Skip to main content

Optimization of the SVM Kernels Using an Empirical Error Minimization Scheme

  • Conference paper
  • First Online:
Pattern Recognition with Support Vector Machines (SVM 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2388))

Included in the following conference series:

Abstract

We address the problem of optimizing kernel parameters in Support Vector Machine modelling, especially when the number of parameters is greater than one as in polynomial kernels and KMOD, our newly introduced kernel. The present work is an extended experimental study of the framework proposed by Chapelle et al. for optimizing SVM kernels using an analytic upper bound of the error. However, our optimization scheme minimizes an empirical error estimate using a Quasi-Newton technique. The method has shown to reduce the number of support vectors along the optimization process. In order to assess our contribution, the approach is further used for adapting KMOD, RBF and polynomial kernels on synthetic data and NIST digit image database. The method has shown satisfactory results with much faster convergence in comparison with the simple gradient descent method.

Furthermore, we also experimented two more optimization schemes based respectively on the maximization of the margin and on the minimization of an approximated VC dimension estimate. While both of the objective functions are minimized, the error is not. The corresponding experimental results we carried out show this shortcoming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. E. Ayat, M. Cheriet, and C. Y. Suen. Un système neuro-flou pour la reconnaissance de montants numériques de chèques arabes. In CIFED, pages 171–180, Lyon,France, Jul. 2000.

    Google Scholar 

  2. N. E. Ayat, M. Cheriet, and C. Y. Suen. Kmod-a new support vector machine kernel for pattern recognition. application to digit image recognition. In ICDAR, pages 1215–1219, Seattle,USA, Sept. 2001.

    Google Scholar 

  3. N. E. Ayat, M. Cheriet, and C. Y. Suen. Kmod-a two parameter svm kernel for pattern recognition. to appear in icpr 2002. quebec city, canada, 2002, 2002.

    Google Scholar 

  4. Y. Bengio. Gradient-based optimization of hyper-parameters. Neural Computation, 12(8):1889–1900, 2000.

    Article  Google Scholar 

  5. B. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin classifiers. In Fifth Annual Workshop on Computational Learning Theory, Pittsburg, 1992.

    Google Scholar 

  6. C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273–297, 1995.

    MATH  Google Scholar 

  7. Courant and R. Hilbert. Methods of Mathematical Physics. Interscience, 1953.

    Google Scholar 

  8. G. Wahba. The bias-variance trade-off and the randomized gacv. Advances in Neural Information Processing Systems, 11(5), November 1999.

    Google Scholar 

  9. T. Joachims. Making large-scale svm learning practical. In B. Scholkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods — Support Vector Learning, chapter 11. 1999.

    Google Scholar 

  10. J. Platt. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Advances in large margin classifiers, 10(3), October 1999.

    Google Scholar 

  11. U. Kreβel. Pairwise classification and support vector machines. In B. Scholkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods — Support Vector Learning, chapter Chap.15, pages 255–268. 1999.

    Google Scholar 

  12. J. Larsen, C. Svarer, L. N. Andersen, and L. K. Hansen. Adaptive regularization in neural network modeling. In Neural Networks: Tricks of the Trade, pages 113–132, 1996.

    Google Scholar 

  13. O. Chapelle and V. Vapnik. Choosing multiple parameters for support vector machines. Advances in Neural Information Processing Systems, 03(5), March 2001.

    Google Scholar 

  14. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes in C, the art of scientific computing. Cambridge University Press, second edition, 1992.

    Google Scholar 

  15. G. Rätsch, T. Onoda, and K.-R. Müller. Soft margins for adaboost. Machine Learning, 43(3):287–320, 2001.

    Article  Google Scholar 

  16. B. Scholkopf. Support vector learning. PhD thesis, Universität Berlin, Berlin, Germany, 1997.

    Google Scholar 

  17. B. Scholkopf, C. Burges, and A. Smola. Introduction to support vector learning. In B. Scholkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods — Support Vector Learning, chapter 1. 1999.

    Google Scholar 

  18. P. Sollich. Bayesian methods for support vector machines: Evidence and predictive class probabilities. Machine Learning, 46(1/3):21, 2002.

    Article  MATH  Google Scholar 

  19. V. Vapnik. The Nature of Statistical Learning Theory. NY, USA, 1995.

    Google Scholar 

  20. V. Vapnik. An overview of statistical learning theory. IEEE Transactions on Neural Networks, 10(5), September 1999.

    Google Scholar 

  21. D. S. Watkins. Fundamentals of Matrix Computations. Wiley, New York, 1991.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ayat, NE., Cheriet, M., Suen, C.Y. (2002). Optimization of the SVM Kernels Using an Empirical Error Minimization Scheme. In: Lee, SW., Verri, A. (eds) Pattern Recognition with Support Vector Machines. SVM 2002. Lecture Notes in Computer Science, vol 2388. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45665-1_28

Download citation

  • DOI: https://doi.org/10.1007/3-540-45665-1_28

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44016-1

  • Online ISBN: 978-3-540-45665-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics