Skip to main content

Small Convex Quadrangulations of Point Sets

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2223))

Abstract

In this paper, we give upper and lower bounds on the number of Steiner points required to construct a strictly convex quadrilateral mesh for a planar point set. In particular, we show that 3⌊n∣2⌋ internal Steiner points are always sufficient for a convex quadrangulation of n points in the plane. Furthermore, for any given n ≥ 4, there are point sets for which \( \left[ {\tfrac{{n - 3}} {2}} \right] - 1 \) Steiner points are necessary for a convex quadrangulation.

Partially supported by an NSERC Individual Research Grant

Partially supported by CUR Gen. Cat. 1999SGR00356 and Proyecto DGES-MEC PB98-0933.

Partially supported by a Rutgers University Research Council Grant URF-G-00- 01.

Partially supported by CUR Gen. Cat. 1999SGR00356 and Proyecto DGES-MEC PB98-0933.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. J. Allman. A quadrilateral finite element including vertex rotations for plane elasticity analysis. Int. J. Num. Methods Eng., 26:717–730, 1988.

    Article  MATH  Google Scholar 

  2. E. Arkin, M. Held, J. Mitchell, and S. Skiena. Hamiltonian triangulations for fast rendering. In ESA’94, LNCS 855, pages 36–47, Utrecht, September 1994.

    Google Scholar 

  3. S.E Benzley, E. Perry, K. Merkley, B. Clark, and K. Sjaardema. A comparison of all-hexahedral and all-tetrahedral finite element meshes for elastic and elastoplastic analysis. In 4th Int. Meshing Roundtable, pages 179–191, 1995.

    Google Scholar 

  4. M. Bern and D. Eppstein. Quadrilateral meshing by circle packing. In 6th Int. Meshing Roundtable, pages 7–19, 1997.

    Google Scholar 

  5. M. Bern, S. A. Mitchell, and J. Ruppert. Linear-size nonobtuse triangulation of polygons. Disc. Comput. Geom., 14:411–428, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  6. P. Bose, S. Ramaswami, A. Turki, and G. Toussaint. Experimental comparison of quadrangulation algorithms for sets of points. In 12th Euro. Workshop Comp. Geom., Münster, Germany, 1996.

    Google Scholar 

  7. P. Bose and G. Toussaint. Characterizing and efficiently computing quadrangulations of planar point sets. Comp. Aided Geom. Design, 14:763–785, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  8. H. Edelsbrunner, J. O’Rourke, and E. Welzl. Stationing guards in rectilinear art galleries. Comp. Vis. Graphics Image Proc., 27:167–176, 1984.

    Google Scholar 

  9. D. Eppstein. Linear complexity hexahedral mesh generation. In Proc. 12th ACM Symp. Comp. Geom., pages 58–67, 1996.

    Google Scholar 

  10. H. Everett, W. Lenhart, M. Overmars, T. Shermer, and J. Urrutia. Strictly convex quadrilateralizations of polygons. In Proc. 4th Canad. Conf. Comput. Geom., pages 77–82, St. Johns, Newfoundland, 1992.

    Google Scholar 

  11. T. Fevens, H. Meijer, and D. Rappaport. Minimum weight convex quadrilateralization of a constrained point set. In 2nd CGC Workshop Comp. Geom., Durham, NC, USA, 1997.

    Google Scholar 

  12. B. P. Johnston, J. M. Sullivan, and A. Kwasnik. Automatic conversion of triangular finite meshes to quadrilateral elements. Int. J. Num. Methods Eng., 31(1):67–84, 1991.

    Article  MATH  Google Scholar 

  13. J. Kahn, M. Klawe, and D. Kleitman. Traditional galleries require fewer watchmen. SIAM J. Alg. Disc. Methods, 4(2):194–206, June 1983.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Lubiw. Decomposing polygonal regions into convex quadrilaterals. In Proc. 1st ACM Symp. Comp. Geom., pages 97–106, 1985.

    Google Scholar 

  15. Bern M. and D. Eppstein. Polynomial-size nonobtuse triangulation of polygons. Int. J. Comp. Geom. App., 2:241–255, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Mitchell. A characterization of the quadrilateral meshes of a surface which admit a compatible hexahedral mesh of the enclosed volume. In 5th MSI Workshop Comp. Geom., 1995. 624

    Google Scholar 

  17. S. Mitchell. Hexahedral mesh generation via the dual. In Proc. 11th ACM Symp. Comp. Geom., pages C4–C5, 1995.

    Google Scholar 

  18. M. Müller-Hannemann and K. Weihe. Quadrangular refinements of polygons with an application to finite-element meshes. In Proc. 13th ACM Symp. Comp. Geom., 1997.

    Google Scholar 

  19. S. Ramaswami, P. Ramos, and G. Toussaint. Converting triangulations to quadrangulations. Comput. Geom., 9:257–276, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. R. Sack. An O(n log n) algorithm for decomposing simple rectilinear polygons into convex quadrilaterals. In Proc. 20th Allerton Conf., pages 64–75, October 1982.

    Google Scholar 

  21. E. Schönhardt. Über die zerlegung von dreieckspolyedern in tetraeder. Math. Annalen, 98:309–312, 1928.

    Article  MathSciNet  MATH  Google Scholar 

  22. G. Toussaint. Quadrangulations of planar sets. In Workshop Alg. Data Struct., LNCS, pages 218–227. Springer-Verlag, August 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bremner, D., Hurtado, F., Ramaswami, S., Sacristán, V. (2001). Small Convex Quadrangulations of Point Sets. In: Eades, P., Takaoka, T. (eds) Algorithms and Computation. ISAAC 2001. Lecture Notes in Computer Science, vol 2223. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45678-3_53

Download citation

  • DOI: https://doi.org/10.1007/3-540-45678-3_53

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42985-2

  • Online ISBN: 978-3-540-45678-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics