Skip to main content

Forward Decoding Kernel Machines: A Hybrid HMM/SVM Approach to Sequence Recognition

  • Conference paper
  • First Online:
Pattern Recognition with Support Vector Machines (SVM 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2388))

Included in the following conference series:

Abstract

Forward Decoding Kernel Machines (FDKM) combine large-margin classifiers with Hidden Markov Models (HMM) for Maximum a Posteriori (MAP) adaptive sequence estimation. State transitions in the sequence are conditioned on observed data using a kernel-based probability model, and forward decoding of the state transition probabilities with the sum-product algorithm directly produces the MAP sequence. The parameters in the probabilistic model are trained using a recursive scheme that maximizes a lower bound on the regularized cross-entropy. The recursion performs an expectation step on the outgoing state of the transition probability model, using the posterior probabilities produced by the previous maximization step. Similar to Expectation-Maximization (EM), the FDKM recursion deals effectively with noisy and partially labeled data.

We also introduce a multi-class support vector machine for sparse conditional probability regression, GiniSVM based on a quadratic formulation of entropy. Experiments with benchmark classification data show that GiniSVM generalizes better than other multi-class SVM techniques. In conjunction with FDKM, GiniSVM produces a sparse kernel expansion of state transition probabilities, with drastically fewer non-zero coefficients than kernel logistic regression. Preliminary evaluation of FDKM with GiniSVM on a subset of the TIMIT speech database reveals significant improvements in phoneme recognition accuracy over other SVM and HMM techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Rabiner and B-H Juang, Fundamentals of Speech Recognition, Englewood Cliffs, NJ: Prentice-Hall, 1993.

    Google Scholar 

  2. Robinson, A. J., “An application of recurrent nets to phone probability estimation,” IEEE Transactions on Neural Networks, vol. 5,No. 2,March 1994.

    Google Scholar 

  3. Bengio, Y., “Learning long-term dependencies with gradient descent is difficult,” IEEE T. Neural Networks, vol. 5, pp. 157–166, 1994.

    Article  Google Scholar 

  4. Boser, B., Guyon, I. and Vapnik, V., “A training algorithm for optimal margin classifier,” in Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, pp 144–52, 1992.

    Google Scholar 

  5. Vapnik, V. The Nature of Statistical Learning Theory, New York: Springer-Verlag, 1995.

    MATH  Google Scholar 

  6. Girosi, F., Jones, M. and Poggio, T. “Regularization Theory and Neural Networks Architectures,” Neural Computation, vol. 7, pp 219–269, 1995

    Article  Google Scholar 

  7. Clark, P. and Moreno, M. J. “On the use of Support Vector Machines for Phonetic Classification,” IEEE Conf. Proc., 1999.

    Google Scholar 

  8. Laderfoged, P. A Course in Phonetics, New York, Harcourt Brace Jovanovich, 2nd ed., 1982.

    Google Scholar 

  9. Chakrabartty, S. and Cauwenberghs, G. “Sequence Estimation and Channel Equalization using Forward Decoding Kernel Machines,” IEEE Int. Conf. Acoustics and Signal Proc. (ICASSP’2002), Orlando FL, 2002.

    Google Scholar 

  10. Bourlard, H. and Morgan, N., Connectionist Speech Recognition: A Hybrid Approach, Kluwer Academic, 1994.

    Google Scholar 

  11. Bahl, L. R., Cocke J., Jelinek F. and Raviv J. “Optimal decoding of linear codes for minimizing symbol error rate,” IEEE Transactions on Inform. Theory, vol. IT–20, pp. 284–287, 1974.

    Article  MathSciNet  Google Scholar 

  12. Jaakkola, T. and Haussler, D. “Probabilistic kernel regression models,” Proceedings of Seventh International Workshop on Artificial Intelligence and Statistics, 1999.

    Google Scholar 

  13. Schölkopf, B., Burges, C. and Smola, A., Eds., Advances in Kernel Methods-Support Vector Learning, MIT Press, Cambridge, 1998.

    MATH  Google Scholar 

  14. Wahba, G. Support Vector Machine, Reproducing Kernel Hilbert Spaces and Randomized GACV, Technical Report 984, Department of Statistics, University of Wisconsin, Madison WI.

    Google Scholar 

  15. Zhu, J and Hastie, T., “Kernel Logistic Regression and Import Vector Machine,” Adv. IEEE Neural Information Processing Systems (NIPS’2001), Cambridge, MA: MIT Press, 2002.

    Google Scholar 

  16. Platt, J., “Probabilities for SV Machines,” Adv. Large Margin Classifiers, Smola, Bartlett et al., Eds., Cambridge MA: MIT Press, 1999.

    Google Scholar 

  17. Breiman, L. Friedman, J. H. et al. Classification and Regression Trees, Wadsworth and Brooks, Pacific Grove, CA, 1984.

    MATH  Google Scholar 

  18. Huber, P. J., “Robust Estimation of Location Parameter,” Annals of Mathematical Statistics, vol. 35, March 1964.

    Google Scholar 

  19. Platt, J. “Fast Training of Support Vector Machine using Sequential Minimal Optimization,” Adv. Kernel Methods, Scholkopf, Burgeset al., Eds., Cambridge MA: MIT Press, 1999.

    Google Scholar 

  20. Cauwenberghs, G. and Poggio, T., “Incremental and Decremental Support Vector Machine Learning,” Adv. IEEE Neural Information Processing Systems (NIPS’2000), Cambridge MA: MIT Press, 2001.

    Google Scholar 

  21. Chakrabartty, S. and Cauwenberghs, G. “Sequential Minimal Optimization for Kernel Probabilistic Regression,” Research Note, Center for Language and Speech Processing, The Johns Hopkins University, MD, 2002.

    Google Scholar 

  22. Weston, J. and Watkins, C., “Multi-Class Support Vector Machines,” Technical Report CSD-TR-9800-04, Department of Computer Science, Royal Holloway, University of London, May 1998.

    Google Scholar 

  23. Fisher, W., Doddington G. et al The DARPA Speech Recognition Research Database: Specifications and Status. Proceedings DARPA speech recognition workshop, pp. 93–99, 1986.

    Google Scholar 

  24. Lee, K. F. and Hon, H.W, “Speaker-Independent phone recognition using hidden markov models,” IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 37, pp. 1641–1648, 1989.

    Article  Google Scholar 

  25. Fosler-Lussier, E. Greenberg, S. Morgan, N., “Incorporating contextual phonetics into automatic speech recognition,” Proc. XIVth Int. Cong. Phon. Sci., 1999.

    Google Scholar 

  26. Wald, A. Sequential Analysis, Wiley, New York, 1947.

    MATH  Google Scholar 

  27. Chakrabartty, S., Singh, G. and Cauwenberghs, G. “Hybrid Support vector Machine/Hidden Markov Model Approach for Continuous Speech recognition,” Proc. IEEE Midwest Symp. Circuits and Systems (MWSCAS’2000), Lansing, MI, Aug. 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chakrabartty, S., Cauwenberghs, G. (2002). Forward Decoding Kernel Machines: A Hybrid HMM/SVM Approach to Sequence Recognition. In: Lee, SW., Verri, A. (eds) Pattern Recognition with Support Vector Machines. SVM 2002. Lecture Notes in Computer Science, vol 2388. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45665-1_22

Download citation

  • DOI: https://doi.org/10.1007/3-540-45665-1_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44016-1

  • Online ISBN: 978-3-540-45665-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics