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Abstract. This paper presents a method for analyzing time-series
data on laboratory examinations based on phase-constraint multiscale
matching and rough clustering. Multiscale matching compares two
subsequences throughout various scales of view. It has an advantage
of preserving connectivity of subsequences even if the subsequences
are represented at different scales. Rough clustering groups up objects
according not to the topographic measures such as the center or deviance
of objects in a cluster but to the relative similarity and indiscernibility
of objects. We use multiscale matching to obtain similarity of sequences
and rough clustering to cluster the sequences according to the obtained
similarity. We slightly modified dissimilarity measure in multiscale
matching so that it suppresses excessive shift of phase that may cause
incorrect matching of the sequences. Experimental results on the
hepatitis dataset show that the proposed method successfully clustered
similar sequences into an independent cluster, and that correspondence
of subsequences are also successfully captured.

Keywords: multiscale matching, rough clustering, rough sets, medical
data mining, temporal knowledge discovery

1 Introduction

Since hospital information systems were first introduced in large hospitals in
1980’s, huge amount of time-series laboratory examination data, for example
blood and biochemical examination data, have been stored in the databases.
Recently, analysis of such temporal examination databases has been attracting
much interests because it might reveal underlying relationships between temporal
course of examination and onset of diseases. Long-term laboratory examination
databases might also enable us to validate a hypothesis about temporal course
of chronic diseases that has not been evaluated yet on large samples. However,
despite their importance, time-series medical databases have not widely been
considered as the subject of analysis. This is primarily due to inhomogeneity
of the data. Basically, the data were collected without considering further use
in automated analysis. Therefore it involves the following problems. (1) Missing
values: Examinations are not performed on every day when a patient comes to
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the hospital. It depends on the needs for examination. (2) Irregular interval of
data acquisition: A patient consults a doctor in different interval depending on
his/her condition, hospital’s vacancy, and other factors. The intervals can vary
from a few days to several months. (3) Noise: The data can be distorted due
to contingent change of patient’s condition. These problems make it difficult
to compare similarity of temporal patterns on different patients. Therefore, the
data have been mainly used for visual comparison among small samples, where
the scale-merits of large temporal databases have not been exploited.

In this paper, we present a hybrid approach to the analysis of such inho-
mogeneous time-series medical databases. The techniques employed here are
phase-constraint multiscale structure matching [1] and rough-sets based clus-
tering technique [2]. The first one, multiscale structure matching, is a method
that effectively compares two objects by partially changing observation scales.
We apply this method to the time-series data, and examine similarity of two
sequences in both long-term and short-term points of view. It has an advantage
that connectivity of segments is preserved in the matching results even when
the partial segments are obtained from different scales. We slightly modified dis-
similarity measure in multiscale matching so that it suppresses excessive shift of
phase that causes incorrect matching results. The second technique, rough-sets
based clustering, clusters sequences based on their indiscernibility defined in the
context of rough set theory [3]. The method can produce interpretable clusters
even under the condition that similarity of objects is defined only as a relative
similarity. Our method attempts to cluster the temporal sequences according to
their long- and short-term similarity by combining the two techniques. First, we
apply multiscale stricture matching to all pairs of sequences and obtain simi-
larity for each of them. Next, we apply rough-sets based clustering technique
to cluster the sequences based on the obtained similarity. After then, common
patterns in the clustered sequences can be visualized to understand relations to
the diagnostic classes.

The remaining part of this paper is organized as follows. In Section 2 we
introduce some related work. In Section 3 we describe the procedure of our
method including explanation of each process such as preprocessing of data,
multiscale structure matching and rough sets-based clustering. Then we show
some experimental results in Section 4 and finally conclude the technical results.

2 Related Work

Data mining in time-series data has received much interests in both theoreti-
cal and applicational areas. A widely used approach in time-series data min-
ing is to cluster sequences based on the similarity of their primary coefficients.
Agrawal et al. [4] utilize discrete Fourier transformation (DFT) coefficients to
evaluate similarity of sequences. Chan et al. [5] obtain the similarity based on the
frequency components derived by the discrete wavelet transformation (DWT).
Korn et al. [6] use singular value decomposition (SVD) to reduce complexity of
sequences and compare the sequences according to the similarity of their eigen-
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Fig. 1. Overview of the method

waves. Another approach includes comparison of sequences based on the similar-
ity of forms of partial segments. Morinaka et al. [7] propose the L-index, which
performs piecewise comparison of linearly approximated subsequences. Keogh et
al. [8] propose a method called piecewise aggregate approximation (PAA), which
performs fast comparison of subsequences by approximating each subsequence
with simple box waves having constant length.

These methods can compare the sequences in various scales of view by choos-
ing proper set of frequency components, or by simply changing size of the window
that is used to translate a sequence into a set of simple waves or symbols. How-
ever, they are not designed to perform cross-scale comparison. In cross-scale
comparison, connectivity of subsequences should be preserved across all levels
of discrete scales. Such connectivity is not guaranteed in the existing methods
because they do not trace hierarchical structure of partial segments. Therefore,
similarity of subsequences obtained on different scales can not be directly merged
into the resultant sequences. In other words, one can not capture similarity of
sequences by partially changing scales of observation.

On the other hand, clustering has a rich history and a lot of methods have
been proposed. They include, for example, k-means [9], fuzzy c-means [10], EM
algorithm [11], CLIQUE [12], CURE [13] and BIRCH [14]. However, the simi-
larity provided by multiscale matching is relative and not guaranteed to satisfy
triangular inequality. Therefore, the methods based on the center, gravity or
other types of topographic measures can not be applied to this task. Although
classical agglomerative hierarchical clustering [15] can treat such relative simi-
larity, in some case it has a problem that the clustering result depends on the
order of handling objects.

3 Methods

3.1 Overview

Figure 1 shows an overview of the proposed method. First, we apply pre-process-
ing to all the input sequences and obtain the interpolated sequences resampled
in a regular interval. This procedure rearranges all data on the same time-scale
and is required to compare long- and short-term difference using their length of
trajectory. A simple linear interpolation of nearest neighbors is used to fill in a
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missing value. Next, we apply multiscale structure matching to all possible com-
binations of two sequences and obtain their similarity as a matching score. We
here restricted combinations of pairs so that they have the same attributes such
as GPT-GPT, because our interest is not on the cross-attributes relationships.
After obtaining similarity of the sequences, we cluster the sequences by using
rough-set based clustering. Consequently, the similar sequences are clustered into
the same clusters and their features are visualized.

3.2 Phase-Constraint Multiscale Structure Matching

Multiscale structure matching, proposed by Mokhtarian [17], is a method to
describe and compare objects in various scales of view. Its matching criterion
is similarity between partial contours. It seeks the best pair of partial contours
throughout all scales, not only in the same scale. This enables matching of object
not only from local similarity but also from global similarity. The method re-
quired much computation time because it should continuously change the scale,
however, Ueda et al. [1] solved this problem by introducing a segment-based
matching method which enabled the use of discrete scales. We use Ueda’s method
to perform matching of time sequences between patients. We associate a con-
vex/concave structure in the time-sequence as a convex/concave structure of
partial contour. Such a structure can be generated by increase/decrease of ex-
amination values. Then we can compare the sequences from different terms of
observation.

Now let x(t) denote a time sequence where t denotes time of examination.
The sequence at scale σ, X(t, σ), can be represented as a convolution of x(t) and
a Gauss function with scale factor σ, g(t, σ), as follows:

X(t, σ) = x(t) ⊗ g(t, σ)

=
∫ +∞

−∞
x(u)

1
σ
√

2π
e−(t−u)2/2σ2

du.

Figure 2 shows an example of sequences in various scales. From Figure 2
and the function above, it is obvious that the sequence will be smoothed at
higher scale and the number of inflection points is also reduced at higher scale.
Curvature of the sequence can be calculated as

K(t, σ) =
X ′′

(1 +X ′2)3/2
,

where X ′ and X ′′ denotes the first- and second-order derivative of X(t, σ), re-
spectively. The m-th derivative of X(t, σ), X(m)(t, σ), is derived as a convolution
of x(t) and the m-th order derivative of g(t, σ), g(m)(t, σ), as

X(m)(t, σ) =
∂mX(t, σ)
∂tm

= x(t) ⊗ g(m)(t, σ).

The next step is to find inflection points according to change of the sign of the
curvature and to construct segments. A segment is a partial contour whose ends
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correspond to the adjacent inflection points. Let A(k) be a set of N segments
that represents the sequence at scale σ(k) as

A(k) =
{
a
(k)
i | i = 1, 2, · · · , N (k)

}
.

Then, difference between segments a(k)
i and b(h)

i , d(a(k)
i , b

(h)
j ) is defined as

follows:

d(a(k)
i , b

(h)
j ) =

| θ(k)
ai − θ(h)

bj
|

θ
(k)
ai + θ(h)

bj

∣∣∣∣∣∣
l
(k)
ai

L
(k)
A

−
l
(h)
bj

L
(h)
B

∣∣∣∣∣∣ ,

where θ(k)
ai and θ(h)

bj
denote rotation angles of tangent vectors along the contours,

l
(k)
ai and l(h)

bj
denote length of the contours, L(k)

A and L(h)
B denote total segment

length of the sequences A and B at scales σ(k) and σ(h). According to the
above definition, large differences can be assigned when difference of rotation
angle or relative length is large. Continuous 2n− 1 segments can be integrated
into one segment at higher scale. Difference between the replaced segments and
another segment can be defined analogously, with additive replacement cost that
suppresses excessive replacement.

The above similarity measure can absorb shift of time and difference of sam-
pling duration. However, we should suppress excessive back-shift of sequences
in order to correctly distinguish the early-phase events from late-phase events.
Therefore, we extend the definition of similarity as follows.

d(a(k)
i , b

(h)
j ) =

1
3




∣∣∣∣∣∣
d
(k)
ai

D
(k)
A

−
d
(h)
bj

D
(h)
B

∣∣∣∣∣∣ +
| θ(k)

ai − θ(h)
bj

|
θ
(k)
ai + θ(h)

bj

+

∣∣∣∣∣∣
l
(k)
ai

L
(k)
A

−
l
(h)
bj

L
(h)
B

∣∣∣∣∣∣

 ,

where d(k)
ai and d(h)

bj
denote dates from first examinations, D(k)

A and D(h)
B denote

durations of examinations. By this extension, we can simultaneously evaluate the
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following three similarities: (1)dates of events (2) velocity of increase/decrease
(3) duration of each event.

The remaining procedure of multiscale structure matching is to find the best
pair of segments that minimizes the total difference. Figure 2 illustrates the
process. For example, in the upper part of Figure 2, five contiguous segments at
the lowest scale of Sequence A are integrated into one segment at the highest
scale, and this segment is well matched to one segment in Sequence B at the
lowest scale. While, another pair of segments is matched at the lowest scale. In
this way, matching is performed throughout all scales. The matching process can
be fasten by implementing dynamic programming scheme. For more details, see
ref [1]. After matching process is completed, we calculate the remaining difference
and use it as a measure of similarity between sequences.

3.3 Rough-Sets Based Clustering

Generally, if similarity of objects is represented only as a relative similarity, it is
not an easy task to construct interpretable clusters because some of important
measures such as inter- and intra-cluster variances are hard to be defined. The
rough-set based clustering method is a clustering method that clusters objects
according to the indiscernibility of objects. It represents denseness of objects
according to the indiscernibility degree, and produces interpretable clusters even
for the objects mentioned above. Since similarity of sequences obtained through
multiscale structure matching is relative, we use this clustering method to classify
the sequences.

The clustering method lies its basis on the indiscernibility of objects, which
forms basic property of knowledge in rough sets. Let us first introduce some fun-
damental definitions of rough sets related to our work. Let U �= φ be a universe
of discourse and X be a subset of U . An equivalence relation, R, classifies U
into a set of subsets U/R = {X1, X2, ...Xm} in which following conditions are
satisfied:

(1)Xi ⊆ U,Xi �= φ for any i,
(2)Xi ∩Xj = φ for any i, j,
(3) ∪i=1,2,...n Xi = U.

Any subsetXi, called a category, represents an equivalence class of R. A category
in R containing an object x ∈ U is denoted by [x]R. For a family of equivalence
relations P ⊆ R, an indiscernibility relation over P is denoted by IND(P) and
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defined as follows

IND(P) = {(xi, xj) ∈ U2 | ∀Q ∈ P, [xi]Q = [xj ]Q}.

The clustering method consists of two steps: (1)assignment of initial equiv-
alence relations and (2)iterative refinement of initial equivalence relations. Fig-
ure 3 illustrates each step. In the first step, we assign an initial equivalence
relation to every object. An initial equivalence relation classifies the objects into
two sets: one is a set of objects similar to the corresponding objects and an-
other is a set of dissimilar objects. Let U = {x1, x2, ..., xn} be the entire set of n
objects. An initial equivalence relation Ri for object xi is defined as

Ri = {{Pi}, {U − Pi}},

Pi = {xj | s(xi, xj) ≥ Si}, ∀xj ∈ U.
where Pi denotes a set of objects similar to xi. Namely, Pi is a set of objects whose
similarity to xi, s, is larger than a threshold value Si. Here, s corresponds to
the inverse of the output of multiscale structure matching, and Si is determined
automatically at a place where s largely decreases. A set of indiscernible objects
obtained using all sets of equivalence relations corresponds to a cluster. In other
words, a cluster corresponds to a category Xi of U/IND(R).

In the second step, we refine the initial equivalence relations according to
their global relationships. First, we define an indiscernibility degree, γ, which
represents how many equivalence relations commonly regards two objects as
indiscernible objects, as follows:

γ(xi, xj) =
1
|U |

|U|∑
k=1

δk(xi, xj),

δk(xi, xj) =
{

1, if [xk]Rk
∩ ([xi]Rk

∩ [xj ]Rk
) �= φ

0, otherwise.

Objects with high indiscernibility degree can be interpreted as similar objects.
Therefore, they should be classified into the same cluster. Thus we modify an
equivalence relation if it has ability to discern objects with high γ as follows:

R′
i = {{P ′

i}, {U − P ′
i}},

P ′
i = {xj |γ(xi, xj) ≥ Th}, ∀xj ∈ U.

This prevents generation of small clusters formed due to the too fine clas-
sification knowledge. Th is a threshold value that determines indiscernibility of
objects. Therefore, we associate Th with roughness of knowledge and perform
iterative refinement of equivalence relations by constantly decreasing Th. Con-
sequently, coarsely classified set of sequences are obtained as U/IND(R′).
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Fig. 4. Test patterns

Table 1. Similarity of the sequences

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 1.00 0.70 0.68 0.78 0.00 0.63 0.48 0.71 0.72 0.61 0.73 0.66 0.64 0.72 0.50 0.00 0.53 0.00 0.74 0.45
2 1.00 0.61 0.73 0.00 0.68 0.22 0.46 0.68 0.67 0.72 0.73 0.72 0.68 0.54 0.00 0.68 0.00 0.77 0.41
3 1.00 0.75 0.45 0.51 0.68 0.47 0.71 0.70 0.69 0.73 0.71 0.81 0.68 0.00 0.62 0.00 0.72 0.55
4 1.00 0.00 0.60 0.52 0.47 0.75 0.71 0.64 0.79 0.75 0.82 0.47 0.00 0.60 0.00 0.75 0.48
5 1.00 0.23 0.62 0.49 0.33 0.53 0.44 0.45 0.50 0.44 0.56 0.01 0.00 0.26 0.53 0.30
6 1.00 0.00 0.00 0.59 0.00 0.58 0.39 0.61 0.65 0.00 0.00 0.47 0.00 0.47 0.48
7 1.00 0.49 0.54 0.80 0.57 0.73 0.73 0.59 0.76 0.00 0.00 0.44 0.62 0.39
8 1.00 0.53 0.47 0.57 0.56 0.51 0.49 0.54 0.00 0.00 0.00 0.66 0.51
9 1.00 0.00 0.68 0.00 0.00 0.00 0.00 0.00 0.82 0.00 0.00 0.00
10 1.00 0.59 0.83 0.76 0.75 0.81 0.00 0.47 0.11 0.59 0.37
11 1.00 0.76 0.54 0.68 0.00 0.00 0.74 0.00 0.76 0.00
12 1.00 0.81 0.78 0.67 0.00 0.70 0.00 0.63 0.40
13 1.00 0.75 0.00 0.00 0.64 0.00 0.67 0.35
14 1.00 0.00 0.00 0.66 0.00 0.71 0.00
15 1.00 0.00 0.43 0.20 0.55 0.39
16 1.00 0.00 0.00 0.43 0.19
17 1.00 0.00 0.00 0.00
18 1.00 0.39 0.03
19 1.00 0.00
20 1.00

4 Experimental Results

We applied the proposed method to time-series GPT sequences in the hepatitis
data set [18]. The dataset contained long time-series data on laboratory exam-
inations, which were collected on a university hospital in Japan. The subjects
were 771 patients of hepatitis B and C who took examinations between 1982
and 2001. Due to incompleteness in data acquisition, time-series GPT sequences
were available only for 195 of 771 patients.

First, in order to evaluate applicability of multiscale matching to time-series
data analysis, we applied the proposed method to a small subset of sequences
which was constructed by randomly selecting 20 sequences from the data set.
Figure 4 shows all the pre-processed sequences. Each sequence originally has
different sampling intervals from one day to one year. From preliminary analysis
we found that the most frequently appeared interval was one week; this means
that most of the patients took examinations on a fixed day of a week. According
to this observation, we determined resampling interval to seven days.

Table 1 shows normalized similarity of the sequences derived by multiscale
matching. Since consistency of self-similarity (s(A,B) = s(B,A)) holds, the
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lower-left half of the matrix is omitted. We can observe that higher similarity
was successfully assigned to intuitively similar pairs of sequences.

Based on this similarity, the rough clustering produced nine clusters:
U/IND(R) = {{1,2,9,11,17,19}, {4,3,8}, {7,14,15}, {10,12,13}, {5}, {6}, {16},
{18}, {20}}. A parameter Th for rough clustering was set to Th = 0.6. Re-
finement was performed up to five times with constantly decreasing Th toward
Th = 0.4. It can be seen that similar sequences were clustered into the same clus-
ter. Some sequences, for example #16, were clustered into independent clusters
due to remarkably small similarity to other sequences. This is because multiscale
matching could not find good pairs of subsequences.

Figure 5 shows the result of multiscale matching on sequences #10 and #12,
that have high similarity. We changed σ from 1.0 to 13.5, with intervals of 2.5.
At the bottom of the figure there are original two sequences at σ = 1.0. The
next five sequences represent sequences at scales σ = 3.5, 6.0, 8.5, 11.0, and 13.5,
respectively. Each of the colored line corresponds to a segment. The matching
result is shown at the top of the figure. Here the lines with same color repre-
sent the matched segments, for example, segment A matches segment A′ and
segment B matches segment B′. We can clearly observe that increase/decrease
patterns of sequences are successfully captured; large increase (A and A′), small
decrease with instant increase (B and B′), small increase (C and C′) and so
on. Segments D − F and D′ − F ′ have similar patterns and the feature was
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also correctly captured. It can also be seen that the well-matched segments were
obtained in the sequences with large time difference.

Next, we applied the proposed method to the full data set containing 195
GPT sequences. For this data set, rough clustering produced 14 clusters:
U/IND(R) = {{2, 19, 36, 37, 49,. . . , 953, 955 (total 165 sequences)}, {16, 35,
111}, {86, 104, 142, 171, 215, 273, 509, 523, 610, 663}, {149}, {703}, {706},
{737}, {740}, {743, 801, 894, 897, 942}, {750, 952}, {771}, {533, 594}, {689,
731}}, where a sequence number corresponds to a masked ID of the patient. The
first cluster seems to be uninteresting because it contains too many sequences.
This cluster was generated as a result of inproper assignment of Th, which caused
excessive refinement of clusters. However instead, we could find very interesting
patterns in other clusters. For example, the 10th cluster contained sequences
750 and 952, which had very similar patterns as shown in Figure 6. In both
sequences, increase and decrease of GPT values were repeatedly observed in the
early half period of data acquisition, and they became flat in the late period.
A physician evaluated that this might be an interesting pattern that represents
degree of damage of the liver.

5 Conclusions

In this paper, we have presented an analysis method of time-series medical
databases based on the hybridization of phase-constraint multiscale structure
matching and rough clustering. The method first obtained similarity of sequences
by multiscale comparison of sequences in which connectivity of subsequences
were preserved even if they were represented at different scales. Then rough
clustering grouped up the sequences according to their relative similarity. This
hybridization enabled us not only to cluster time-series sequence from both long-
and short-term viewpoints but also to visualize correspondence of subsequences.
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In the experiments on the hepatitis data set, we showed that the sequences were
successfully clustered into intuitively correct clusters, and that some interesting
patterns were discovered by visualizing the clustered sequences. It remains as a
future work to evaluate usefulness of the method in other databases.
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