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Abstract. This paper considers the problem of finding a minimum-
weighted representation of an integer under any modified radix-r num-
ber system. Contrary to existing methods, the proposed transformation
is carried out from the left to the right (i.e., from the most significant
position). This feature finds numerous applications and especially in fast
arithmetic techniques because it reduces both time and space complexi-
ties, which is particularly attractive for small devices like smart cards.

1 Introduction

A modified radiz-r representation (MR-r) of an integer N is a sequence of digits
N = (...,¢a,c1,¢0) with —r < ¢; < r. Unlike the (usual) radix-r representa-
tion (i.e., with 0 < ¢; < r), such a representation is not unique. The radix-r
representation is a special case of MR-r representation.

In the theory of arithmetic codes [WL.82] or for fast implementation of cryp-
tosystems [Gor98MvOV97), it is of interest to have a representation such that
the number of nonzero digits (i.e., the arithmetic weight [CL73|]) is minimal.
In the binary case (i.e., when r = 2), a well-known minimal representation is
given by the so-called nonadjacent form (NAF), that is, a representation with
¢i - ¢ir1 = 0 for all 4 > 0. In [Rei60], Reitwiesner proved that each integer has
exactly one NAF. Clark and Liang [CL73] later addressed the general case and
extended the notion of NAF to an arbitrary radix r > 2:

Definition 1. A MR-r representation (...,cq,c1,co) is said to be a generalized
nonadjacent form (GNAF) if and only if

(G1) |¢; + ciy1| < r for alli; and
(Gg) |Cz| < |Ci+1| if ¢i - Civ1 < 0.
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As one can easily see, this form coincides with the definition of the NAF when
r = 2. Moreover, as for the NAF, it can be proven that this form is unique and
has minimal arithmetic weight [CL73].

However, the GNAF is not the only representation with minimal arithmetic
weight. For example, (1,0,1,0,—1,0) and (1,0,0,1,1,0) are two minimal MR-2
representations for 38.

Our Results

This paper considers a new minimal MR-7 representation and presents an efficient
algorithm to compute it. This new representation, unlike the GNAF, presents the
nice property to be obtained by scanning the digits from the left to the right (i.e.,
from the most significant digit to the least significant one). This processing direc-
tion is of great importance since only for that direction a table of precomputed
values may be used to speed up the exponentiation, at least for exponentiation
algorithms processing one digit at a time [BGMW92]. A subsequent advantage
is that the exponent need not be recoded in advance, which results in better
performances in both running time and memory space. This is especially impor-
tant for small devices like the smart cards. Moreover, only for that direction,
further speedups may be obtained if the element to be raised up presents a spe-
cial structure [Coh93|, pp. 9-10]. Finally, this processing direction also solves an
open problem introduced in [WH97| §3.6].

2 New Minimal Representation

Throughout this paper, for convenience, —a will sometimes be denoted as a and
(S)* will represent S, S, ...,S (k times).

2.1 Elementary Blocks

Given the radix-r representation (..., cs, ¢1,¢o) of an integer N, the correspond-
ing GNAF can easily be obtained as follows [CL73]: compute the radix-r repre-
sentation of (r + 1)N, (..., ba,b1,bp), then the GNAF is given by (..., c5, ], cp)
where ¢ = b;y1 — ¢i+1. So, if the radix-r representation of (r + 1)N is known,
we are done. This computation can be carried out by right-to-left adding N =
(...,ca,c1,¢0) and rN = (..., ca,c1,00,0) according to the standard carry rule
[Knu&T], p. 251]:

Ko = 0

o {Ci+ci+1+ﬂiJ , (1)

Rit1 = S

bo = co and b;+1 = ¢; + ¢iy1 + Ky — TRiq1 for @ > 0. Left-to-right algorithms
to add integers also exist [Knu81] Exercises 4.3.1.5 and 4.3.1.6]. However, they
do not consistently output one digit per iteration; delay may occur when the
sum of two adjacent digits is equal to r — 1. For that reason, an on-line (i.e.,
digit-by-digit) left-to-right computation of the GNAF seems to be impossible.
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This paper considers a quite different approach: instead of trying to obtain
the GNAF, we are looking for other minimal forms that may be efficiently evalu-
ated from the left to the right. Our technique relies on the following observation:

Proposition 1. Let (...,ca,c1,¢0) be the radiz-r representation of an integer
N, and let (cyy1,¢f,.-.,Cet1,Ce) be a subchain of digits of this representation
such that

(E1) f>e;

(E'Q) Coet Coy1 #7—1;

(E3) ¢cj+cjy1i=r—1 fore<j<f;
(E4) cg+cpy #r—1.

Then all but the first and the last digits of the corresponding GNAF are entirely
determined.

Proof. We note from Eq. () that, since x; = 0 or 1, the value of the carry-out
ki+1 does not depend on the carry-in x; for ¢ > e. Indeed, we have K¢y =
Lcﬁ%j by Condition (E2); hence kj+1 = Key1 for e < j < f by induction
from Condition (E3); and kyi1 = LW#J by Condition (E4). Therefore, if
(%, c}, ..., ClLyq,%) denotes the digits corresponding to the GNAF, it follows that

/
¢j =bjt1—Cip1 = ¢ +Kj —Thjp

_Je (A =r)heyn  fore+1<j<f—1 o)
©leftheqr —rRpp forj=f

where fopq = [T | and kg = [ O

A subchain of radix-r digits satisfying Conditions (E1)—(E4) will be called
a radiz-r elementary block. From Proposition [[l two types of elementary blocks
may be distinguished.

Definition 2. Let 0 < d,be<r—1,c=r—1—d (thatis,c+d=r—1) and
k > 0. An elementary block of the form

(b,d, {c,d)*,e) withb+d#r—1ande+d#r—1 (3)

will be referred to as a Type 1 radix-r elementary block; and an elementary block
of the form

(b,d, (c,d)*, c,e) withb+d#r—1ande+c#r—1 (4)
as a Type 2 radix-r elementary block.

Notice that a Type 1 elementary block contains an odd number of digits (and
at least 3) while a Type 2 elementary block contains an even number of digits
(and at least 4).

Based on this definition, we can now present the new recoding algorithm.
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2.2 General Recoding Algorithm
From Proposition [1] l (see also Eq. [@)), the GNAF corresponding to a Type 1
elementary block (b, d, (c,d)*, e) is given byfl

E
=B (e+ A —r)[t],d+ (1 —r)[Z])" %) . (5)

By definition of a Type 1 elementary block, we have b +d # r — 1 and
e+ d #r — 1. Hence, Eq. (B) respectively simplifies to

Gl :(*=d+|_

(%, d, {c,d)* ) ifb+d<r—lande+d<r—1
G (*dJrl(d —c)f %) ifb+d<r—lande+d>r (6)
Y7 nd =1, (e, d)F %) ifo+d>rande+d<r—1 ’

(%, — <— —c>k,*) ifo+d>rande+d>r

Similarly, the GNAF corresponding to a Type 2 block (b, d, (c,d)*, c, e) is given
by

(*,d,(c,d)k, Cy %) ifb+d<r—landet+c<r—1
G — (x,d+1,{(—d,—c)*, —d,x) ifb+d<r—Tlande+c>r (7)
27 (hd =7 (c,d)* ¢, ) ifbo+d>rande+c<r—1 '

(%, —c, (—d, — ),—d,*) ifb+d>rande+c>r

Here too, we see the difficulty of converting a radix-r representation into
its GNAF by scanning the digits from the left to the right. If an elementary
block begins with (b,d, ¢, d,c,d,...) with b+ d < r — 1, the output will be
(%,d,c,d,c,d,...)or (x,d+1,—d, —c,—d, —c, . ..) depending on the two last digits
of the elementary block; if b+ d > r, the output will be (x,d —r,¢,d, ¢, d,...) or
(%, —¢,—d, —c,—d, —c,...). However, as stated in the next lemma, these outputs
may be replaced by equivalent forms (i.e., forms having the same length and the
same weight, and representing the same integer) so that the two last digits of an
elementary block do not need to be known in advance.

Lemma 1. Let0<d<r—1landc=r—1—d. Then
(i) if d # r —1, (d+ 1,{—d,—c)*) and ((d,c)*,d + 1) are equivalent MR-r

representations ;
(i3) if d # 0, (d—7,{c,d)*) and ((—c, —d)*,d —r) are equivalent MR- represen-
tations.

Proof. With the MR-r notation, (d + 1, (—d, —c)*) represents the integer
N = (d+ 1)r* + Zkfl(—dr —c)r?
=(d+1)r 2’“+Z] Co(er+d+1—r2)r
=drk 4+ Zk 1(cr +d)r? +1 since Z 1 r2 = r:::ll

which is thus also represented by (d, (c,d)*~! ¢,d + 1). We also note that (d +
1, (—d, —c)¥) and ({d, c)*, d+1) have the same arithmetic weight since their digits
are identical, in absolute value. The second equivalence is proved similarly. O

! The ‘¢’ indicates that the digit is unknown.
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Consequently, GNAFs G; and G2 (see Eqs (6) and (7)) can respectively be
replaced by another equivalent form, which we call generalized star form (GSF),
respectively given by

(%, (d, ), d,x) ifbo+d<r—lande+d<r—1
g (%, (d, c)*, d + 1,%) ifb+d<r—lande+d>r (8)
7Y (x5 (e, —d)e,d — %) ifb+d>rande+d<r—1
(%, (—c, —d)k, —c, %) ifb+d>rande+d>r
and
(%, (d, c)*, d, c, %) ifb+d<r—lande+c<r—1
g (x,{d,c)F,d + 1, —d,*) ifb+d<r—lande+c>r )
27 (o (—¢,—dYf,d—r,c,%x) ifb+d>rande+c<r—1 '
(%, (—¢, —=d)k, —c,—d,x) ifb+d>randet+c>r

The outputs now behave very regularly; an elementary block (b,d,c,d,c,

d,...) will be recoded into (x,d,c,d,c,d,...)if b+d <r —1 or into (x,—c, —d,
—c¢,—d,—c,...) if b+ d > r. We have just to take some precautions when out-
putting the last digits of the corresponding GSFs. The following example clarifies
the technique.

Ezxample 1. Suppose that the radix-4 GSF of N = 208063846 has to be computed.
Its radix-4 representation is (30121230311212)4. Then, by adding artificial begin-
ning and ending 0’s and decomposing this representation into elementary blocks,
the corresponding GSF is easily obtained from Eqs (B) and (@) as follows.

Radix-4 representation:

0030121230311212.0

Elementary blocks: 00301
012123
23031
311
11212.0
Corresponding GSF blocks:  x 030 %
*1221%
*030*
* 3 %
*1212 %

Radix-4 GSF representation:

30122103031212
O

In the previous example, it clearly appears that, from the definition of an

elementary block, the two first digits of an elementary block are the two last
ones of the previous block. This also illustrates that the decomposition into
elementary (and thus GSF) blocks always exists. Note also that the values of
the first and last digits of the corresponding GSF are given by the adjacent GSF
blocks.
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So, by carefully considering the two last digits of each possible elementary
block, we finally obtain the desired algorithm. Two additional variables are used:
variable (3; plays a role similar to the “borrow” and 7 keeps track the value of
the repeated digit (d in Definition [2).

INPUT: (Rm—1,...,M0) (Radix-r representation)
OUTPUT: (n;n,n;n,l, S ,nf)) (Radix-r GSF representation)

Bm —0; Ny —0; n_1—0; n_o«—0, 70
for ¢ from m down to 0 do
case
ni+ni—1<r—1: Bi_1 <0, 7T—mn;1
0 if 8i=1, nici=(r—1—71)
and n;—1 +ni—2<7r—1
nit+ni—1=00r—-1): Bici—<( 1 if 3, =0, ngo1=(r—1-—1)
and nj_1+n;j_2 >
(i otherwise
ni+ni—1>r: Gic1—1, T—mni_
endcase
ng — —rfi +ni+ fia
od

Fig. 1. Left-to-right radix-r GSF recoding algorithm.

To verify the correctness of the algorithm, it suffices to check that each type
of elementary block is effectively transformed accordingly to Eqs (B) and (@).
The next theorem states that the proposed algorithm is optimal in the sense
that the resulting representation has the fewest number of nonzero digits of any
MR-r representation.

Theorem 1. The GSF of a number has minimal arithmetic weight.

Proof. This is straightforward by noting the GSF is obtained from the GNAF
where some subchains were replaced according to Lemma[Il. Since these trans-
formations produce equivalent subchains, the GSF has the same arithmetic weight
as the GNAF and is thus minimal. O

Remark 1. We note that, as in [CL73], the proposed algorithm can be extended
to transform an arbitrary MR-r representation into a minimal one.

2.3 Binary Case

In the binary case (i.e., when r = 2), the algorithm presented in Fig.[Il is slightly
simpler. Using the same notations as in Fig.[l if n; + n,_1 = 1, we can easily
verify that

By = {52' +n;—1+ niQJ

5 (10)
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is a valid expression for (3;_1. Moreover, this expression remains valid when
n; = n;—1 = 0 (i.e., in the case n; + n;_1 < 1) because if n;41 = 0 then 8; =0
and if n; 1 = 1 then, by Eq. ({Q), we also have §; = 0; therefore Eq. ({0) yields
Bi—1 = 0. Similarly when n; = n;—; =1 (i.e., n; + n,_1 > 2), we can show that
Eq. ([I0)) yields 8;—1 = 1, as expected. The radix-2 GSF recoding algorithm thus
becomes [JY00]:

INPUT: (Rm—1,...,M0) (Binary representation)
OUTPUT: (ny,,Mim—1,---,Mny) (Binary GSF representation)

Bm < 0; N «—0; n_1 < 0; n_a 0
for ¢ from m down to 0 do

Bi_1 — Lﬂi+"i72l+"1‘72J

ng — —rfi +ni+ fia
od

Fig. 2. Left-to-right binary GSF recoding algorithm.

3 Applications

Minimal representations naturally find applications in the theory of arithmetic
codes [vL82] and in fast arithmetic techniques [Boo5T/Avi61]. In this section, we
will restrict our attention to fast exponentiation (see the excellent survey article
of [Gor98]).

The commonly used methods to compute ¢g* are the generalized “square-and-
multiply” algorithms. When base g is fixed or when the computation of an in-
verse is virtually free, as for elliptic curves [MO90], a signed-digit representation
further speeds up the computation. These algorithms input the MR-r represen-
tations of exponent k = (ky, ..., ko) (i.e., with —r < k; < r and k,, # 0) and of
base g, and output y = g*. This can be carried out from right to left (Fig.Bh)
or from left to right (Fig.Bb).

INPUT: k= (km,...,k0),9 INPUT: k= (km,...,ko0), 9
OUTPUT: y = g* OUTPUT: y = g*
y«—1l; he—g y<—gkm
for ¢ from 0 to m —1 do for ¢ from m — 1 down to 0 do
y—y-h" y—y
h« h" y—y-g"
od od
y—y-htm
(a) Right-to-left (RL). (b) Left-to-right (LR).

Fig. 3. Modified exponentiation algorithms.
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Using Markov chains, Arno and Wheeler [AW93] precisely estimated that the
average proportion of nonzero digits in the radix-r GNAF (and thus also in the
radix-r GSF) representation is equal to

r—1
r+1 "

p. = (11)

The LR algorithm can use the precomputation of some g¢ for —r < t < r
while the RL algorithm cannot! One could argue that the exponent may first be
recoded into a minimal MR-r representation and then the Lr algorithm be ap-
plied. However this also requires more memory space since each digit in the MR-r
requires an additional bit (to encode the sign for each digit). Consequently, since
only the LR algorithm is efficient, the proposed (left-to-right) general recoding
algorithm (Fig.[) will also bring some advantages because, as aforementioned,
the exponent need not be pre-recoded into its MR-r representation. This feature
is especially desirable for small devices, like smart cards.

Another generalization of exponentiation algorithms is to use variable win-
dows to skip strings of consecutive zeros. Here too, the proposed recoding al-
gorithms offer some speedups. Indeed, as a side effect, while having the same
weight as the GNAF, the GSF representation has more adjacent nonzero digits,
which increases the length of the runs of zeros. This property was successfully
applied by Koyama and Tsuruoka [KT93] to speed up the window exponentia-
tion on elliptic curves. We note nevertheless that the zero runs of their algorithm
are generally longer than those obtained by the GSFs.

4 Conclusions

In this paper, a new modified representation of integers for a general radix r >
2 is developed. Like the nonadjacent form (NAF) and its generalization, the
proposed representation has the fewest number of nonzero digits of any modified
representation.

When developing fast computational algorithms for hardware implementa-
tion, especially for some small devices which have very limited amount of mem-
ory, the problem of extra space requirement cannot be overlooked. Scanning and
transforming the original representation from the most significant digit has its
merit in not storing the resulting minimum-weighted result, hence memory space
requirements are reduced. Finally, this solves a problem considered to be hard
(see [WHOT, §3.6]), i.e., to obtain a minimal modified radix-4 representation by
scanning the digits of the standard representation from the left to the right.
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