Association Rules
for Expressing Gradual Dependencies

Eyke Hiillermeier

Department of Mathematics and Computer Science
University of Marburg, Germany
eykeCmathematik.uni-marburg.de

Abstract. Data mining methods originally designed for binary at-
tributes can generally be extended to quantitative attributes by par-
titioning the related numeric domains. This procedure, however, comes
along with a loss of information and, hence, has several disadvantages.
This paper shows that fuzzy partitions can overcome some of these dis-
advantages. Particularly, fuzzy partitions allow for the representation of
association rules expressing a tendency, that is, a gradual dependence be-
tween attributes. This type of rule is introduced and investigated from
a conceptual as well as a computational point of view. The evaluation
and representation of a gradual association is based on linear regression
analysis. Furthermore, a complementary type of association, expressing
absolute deviations rather than tendencies, is discussed in this context.

1 Introduction

Data mining aims at extracting understandable pieces of knowledge from usually
large sets of data stored in a database. It comes as no surprise that rule-based
models play a prominent role in this field, as rules provide a simple and in-
telligible yet expressive means of knowledge representation. Among the related
techniques that have been developed, so-called association rules (or associations
for short) have gained considerable attraction [1]. An association rule is meant
to represent dependencies between attributes in a databases. Typically, such a
rule involves two sets A and B of binary attributes, also called features or items.
The intended meaning of a rule symbolized as A — B is that a transaction (a
data record stored in the database) that contains the set of items A is likely to
contain the items B as well.

Generally, a database does not contain binary attributes only but also at-
tributes with values ranging on (completely) ordered scales, e.g. cardinal or or-
dinal attributes. This has motivated a corresponding generalization of (binary)
association rules [5]. The simplest approach, to be detailed in Section 2, is to par-
tition the domain ® x of a quantitative attribute X into intervals A C ®x and
to associate a new binary variable with each interval. This leads to interval-based
association rules of the foom X € A =Y € B.

A slightly different type of association rule, particularly interesting in con-
nection with quantitative attributes, has recently been considered in [2]. This

T. Elomaa et al. (Eds.): PKDD, LNAI 2431, pp. 200-211, 2002.
© Springer-Verlag Berlin Heidelberg 2002



Association Rules for Expressing Gradual Dependencies 201

type of rule, which has a more statistical flavor, is of the following form:
XeA — mean(Y) = ja, (1)

where X and Y are attributes and A is an interval. This rule says that the mean
value of Y is g4 if the database is restricted to those transactions satisfying X €
A, an information which is clearly interesting if 74 deviates significantly from
the overall (unconditional) mean . The basic idea underlying this approach can
be summarized as follows: The (empirical) distribution of an attribute Y changes
significantly when focusing on a certain subpopulation (a subset of the database).
In this connection, a subpopulation is specified by the condition X € A, and the
change of the distribution is measured by the change of the mean. Clearly, the
mean could be replaced by any other statistic of interest, for example the variance
or the median, or even by the distribution of Y itself. See [3] for a closely related
data mining method.

In this paper, we elaborate further on quantitative association rules. Espe-
cially, we propose a new type of rule which is able to express a kind of tendency,
that is, a gradual dependence between attributes. In this connection, the idea
of a “fuzzy” partition of a quantitative domain plays an important role. After
having pointed out some difficulties caused by classical partitions (Section 2),
this idea will be motivated in Section 3. In Section 4, two types of association
rules will be introduced, namely the aforementioned rules expressing a tendency
and a complementary type of rule expressing absolute deviations.

Notation. We proceed from a database D, which is a collection of transactions
(records) t. A transaction t assigns a value t[A] to each attribute A € A, where A
is an underlying set of attributes. We focus on cardinally scaled attributes X; the
domain of an attribute X is denoted © x. When discussing simple rules involving
two (fixed) attributes X and Y, we consider the database D as a collection of
data points (z,y) = (¢[X],t[Y]), i.e. as a projection of the original database. This
notation is generalized to rules involving more variables in a canonical manner.
An association rule is written in the form A — B, or sometimes {A — B},
where A and B can be single items or sets of items.

2 Problems with Binary Partitions

Most algorithms in data mining have been designed for binary variables, and
methods capable of dealing with quantitative attributes are mostly extensions
of these algorithms. A standard approach in this connection is to replace a
quantitative attribute X with domain ® x by a finite set of binary variables X 4,
with domain {0,1}, where the A, C Dx, 1 < ¢ < k, are intervals such that
Ule A, = ®x. An attribute X 4, takes the value 1 if the related quantitative
value z is covered by A, and 0 otherwise: X4, = 1 & z € A,. Algorithms for
binary attributes can then be applied to the new (transformed) data set.
Needless to say, this type of binarization comes along with a loss of infor-
mation, since the precise value x cannot be recovered from the values of the
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Fig. 1. Left: Observations (transactions) plotted as points in the instance space
(x-axis: weight, y-axis: perf). Right: Mean performance for subclasses D,, =
{(z,y) eD|w—-1/2<2z<w+1/2},w=17,18,...,29

binary variables X4,,..., X4, . Likewise, a subset A, x B, of the instance space
Dx X Dy becomes a “black box” when considering two variables X and Y. In-
formation about the distribution of points (x,y) € A, x B, is hence completely
lost, which makes it impossible to discover local interdependencies between X
and Y. Consequently, interval-based rules might convey a misleading picture of
the underlying data. These problems are further aggravated by the sharp bound-
aries between the intervals or, more generally, between the range of support and
non-support of a binary feature.

To illustrate, consider an artificial data set comprised of 100 data points
(24, 9,)- The related variables X and Y can be thought of as, say, the weight of
a dog in kg (weight) and a certain physical performance (perf) measured on a
scale ranging from 0 (bad) to 10 (excellent). The following table shows some of
the data:

| 1 2 3 4 5 6 7 8 9 11..
7,[22.4 258 22.4 27.7 27.7 25.7 20.2 18.1 18.1 174 ...
y| 6.7 5.6 92 20 29 38 44 34 47 45...

Fig. 1 (left) shows the complete data as points in the instance space. On
average, perf seems to increase with weight up to a value of about 22, and to
decrease afterwards. This impression is confirmed by the right picture in the same
figure, showing the mean values of perf separately for the subpopulations D,, =
{(z,y) eD|w—-1/2<w<w+1/2}, w=17,18,...,29.

Now, a rule of the following kind would nicely characterize the above data:
The more normal the weight, the better the performance. Note that this rule
expresses a tendency, which cannot be accomplished by a (single) classical as-
sociation rule. Moreover, the above rule involves a cognitive concept, namely
“normal weight”, which is here understood as “a weight close to 22kg”. Such
concepts do often preexist in the head of a data miner, but are seldom adequately
represented by an interval created in the course of a rule mining procedure.
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In our example, a reasonable candidate for an interval-based association
would be a rule of the form

weight € [22 —~, 224+ ~v] — perf €[7, 10], (2)

suggesting that a dog whose weight is close to 22kg is likely to perform rather
well. But how should ~ be chosen? Note that (2), in conjunction with the rule

weight €[22 —~, 224+ ~] — perfe€ [0, 7],

induces a classification into low-performance and high-performance dogs. The
borderline between these two groups is clearly arbitrary to some extent, and the
classification will hardly reflect the true nature of the data.

The same problem occurs in the approach in [2], where a rule would be
specified as

weight € [22 — 1, 224+ ~v] — mean(perf) = f(7). (3)

Here, the (conditional) mean would be a decreasing function of v, and the rule
(3) would be considered as interesting only if f(v) is —in a statistical sense—
significantly larger than the overall mean of perf. Again, there is no natural
choice of the length of the interval. In [2], 7 is basically determined by the
confidence level of a t-test used for testing significance, which only removes but
does not solve the problem.

Finally, let us mention two further problems of the interval-based approach.
Firstly, sharp boundaries between intervals may lead to undesirable threshold
effects, in much the same way as do histograms in statistics: A slight variation
of the boundary points of the intervals can have a considerable effect on the
histogram induced by a number of observations and may even lead to qualitative
changes, that is changes of the shape of the histogram. Likewise, the variation
of an interval can strongly influence the evaluation of a related association rule.
Secondly, the interval-based approach becomes involved if the class of allowed
intervals is not restricted in a proper way (for example in the form of fixed
underlying partitions for the attributes). On the one hand, a rich class of intervals
guarantees flexibility and representational power. On the other hand, one has
to keep track of possible interactions between apparently interesting rules. For
example, the antecedent and/or the consequent parts of two rules can overlap,
which may cause problems of redundancy.

In summary, this section has pointed out the following difficulties of interval-
based associations: Firstly, such rules are not able to express gradual dependen-
cies between attributes. Secondly, some problems are caused by sharp bound-
aries: Their specification is often arbitrary, the evaluation of rules is sensitive
toward the variation of boundary points, and rules are not very user-friendly
due to a lack of readability and “cognitive relevance”. Thirdly, additional com-
plications and computational costs occur if interactions between interval-based
rules are not excluded in advance by restricting the class of allowed intervals.
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3 Fuzzy Partitions

The use of fuzzy sets in connection with association rules —as with data mining
in general [3] - has recently been motivated by several authors (e.g. [6]). Among
other aspects, many of the aforementioned problems can be avoided —or at least
alleviated— by the use of fuzzy instead of crisp (non-fuzzy) partitions. A fuzzy
subset of a set (domain) ® is identified by a so-called membership function,
which is a generalization of the characteristic function I4(:) of an ordinary set
A C © [10]. For cach element x € D, this function specifies the degree of
membership of x in the fuzzy set. Usually, membership degrees are taken from
the unit interval [0, 1], i.e. a membership function is a mapping © — [0, 1]. We
shall use the same notation for ordinary sets and fuzzy sets. Moreover, we shall
not distinguish between a fuzzy set and its membership function, that is, A(x)
denotes the degree of membership of the element z in the fuzzy set A. Note that
an ordinary set A can be considered as a “degenerate” fuzzy set with membership
degrees A(z) =14(x) € {0,1}.

Fuzzy sets formalize the idea of graded membership, which allows an element
to belong “more or less” to a set. A fuzzy set can have “non-sharp” boundaries.
Consider the above mentioned concept of “normal weights” as an example. Is
it reasonable to say that 23.4kg is a normal weight (for a dog in our example)
but 23.5kg is not? In fact, any sharp boundary will appear rather arbitrary.
Modeling the concept “normal weight” as a fuzzy set A, it becomes possible to
express, for example, that a weight of 22kg is completely in accordance with
this concept (A(22) = 1), 24kg is a “more or less” normal weight (A(24) = 0.5,
say), and 26 kg is clearly not normal (A4(26) = 0).

As can be seen, fuzzy sets can provide a reasonable representation of linguis-
tic expressions and cognitive concepts. This way, they act as an interface between
a quantitative, numerical level and a qualitative level, where knowledge is ex-
pressed in terms of natural language. In data mining, fuzzy sets thus allow for
expressing patterns found at the quantitative (database) level in a user-friendly
way.

Concerning the class of fuzzy concepts underlying the rule mining process,
we advocate a fixed partition for each attribute. Even though the assumption of
a fixed partition is often regarded as critical, it appears particularly reasonable
in the fuzzy case. Apart from a simplification of the rule mining procedure,
a fixed partition specified by the user or data miner himself guarantees the
interpretability of the rules. In fact, the user will generally have a concrete idea of
terms such as “normal weight”. Since it is the user who interprets the association
rules, these rules should exactly reflect the meaning he has in mind and, hence,
the user himself should characterize each linguistic expression in terms of a fuzzy
set.

In this connection, it is worth mentioning that a given class of fuzzy concepts
can be extended through the use of so-called (linguistic) modifiers. For example,
applying the linguistic hedge (modifier) “almost” to the fuzzy concept “normal
weight” —modeled by a fuzzy set A— yields the new concept “almost normal
weight”. Formally, this concept is represented by means of a suitable transfor-
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Fig. 2. Exemplary fuzzy partitions of the domains for weight and performance

mation of A. This way, a large number of interpretable fuzzy concepts can be
built from a basic repertoire of fuzzy sets and modifier functions. However, we
shall not elaborate any further on this aspect. Rather, we assume a fixed fuzzy
partition for each attribute X. Formally, such a partition is defined as a class
{A1,..., Ay} of fuzzy sets A, : Dx — [0,1] such that maxi<,<x 4,(x) > 0 for
all x € Dx. Fig. 2 shows fuzzy partitions of the domain of weights (using three
fuzzy sets: underweight, normal, overweight) and the domain of performance
(again with three fuzzy sets: low, average, high).

The discussion so far has shown that a (fixed) fuzzy partition can avoid
some of the drawbacks related to classical partitions. Concerning the idea of
association rules capable of expressing gradual dependencies between attributes,
the following section will show that fuzzy partitions can also be beneficial in that
respect.

4 Tendency and Deviation Rules

The basic quality measures for binary association rules A — B can be derived
from the following contingency table:

Bly)=0 By =1
A(z) =0 noo no1 Noe @)
A(I) =1 nio ni1 Nile
N0 Nel n

For example, the well-known support and confidence of a rule are given, re-
spectively, by supp(4A — B) = ni1/n and conf(A — B) = ni1/n1., where n,,
(2,7 € {0,1}) is the number of tuples (z,y) € D such that A(x) = and B(y) = J.

In the fuzzy case, A(x) and B(y) can take any value in the unit interval.
This suggests extending the above contingency table to a contingency diagram
as shown in Fig. 3. A record (z,y) € D gives rise to a point with coordinates
(u,v) in this diagram, where u = A(z) is the degree of membership of = in A (the
abscissa) and v = B(y) is the degree of membership of y in B (the ordinate). As
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Fig. 3. Exemplary contingency diagrams for an underlying association A — B.
Each point is associated with a sample (x,y) € Da: The abscissa corresponds
to the membership of z in the fuzzy set A, the ordinate is the membership
degree B(y). The lines drawn by short and long dashes mark, respectively, the
overall and conditional (given z is in A) mean value of v = B(y). The third
line is the regression line

will be seen, the contingency diagram provides a useful point of departure for
specifying an association between A and B. Note that (4) can indeed be seen
as a special case of a contingency diagram: In the non-fuzzy (binary) case, all
points are located in the four “corners” of this diagram.

4.1 Contingency Diagrams

In order to illustrate the concept of a contingency diagram, consider the exem-
plary diagrams shown in Fig. 3. The following information is provided: Each
point in a diagram corresponds to a tuple (A(x,), B(y,)), where (z,,vy,) € Da =
{(z,y) € D| A(z) > 0}; the objects (z,y) with A(z) = 0 are ignored. The solid
line is the regression line derived for the points Dy, i.e. the linear approximation
u — au + [ minimizing the sum of squared errors

[Dal

3 (aA(@)+5-By)) . (5)

1=1

The line drawn by short dashes marks the overall mean value of v = B(y), that
is the value v = |D|~! > (z.y)ep B(y). This is the average degree to which the
objects in D have the property B. Finally, the line drawn by long dashes shows
the conditional mean of v = B(y), given that x is in A. Since A is a fuzzy set,
this value is calculated as a weighted average:

-1

= | Y A@-Bw |- X Aw

(z,y)€D (z,y)€D
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Now, consider the first diagram in more detail. As can be seen, there is a
strong correlation between A(x) and B(y). In fact, the positive slope of the
regression line suggests the following tendency: The more x is in A, the more y
is in B. Moreover, the conditional mean U4 appears to be significantly larger
than the overall mean v. The basic idea of our approach, to be detailed below,
is to derive a suitable (linguistic) representation of an association A — B on the
basis of this information.

The regression line in the second diagram has a slope close to 0. Still, the
conditional mean v4 is much larger than the overall mean v, suggesting a rule
of the following kind: If = is in A, then y is more in B than usual.

4.2 From Contingency Diagrams to Association Rules

Clearly, the information provided by the contingency diagram can be regarded
as reliable only if the diagram contains enough points. First of all, we therefore
apply the common support criterion: A rule A — B is taken into considera-
tion only if supp(A — B) exceeds a given threshold o, where supp(A — B) =
> (z.yyep A(z). Note that this definition of support differs from the usual defini-
tion of fuzzy support, which is supp(A — B) = }_,  cp min{A(z), B(y)}.! In
fact, it is modeled on the two types of association rules that will be introduced
below: It corresponds to the (fuzzy) number of points considered when evaluat-
ing a rule of the first type and defines a lower bound to the number of involved
points in second case.

Information from a Contingency Diagram. We proceed from the following
information taken from the contingency diagram:

— The mean values v, U4 (and the number of points na = |Da|).
— The coefficients «, § of the regression line.
— A measure ) indicating the quality of the regression.

Here, we take ) as the usual R? coefficient, defined as

RZ=1_ Doy e
Z:L:A1 (v, —0a)? 7

where e, = v, — (au, + ), (u,,v,) = (A(z,), B(y,)). Of course, R? can be
replaced or complemented by other measures. In this connection, it should also
be mentioned that A(z,) and B(y,) might be related in a monotone though
nonlinear way.? In such a case, a linear regression might lead to poor quality
measures. Even though we restrict ourselves to the linear case in this paper,
the method could clearly be extended in the direction of more general regression
functions. For example, a straightforward (and easy to implement) generalization
is to fit a polynomial of degree 2 to the data.

! The minimum operator is sometimes replaced by other combination operators.
2 The Durbin-Watson test statistic is a useful indicator in this respect.
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Note that simple formulae exist for the coefficients «, 8 in (5), e.g.
na Z:L:A1 Uy Uy — Z?:Al Uy Z?:Al Uy (6)
n n k)
na A u — (30,2 w)?

o= ’T)A—ﬂﬂA. (7)

8=

Let us anticipate a possible criticism of this derivation of regression coefficients:
If the marginal points of the form (A(x), B(y)) = (u,0) are regarded as censored
observations,® simple linear regression techniques are actually not applicable
and must be replaced by more sophisticated methods, such as Tobit regression
models. Anyway, since our focus is on association rules rather than regression
analysis, we shall not deepen this aspect further and rather proceed from (6-7)
which yields at least good approximate results.

Generation of Rules. On the basis of the above information, two types of
rules will be generated. The first type of rule, called deviation rule and denoted
A —% B, expresses a (significant) deviation of the conditional mean. Suppose
the points (z,y) € D to be divided into two (fuzzy) samples: one for which z € A4
and one for which z ¢ A. A point (z,y) belongs to the first sample, S;, with
degree A(x) and to the second sample, Sy, with degree 1 — A(x). Let 01 = 04
and

Z(;L”y)ED 1—A(x)

denote, respectively, the average of the membership degrees B(y) in S7 and Ss.
These averages can be considered as estimations of underlying parameters (ex-
pected values) vq and v5. Moreover, § = 9y — 72 is a simple point estimation of
the deviation vy — 5. Now, suppose A —% B to be considered as interesting if
vy — e > A, where A is a user-defined threshold. How can the “interestingness”
of A —% B on the basis of § = 77 — © be decided? Statistically speaking, the
question is whether § = U7 — 09 is significantly larger than A. An appropriate

decision principle is provided by the t-test adapted to the fuzzy case [7]:*

Vg =

. U1 — Uy — A
where ny = [S1] = >, ) ep A(2), n2 = [S2] = [D| — ny, and 52,53 denote,
respectively, the variance of B(y) for the two (fuzzy) samples. The deviation is
considered to be significant at the .05 confidence level if T > 1.645.

Note that the denominator in (8) will generally be small (s?,s3 are upper-
bounded by 1). In fact, it is not difficult to prove that 7' > 1.645 as soon as

(8)

1.64
5> A= AL 0 )

VIDlo(1~0)’

3 The membership of v in B cannot be negative.
4 This test compares the difference between the mean values of two fuzzy populations.
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where o is the support threshold. The right-hand side in (9) can be seen as a
modified threshold that includes a “confidence offset”.

Once a deviation has been found to be significant, an adequate deviation rule
can be defined on the basis of §. This can be done by appending the corresponding
averages to the rule, which is then of the form {A —? B [0, 0s]}. Another
possibility is to present the rule in a linguistic form, paraphrasing the deviation
0 by terms such as “slightly more”, “more”, or “much more”. In our example
above, one would find the rule {normal —? high [.40,.08] }, which could be
translated as follows: If the weight is normal, then the performance is much
higher than usual.

Note that we have only tested for positive deviations. Of course, one could
also represent negative deviations, using terms such as “less” or “much less”
associated with values § < 0. However, this does again cause problems of re-
dundancy: If By and By are complementary concepts in the sense that Bi(y)
and Bs(y) are negatively correlated (such as low and high performance), then the
positive deviation for By will come along with the negative deviation for By and
vice versa. As in classical association analysis, we shall henceforth concentrate
on positive deviations.

A second type of rule, called tendency rule and denoted A —* B, represents a
gradual dependence between the concepts A and B. More precisely, it indicates
that an increase in A(x) comes along with an increase in B(y). The validity of
such a rule is judged on the basis of the regression coefficients (6-7) and the
quality measure ). For example, a simple decision principle is to reject a rule
iff @ falls below a given threshold or the slope of the regression line, «, is too
small: Q < Qnin OF @ < Q. If a rule is accepted, it might be presented in the
form {A —! B[a,]}. Alternatively, a linguistic representation is possible: The
more x is in A, the more y is in B. Again, this representation can be refined
in dependence on the specific values of a and 3. In our example above, the rule
{normal —! high[0.65,—0.05] } would be supported (R? = 0.77): The more
normal the weight, the higher the performance.

4.3 Rules with Compound Conditions

So far, we have only considered simple rules involving two attributes. However,
the approach outlined above easily extends to rules with a compound antecedent:
Consider a rule of the form Ay, ..., A,, = B, where A4, is an element of the fuzzy
partition of D x,, the domain of attribute X, (1 << m), and B is an element
of the fuzzy partition of variable Y. The antecedent of this rule stands for a
conjunction of the conditions z, € A,.

In fuzzy set theory, the logical conjunction is modeled by means of a so-called
t-norm. This is a binary operator ® : [0, 1] x[0, 1] — [0, 1] that is associative, com-
mutative, non-decreasing in both arguments, and satisfies «®1 = 1®a = « for all
0 < o < 1. The most important t-norms are the minimum (o, ) — min{«, 5},
the product («, 3) — «f, and the Lukasievicz t-norm (o, 8) — max{a+6—1,0}.

In the special case of an association A — B involving two variables X and Y,
a value A(z) corresponds to the degree to which © € A is satisfied (the fuzzy
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truth degree of the proposition € A). In the more general case, this value is
given by the conjunction Aj(z1) @ As(x2) @ ...® Ap(xm). Actually, this comes
down to considering the attribute in the condition part as an m-dimensional
variable X = (X1,...,X,,). As before, a rule can then be written in the form
A — B, where the fuzzy set A is defined as

A:@Xl X oo X@Xm — [0,1], (1'17...71'n) i—>A1((E1)®...®Am(l'm).

Again, one thus obtains a point (u,v) = (A(z),B(y)) for each transaction
(z,y) = (z1,...,Zm,y) € D and, hence, a contingency diagram as introduced
above. In other words, a rule with a compound condition part can be evaluated
in the same way as a rule with a simple antecedent.

As concerns the problem of redundancy and interaction between association
rules, it is important to mention that none of the following properties hold:

Ay —~BANA—~B = A,A,—B
AhAQAB = AlAB\/AQAB

Still, some kind of pruning is clearly advisable. Especially, this concerns the
relation between a rule A — B and its specializations AT — B with A C AT,
For example, given the deviation rule A — B [0y, 2], a rule At — B[v], 0]
will not be interesting if o, < ©;. More generally, one might adopt a minimum

improvement constraint in order to eliminate unnecessarily complex rules [4].

4.4 Rule Mining and Computational Aspects

How does one find interesting instances of the two types of association rules
introduced in this section? As already mentioned above, the first step is to find
the frequent itemsets. To this end, any of the existing procedures can be used,
for example the APRIORI algorithm (for quantitative attributes [9]). Note that
an itemset is now a class of fuzzy sets {41,..., A}, where 4, is an element of
the fuzzy partition of an attribute X, (and X, # X, for all « # j). The frequent
itemsets determine the condition parts of the candidate rules.

In order to evaluate a candidate rule A —! B one needs to compute the
regression coefficients o and 3 as well as the quality measure Q. A look at (6-7)
reveals that o and  can be derived by a single scan of the database. Afterwards,
the quality measure @ (which is here taken as R?) can be obtained, which makes
one further scan necessary.

The evaluation of a rule A —% B comes down to computing the deviation &
as well as the test statistic (8). This requires two scans of the database, since the
computation of the variances s? and s3 in (8) assumes the mean values v and
U2 to be known. Therefore, these values have to be derived first. Alternatively,
an approximate evaluation can be obtained on the basis of (9), which requires
only a single scan.

In summary, it can be seen that the rule mining procedure is quite efficient.
Apart from the search for frequent itemsets, it merely requires two additional
scans of the database.
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5 Concluding Remarks

We have introduced two types of quantitative association rules, referred to as
deviation rules and tendency rules. The former type of rule is basically a fuzzy
counterpart to the approach in [2]. The latter type of rule is able to represent
gradual dependencies between attributes. This becomes possible by the use of
fuzzy partitions for the attributes’ domains.

Let us conclude with some remarks. (1) We have applied our approach to
several data sets from the UCI repository for which we obtained rather promising
results. These experimental studies are not reported here due to limited space;
the technical report [7] provides a more detailed exposition. (2) So far, our
approach assumes fixed underlying partitions comprised of preexisting “cognitive
concepts”. On the one hand, this assumption appears especially reasonable in
the fuzzy case. On the other hand, one cannot deny that the observation of data
might also influence the formation of cognitive concepts. In our running example,
for instance, a concept “ideal weight” (which coincides with our definition of
“normal weight”) might well be established on the basis of the data. Extending
the approach so as to support the discovery of such cognitive concepts is an
interesting challenge for future work.
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