the CA to the equivalent of roughly 10 full mod-
ular exponentiations. The transcript size for the full protocol is about 37kB.

We have created an implementation in C of a non-interactive variant of the
KEGVER protocol for 1024-bit RSA modulus generation. Timing experiments
took place on a Pentium III processor running Windows NT 4.0, with 64 Mbytes
of RAM and running at 500 MHz. We compiled our code under gcc version
2.95.3 through use of the UNIX emulation environment Cygwin version 1.3.2.
For multiprecision arithmetic, we used the GNU MP library, version 3.1.1. We
note that the GMP library computes exponentiations via the sliding-window
method for exponentiation [27] which provides roughly a 20–30% speed-up over
the binary method for exponentiation. In addition, we implemented routines for
double exponentiation using the method of simultaneous multiple exponentiation
attributed to Shamir in [18]. Due to time constraints in the construction of
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the prototype, triple exponentiations were implemented simply through one call
each to the double exponentiation and the single exponentiation routines, with
multiplication of the partial results. In addition, in all of the computations by
the CA (verifier), we employ the Chinese Remainder Theorem (CRT).

Table 1. Time Critical Proofs/Protocols in KEGVER

Proof/Protocol # times Prover Verifier
called (sec) (msec)

unigen 2 2.7 509
rangeproof (long) (2) (2.4) (438)
rangeproof (short) 2 1.7 343
Blum Proof 1 1.3 201
KEGVER – 10.9 2.05 sec

Table 1 summarizes the timings of the critical proofs and protocols in KEGVER.
We denote the range proofs by the generic label rangeproof; the label “long” in-
dicates a relatively expensive proof over a large interval, and “short”, one on a
small interval. The second column in Table 1 indicates the number of times that
the specified protocol is called by KEGVER (either user or verifier). There are two
calls to unigen; these include two range proofs, whose timings are provided in the
next row. (Parentheses indicate that the associated calls and timings are sub-
sumed by calls to unigen.) There are also two independent invocations of short
range proofs, one for each of the primes in the RSA modulus. These latter proofs
correspond to Step 6 in KEGVER. We observe that roughly 86% of the time re-
quired for unigen is in fact accounted for by an invocation of the associated (long)
range proofs. Together, invocations of the cryptographic protocols unigen,Blum,
and rangeproof (short) account for about 92% of the time required to perform
KEGVER, the remainder accounted for by non-cryptographic operations. This is
true for both the user and CA. For further details on our experiments, we refer
the reader to the full version of this paper.

We did not implement batch verification or addition chains in this prototype.
Additionally, we employed a range-proof protocol known as SZKrange+ [22] in
lieu of the Boudot protocol; the latter is about twice as fast in this setting.
(We did this not for technical reasons, but due to intellecutal property concerns
regarding the Boudot protocol.) Through use of batch proofs and the Boudot
protocol, we believe it possible to achieve roughly a factor of 10 improvement
in the performance of the verifier (i.e., CA) protocol. This would reduce the
execution time to about 205 msec, making KEGVER highly practical.
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