Skip to main content

Kerneltron: Support Vector ‘Machine’ in Silicon

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2388))

Abstract

Detection of complex objects in streaming video poses two fundamental challenges: training from sparse data with proper generalization across variations in the object class and the environment; and the computational power required of the trained classifier running real-time. The Kerneltron supports the generalization performance of a Support Vector Machine (SVM) and offers the bandwidth and efficiency of a massively parallel architecture. The mixed-signal VLSI processor is dedicated to the most intensive of SVM operations: evaluating a kernel over large numbers of vectors in high dimensions. At the core of the Kerneltron is an internally analog, fine-grain computational array performing externally digital inner-products between an incoming vector and each of the stored support vectors. The three-transistor unit cell in the array combines single-bit dynamic storage, binary multiplication, and zero-latency analog accumulation. Precise digital outputs are obtained through oversampled quantization of the analog array outputs combined with bit-serial unary encoding of the digital inputs. The 256 input, 128 vector Kerneltron measures 3 mm × 3 mm in 0.5 μm CMOS, delivers 6.5 GMACS throughput at 5.9 mW power, and attains 8-bit output resolution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boser, B., Guyon, I. and Vapnik, V., “A training algorithm for optimal margin classifier,” in Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, pp 144–52, 1992.

    Google Scholar 

  2. Vapnik, V. The Nature of Statistical Learning Theory, Springer Verlag, 1995.

    Google Scholar 

  3. Osuna, E., Freund, R., and Girosi, F., “Training support vector machines: An application to face detection,” in Computer Vision and Pattern Recognition, pp. 130–136, 1997.

    Google Scholar 

  4. Oren, M., Papageorgiou, C., Sinha, P., Osuna, E. and Poggio, T. ”Pedestrian detection using wavelet templates,” in Computer Vision and Pattern Recognition, pp. 193–199, 1997.

    Google Scholar 

  5. Papageorgiou, C.P, Oren, M. and Poggio, T., “A General Framework for Object Detection,” in Proceedings of International Conference on Computer Vision, 1998.

    Google Scholar 

  6. H. Sahbi, D. Geman and N. Boujemaa, “Face Detection Using Coarse-to-Fine Support Vector Classifiers,” IEEE Int. Conf. Image Processing (ICIP’2002), Rochester NY, 2002.

    Google Scholar 

  7. S. Kang, and S.-W. Lee, “Handheld Computer Vision System for the Visually Impaired,” Proc. of 3rd International Workshop on Human-Friendly Welfare Robotic Systems, Daejeon, Korea, pp. 43–48, 2002.

    Google Scholar 

  8. Girosi, F., Jones, M. and Poggio, T. “Regularization Theory and Neural Networks Architectures,” Neural Computation, vol. 7, pp. 219–269, 1995.

    Article  Google Scholar 

  9. Pontil, M. and Verri, A., “Properties of Support Vector Machines,” Neural Computation, vol. 10, pp. 977–996, 1998.

    Article  Google Scholar 

  10. Burges, C., “A Tutorial on Support Vector Machines for Pattern Recognition,” in U. Fayyad, editor, Proceedings of Data Mining and Knowledge Discovery, pp. 1–43, 1998.

    Google Scholar 

  11. Cauwenberghs, G. and Poggio, T., “Incremental and Decremental Support Vector Machine Learning,” in Adv. Neural Information Processing Systems, Proc. of 2000 IEEE NIPS Conf., Cambridge MA: MIT Press, 2001.

    Google Scholar 

  12. Cauwenberghs, G. and Bayoumi, M., Learning on Silicon, Analog VLSI Adaptive Systems, Norwell MA: Kluwer Academic, 1999.

    Google Scholar 

  13. Schölkopf, B., Sung, K., Burges, C., Girosi, F., Niyogi, P., Poggio, T. and Vapnik, V. “Comparing Support Vector Machines with Gaussian Kernels to Radial Basis Functions Classifiers,” IEEE Transactions on Signal Processing (to appear 1997).

    Google Scholar 

  14. A. Kramer, “Array-based analog computation,” IEEE Micro, vol. 16(5), pp. 40–49, 1996.

    Article  Google Scholar 

  15. A. Chiang, “A programmable CCD signal processor,” IEEE Journal of Solid-State Circuits, vol. 25(6), pp. 1510–1517, 1990.

    Article  MathSciNet  Google Scholar 

  16. C. Neugebauer and A. Yariv, “A Parallel Analog CCD/CMOS Neural Network IC,” Proc. IEEE Int. Joint Conference on Neural Networks (IJCNN’91), Seattle, WA, vol. 1, pp. 447–451, 1991.

    Google Scholar 

  17. V. Pedroni, A. Agranat, C. Neugebauer, A. Yariv, “Pattern matching and parallel processing with CCD technology,” Proc. IEEE Int. Joint Conference on Neural Networks (IJCNN’92), vol. 3, pp. 620–623, 1992.

    Google Scholar 

  18. M. Howes, D. Morgan, Eds., Charge-Coupled Devices and Systems, John Wiley & Sons, 1979.

    Google Scholar 

  19. R. Genov, G. Cauwenberghs “Charge-Mode Parallel Architecture for Matrix-Vector Multiplication,” IEEE T. Circuits and Systems II, vol. 48(10), 2001.

    Google Scholar 

  20. R. Genov, G. Cauwenberghs, “Stochastic Mixed-Signal VLSI Architecture for High-Dimensional Kernel Machines,” to appear in Advances in Neural Information Processing Systems, Cambridge, MA: MIT Press, vol. 14, 2002.

    Google Scholar 

  21. G. Mulliken, F. Adil, G. Cauwenberghs, R. Genov, “Delta-Sigma Algorithmic Analog-to-Digital Conversion,” IEEE Int. Symp. on Circuits and Systems (IS-CAS’02), Scottsdale, AZ, May 26–29, 2002. ISCAS’2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Genov, R., Cauwenberghs, G. (2002). Kerneltron: Support Vector ‘Machine’ in Silicon. In: Lee, SW., Verri, A. (eds) Pattern Recognition with Support Vector Machines. SVM 2002. Lecture Notes in Computer Science, vol 2388. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45665-1_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-45665-1_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44016-1

  • Online ISBN: 978-3-540-45665-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics