
Information Extraction in Structured

Documents Using Tree Automata Induction

Raymond Kosala1, Jan Van den Bussche2,
Maurice Bruynooghe1, and Hendrik Blockeel1

1 Katholieke Universiteit Leuven, Department of Computer Science
Celestijnenlaan 200A, B-3001 Leuven, Belgium

{Raymondus.Kosala,Maurice.Bruynooghe,Hendrik.Blockeel}@cs.kuleuven.ac.be
2 University of Limburg (LUC), Department WNI, Universitaire Campus

B-3590 Diepenbeek, Belgium
jan.vandenbussche@luc.ac.be

Abstract. Information extraction (IE) addresses the problem of ex-
tracting specific information from a collection of documents. Much of the
previous work for IE from structured documents formatted in HTML or
XML uses techniques for IE from strings, such as grammar and automata
induction. However, such documents have a tree structure. Hence it is
natural to investigate methods that are able to recognise and exploit this
tree structure. We do this by exploring the use of tree automata for IE
in structured documents. Experimental results on benchmark data sets
show that our approach compares favorably with previous approaches.

1 Introduction

Information extraction (IE) is the problem of transforming a collection of doc-
uments into information that is more readily digested and analyzed [6]. There
are basically two types of IE: IE from unstructured texts and IE from (semi-)
structured texts [15]. Classical or traditional IE tasks from unstructured natu-
ral language texts typically use various forms of linguistic pre-processing. With
the increasing popularity of the Web and the work on information integration
from the database community, there is a need for structural IE systems that
extract information from (semi-) structured documents. Building IE systems
manually is not feasible and scalable for such a dynamic and diverse medium as
the Web [16]. Another problem is the difficulty in porting IE systems to new ap-
plications and domains if it is to be done manually. To solve the above problems,
several machine learning techniques have been proposed such as inductive logic
programming, e.g. [8,2], and induction of delimiter-based patterns [16,22,7,14,3];
methods that can be classified as grammatical inference techniques.

Some previous work on IE from structured documents [16,14,3] uses gram-
matical inference methods that infer regular languages. However structured doc-
uments such as HTML and XML documents (also annotated unstructured texts)
have a tree structure. Therefore it is natural to explore the use of tree automata
for IE from structured documents. Indeed, tree automata are well-established

T. Elomaa et al. (Eds.): PKDD, LNAI 2431, pp. 299–311, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



300 Raymond Kosala et al.

and natural tools for processing trees [5]. An advantage of using the more ex-
pressive tree formalism is that the extracted field can depend on its structural
context in a document, a context that is lost if the document is linearized into
a string.

This paper reports on the use of k-testable tree languages, a kind of tree au-
tomata formalism, for the extraction of information from structured documents.

In Section 2 we recall how information extraction can be formulated as a
grammatical inference problem and provide some background on tree automata
and unranked tree languages. Then in Section 3 we describe our methodology
and give the details of the k-testable tree algorithm we have used for our proto-
type implementation. Finally we present our experimental results in Section 4,
discussion and related work in Section 5 and conclusions in Section 6.

2 Tree Grammar Inference and Information Extraction

2.1 Grammatical Inference

Grammatical inference refers to the process of learning rules from a set of la-
belled examples. It belongs to a class of inductive inference problems [20] in
which the target domain is a formal language (a set of strings over some al-
phabet Σ) and the hypothesis space is a family of grammars. It is also often
referred to as automata induction, grammar induction, or automatic language
acquisition. It is a well-established research field in AI that goes back to Gold’s
work [11]. The inference process aims at finding a minimum automaton (the
canonical automaton) that is compatible with the examples. The compatibility
with the examples depends on the applied quality criterion. Quality criteria that
are generally used are exact learning in the limit of Gold [11], query learning of
Angluin [1] and probably approximately correct (PAC) learning of Valiant [24].
There is a large body of work on grammatical inference, see e.g. [20].

In regular grammar inference, we have a finite alphabet Σ and a regular
language L ⊆ Σ∗. Given a set of examples that are in the language (S+) and a
(possibly empty) set of examples not in the language (S−), the task is to infer
a deterministic finite automaton (DFA) A that accepts the examples in S+ and
rejects the examples in S−.

Following Freitag [7], we recall how we can map an information extraction
task to a grammar inference task. We preprocess each document into a sequence
of tokens (from an alphabet Σ). In the examples, the field to be extracted is
replaced by the special token x. Then the learner has to infer a DFA for a lan-
guage L ⊆ (Σ ∪ {x})∗ that accepts the examples where the field to be extracted
is replaced by x.

2.2 Tree Languages and Information Extraction

Given a set V of ranked labels (a finite set of function symbols with arities), one
can define a set of trees, denoted as V T , as follows: a label of rank 0 is a tree,



Information Extraction in Structured Documents 301

if f/n is a label of rank n > 0 and t1, . . . , tn are trees, then f(t1, . . . , tn) is a
tree. We represent trees by ground terms, for example with a/2, b/1, c/0 ∈ V ,
the tree below is represented by the term a(b(a(c, c)), c).

A deterministic tree automaton (DTA) M is a quadruple (V,Q,∆, F ),

a

b

a

c c

c

where V is a set of ranked labels (a finite set of function symbols with
arities), Q is a finite set of states, F ⊆ Q is a set of final or accepting
states, and ∆ :

⋃
k Vk × Qk → Q is the transition function, where Vk

denotes the subset of V consisting of the arity-k labels. For example,
δk(v, q1, . . . , qk) → q, where v/k ∈ Vk and q, qi ∈ Q, represents a transi-
tion.

A DTA usually processes trees bottom up. Given a leaf labeled v/0
and a transition δ0(v) → q, the state q is assigned to it. Given a node

labeled v/k with children in state q1, . . . , qk and a transition δk(v, q1, . . . , qk) → q,
the state q is assigned to it. We say a tree is accepted when a tree has at least
one node with an accepting state q ∈ F assigned to it.

Grammatical inference can be generalized from string languages to tree lan-
guages. Rather than a set of strings over an alphabet Σ given as example, we
are now given a set of trees over a ranked alphabet V . Rather than inferring a
standard finite automaton compatible with the string examples, we now want
to infer a compatible tree automaton. Various algorithms for this kind of tree
automata induction have been developed (e.g., [18,19]).

A problem, however, in directly applying tree automata to tree-structured
documents such as HTML or XML documents, is that the latter trees are “un-
ranked”: the number of children of a node is not fixed by the label, but is varying.
There are two approaches to deal with this situation:

1. The first approach is to use a generalized notion of tree automata towards
unranked tree formalisms (e.g., [17,23]). In such formalisms, the transition
rules are of the form δ(v, e) → q, where e is a regular expression over Q that
describes a sequence of states.

2. The second approach is to encode unranked trees into ranked trees, specif-
ically, binary trees, and to use existing tree automata inference algorithms
for inducing the tree automaton.

In this paper we follow the second approach, because it seems less compli-
cated. An advantage is that we can use existing learning methods that work
on ranked trees. A disadvantage is that we have to preprocess the trees before
applying the algorithm.

Using the symbol T to denote unranked trees and F to denote a sequence of
unranked trees (a forest), the following grammar defines unranked trees:

T ::= a(F ), a ∈ V F ::= ε
F ::= T, F

There are well-known methods of encoding unranked trees by binary trees
which preserve the expressiveness of the original unranked trees. The one we
use can be formally defined with the following recursive function encode (with
encodef for the encoding of forests):



302 Raymond Kosala et al.

encode(T ) def= encodef (T )

encodef (a(F1), F2)
def=




a if F1 = F2 = ε
aright(encodef (F2)) if F1 = ε, F2 �= ε
aleft(encodef (F1)) if F1 �= ε, F2 = ε
a(encodef (F1), encodef (F2)) otherwise

Informally, the first child of a node v in an unranked

a

b c

a

d

=⇒ aleft

bright

c

a d

tree T is encoded as the left child of the corresponding
node v′ of T ′, the binary encoding of T , while the right
sibling of a node v in tree T is encoded as the right
child of v′ in T ′. To distinguish between a node with
one left child and a node with one right child, the node
is annotated with left and right respectively. For exam-
ple, the unranked tree a(b, c(a), d) is encoded into binary
tree aleft(bright(c(a, d))), or pictorially shown on the left.

Note that the binary tree has exactly the same number of nodes as the original
tree.

3 Approach and the Algorithm

On the left, a simplified view of a rep-
resentative document from the datasets
that we use for the experiment is shown.1

In this dataset, the fields to be extracted
are the fields following the “Alt. Name”
and “Organization” fields. A document
consists of a variable number of records.
In each record the number of occurrences
of the fields to be extracted is also vari-
able (from zero to several occurrences).
Also the position where they occur is not
fixed. The fact that the fields to be ex-
tracted follow the “Alt. Name” and “Or-
ganization” field suggests that the task is
not too difficult. However this turns out
not to be the case as we can see from the
results of several state-of-the-art systems
in Section 4.

Our approach for information extraction
has the following characteristics:

– Some IE systems preprocess documents to split them up in small fragments.
This is not needed here as the tree structure takes care of this: each node
has an annotated string. Furthermore the entire document tree can be used

1 It is important to keep in mind that the figure only shows a rendering of the docu-
ment, and that in reality it is a tree-structured HTML document.



Information Extraction in Structured Documents 303

as training example. This is different from some IE systems that only use a
part of the document as training example.

– Strings stored at the nodes are treated as single labels. If extracted, the
whole string is returned.

– A tree automaton can extract only one type of field, e.g. the field following
’Organization’. In order to extract multiple fields, a different automaton has
to be learned for each field of interest.

– Examples used during learning contain a single node labeled with x. If the
document contains several fields of interest, then several examples are created
from it. In each example, one field of interest is replaced by an x.

The learning procedure is as follows:
1. Annotate each example:

– Replace the label of the node to be extracted by the special symbol x.
– Parse the example document into a tree.

2. Run a tree automaton inference algorithm on the examples and return the
inferred automaton.

The extraction procedure is as follows:
1. Parse the document into a tree.
2. Repeat for all text nodes:

– Replace the text label of one text node by the special label x.
– Run the automaton.
– If the parse tree is accepted by the automaton, then output the original
text of the node labeled with x.

Note that the extraction procedure can output several text nodes.
An implementation issue is how we deal with the contents of the various

text nodes in the documents. The input to the algorithm consists of trees with
all text strings at the leaves changed to ’CDATA’2 except one that we call
distinguishing context. The abstraction of the text strings to CDATA is done
to get a generalization of the tree patterns of the information that we want to
extract. This could be easily done when parsing. Representing each different text
string as a separate label is undesirable since it would lead to over-specification.
Roughly speaking a distinguishing context is the text content of a node that is
’useful’ for the identification of the field of interest. An example of the usefulness
of the distinguishing context can be seen in the following depiction of a document
of the kind already shown at the beginning of this Section:

root

tr

td td

provider

td

b

att

td

tr

td

tr

td td

organization

td

b

value

td

2 CDATA is the keyword used in XML document type descriptions to indicate text
strings [25].



304 Raymond Kosala et al.

Suppose we like to extract the field ‘value’ and the text label organization
always preceeds the field ‘value’. In such case we call the text label organization
a distinguishing context (for the field ‘value’). If the labels provider and or-
ganization are both replaced by CDATA then any automaton that extracts the
‘value’ node will also extract the ‘att’ node. Indeed, the distinguishing context
provider vs. organization has disappeared.

In our experiments we always use one distinguishing context for each field
of interest when learning and testing the automaton. The distinguishing context
is chosen automatically. Our method is to find the invariant text label that is
nearest to the field of interest in the dataset. For example the text ‘Organization:’
is the invariant text label that is nearest to the organization name in the HTML
document figure at the beginning of this Section. As distance measure we use
the length of the shortest path in the document tree (for example the distance
of a node to its parent is one; to its sibling, two; to its uncle, three.).

3.1 The k-Testable Algorithm

Our approach to information extraction using tree automata induction, pre-
sented in the previous section, can in principle be tried with any tree automata
inference algorithm available. In our prototype implementation, we have chosen
one of the more useful and practical algorithms available, namely, the k-testable
algorithm [18]. This algorithm is parameterized by a natural number k, and the
name comes from the notion of a “k-testable tree language”. Informally, a tree
language (set of trees) is k-testable if membership of a tree in the language can
be determined just by looking at all the subtrees of length k (also intermediate
ones). The k-testable algorithm is capable of identifying in the limit any k-
testable tree language from positive examples only. Since information extraction
typically has a locally testable character, it seems very appropriate to use in
this context. The choice of k is performed automatically using cross-validation,
choosing the smallest k giving the best results.

For the sake of completeness, we describe the algorithm here. We need the
following terminology. Given a tree t = v(t1...tm), length(t) is the number of
edges on the longest path between the root and a leaf. The (singleton) set rk(t)
of root trees of length k is defined as:

rk(v(t1...tm)) =
{
v if k = 1
v(rk−1(t1)...rk−1(tm)) otherwise (1)

The set fk(t) of fork trees of length k is defined as:

fk(v(t1...tm)) =
m⋃

j=1

fk(tj)
⋃{∅ if length(v(t1...tm)) < k − 1

rk(v(t1...tm)) otherwise (2)

Finally, the set sk(t) of subtrees of length k is defined as:



Information Extraction in Structured Documents 305

sk(v(t1...tm)) =
m⋃

j=1

sk(tj)
⋃{∅ if length(v(t1...tm)) > k − 1

v(t1...tm) otherwise (3)

Example 1. For example, if t = a(b(a(b, x)), c) then r2(t) = {a(b, c)}; f2(t) =
{a(b, c), b(a), a(b, x)}; and s2(t) = {a(b, x), b, x, c}.

The procedure to learn the tree automaton [18] is shown below. The algorithm
takes as input a set of trees over some ranked alphabet V ; these trees serve as
positive examples. The output is a tree automaton (V,Q,∆, F ).

Let T be the set of positive examples.
Q = ∅; F = ∅; ∆ = ∅;
For each t ∈ T ,

– Let R = rk−1(t), F = fk(t) and S = sk−1(t).
– Q = Q ∪R ∪ rk−1(F) ∪ S
– F = F ∪ R
– for all v(t1, . . . , tm) ∈ S : ∆ = ∆ ∪ {δm(v, t1, . . . , tm) = v(t1, . . . , tm)}
– for all v(t1, . . . , tm) ∈ F : ∆ = ∆ ∪ {δm(v, t1, . . . , tm) =

rk−1(v(t1, . . . , tm))}

Example 2. Applying the algorithm on the term of Example 1 for k = 3, we
obtain:

– R = r2(t) = {a(b, c)}, F = f3(t) = {a(b(a), c), b(a(b, x))} and S = s2(t) =
{a(b, x), b, x, c}.

– Q = {a(b, c), b(a), a(b, x), b, x, c}
– F = {a(b, c)}
– transitions:

• a(b, x) ∈ S : δ2(a, b, x) = a(b, x)
• b ∈ S : δ0(b) = b
• x ∈ S : δ0(x) = x
• c ∈ S : δ0(c) = c
• a(b(a), c) ∈ F : δ2(a, b(a), c) = a(b, c)
• b(a(b, x)) ∈ F : δ1(b, a(b, x)) = b(a)

With more (and larger) examples, more transitions are created and generalisation
occurs: also trees different from the given ones will be labeled with an accepting
state (a state from F ).



306 Raymond Kosala et al.

4 Experimental Results

We evaluate the k-testable method on the following semi-structured data sets:
a collection of web pages containing people’s contact addresses which is called
the Internet Address Finder (IAF) database and a collection of web pages about
stock quotes which is called the Quote Server (QS) database. There are 10 ex-
ample documents in each of these datasets. The number of fields to be extracted
is respectively 94 (IAF organization), 12 (IAF alt name), 24 (QS date), and 25
(QS vol). The motivation to choose these datasets is as follows. Firstly they are
benchmark datasets that are commonly used for research in information extrac-
tion, so we can compare the results of our method directly with the results of
other methods. Secondly they are the only (online available) datasets that, to
the best of our knowledge, require the extraction on the whole node of a tree
and not a part of a node. These datasets are available online from RISE.3

We use the same criteria that are commonly used in the information retrieval
research for evaluating our method. Precision P is the number of correctly ex-
tracted objects divided by the total number of extractions, while recall R is the
number of correct extractions divided by the total number of objects present in
the answer template. The F1 score is defined as 2PR/(P + R), the harmonic
mean of P and R. Table 1 shows the results we obtained as well as those ob-
tained by some current state-of-the-art methods: an algorithm based on Hidden
Markov Models (HMMs) [10], the Stalker wrapper induction algorithm [16] and
BWI [9]. The results of HMM, Stalker and BWI are adopted from [9]. All tests
are performed with ten-fold cross validation following the splits used in [9]4.
Each split has 5 documents for training and 5 for testing. We refer to the related
work section for a description of these methods.

As we can see from Table 1 our method performs better in most of the test
cases than the existing state-of-the-art methods. The only exception is the field
date in the Quote Server dataset where BWI performs better. We can also see
that the k-testable algorithm always gets 100 percent of precision. Like most
algorithms that learn from positives only, k-testable generalises very cautiously,
and thus is oriented towards achieving high precision rather than high recall.
The use of a tree language instead of a string language, which increases the
expressiveness of the hypothesis space, apparently makes it possible in these
cases to avoid incorrect generalisations.

5 Discussion and Related Work

The running time of the k-testable algorithm in Section 3.1 is O(k m log m),
where m is the total length of the example trees. The preprocessing consists of
parsing, conversion to the binary tree representation (linear in the size of the
document) and the manual insertion of the label x. Our prototype implementa-
tion was tested on a Pentium 166 Mhz PC. For the two datasets that we test
3 http://www.isi.edu/˜muslea/RISE/
4 We thank Nicholas Kushmerick for providing us with the datasets used for BWI.



Information Extraction in Structured Documents 307

Table 1. Comparison of the results

IAF - alt. name IAF - organization

Prec Recall F1 Prec Recall F1

HMM 1.7 90 3.4 16.8 89.7 28.4

Stalker 100 - - 48.0 - -

BWI 90.9 43.5 58.8 77.5 45.9 57.7

k-testable 100 73.9 85 100 57.9 73.3

QS - date QS - volume

Prec Recall F1 Prec Recall F1

36.3 100 53.3 18.4 96.2 30.9

0 - - 0 - -

100 100 100 100 61.9 76.5

100 60.5 75.4 100 73.6 84.8

above the average training time ranges from less than a second to some seconds
for each k learned.

The time complexity of the extraction procedure is O(n2) where n is the num-
ber of nodes in the document. This runtime complexity depends on the number
of nodes in the document where each time it has to substitute one of the nodes
with x when running the automaton. For every node in the document tree the
automaton has to find a suitable state for the node. With a suitable data struc-
ture for indexing the states the find operation on the states can be implemented
to run in constant time. In our implementation the learned automata extract
the document in seconds including preprocessing using a rudimentary indexing
for the find operation.

Doing some additional experiments on various data, we learned that the
value of k has a lot of impact on the amount of generalisation: the lower k the
more generalisation. On the other hand, when the distance to the distinguishing
context is large, then a large k is needed to capture the distinguishing context in
the automaton. This may result in a too specific automaton having a low recall.
In the future we plan to investigate methods to further generalise the obtained
automaton.

There have been a lot of methods that have been used for IE problems, some
are described in [15,22]. Many of them learn wrappers based on regular expres-
sions. BWI [9] is basically a boosting approach in which the weak learner learns
a simple regular expression with high precision but low recall. Chidlovskii et
al. [3] describe an incremental grammar induction approach; their language is
based on a subclass of deterministic finite automata that do not contain cyclic
patterns. Hsu and Dung [14] learn separators that identify the boundaries of
the fields of interest. These separators are described by strings of fixed length
in which each symbol is an element of a taxonomy of tokens (with fixed strings
on the lowest level and concepts such as punctuation or word at higher levels).
The HMM approach in Table 1 was proposed by Freitag and McCallum [10].
They learn a hidden Markov model, solving the problem of estimating prob-
abilities from sparse data using a statistical technique called shrinkage. This
model has been shown to achieve state-of-the-art performance on a range of IE
tasks. Freitag [7] describes several techniques based on naive-Bayes, two regular
language inference algorithms, and their combinations for IE from unstructured
texts. His results demonstrate that the combination of grammatical inference
techniques with naive-Bayes improves the precision and accuracy of the extrac-



308 Raymond Kosala et al.

tion. The Stalker algorithm [16] induces extraction rules that are expressed as
simple landmark grammars, which are a class of finite automata. Stalker per-
forms extraction guided by a manually built embedded catalog tree, which is a
tree that describes the structure of fields to be extracted from the documents.
WHISK [22] is a system that learns extraction rules with a top-down rule induc-
tion technique. The extraction rules of WHISK are based on a form of regular
expression patterns.

Compared to our method the methods mentioned above use methods to learn
string languages while our method learns a more expressive tree language. Com-
pared to HMMs and BWI our method does not require the manual specification
of the windows length for the prefix, suffix and the target fragments. Compared
to Stalker and BWI our method does not require the manual specification of the
special tokens or landmarks such as “>” or “;”. Compared to Stalker our method
works directly on document trees without the need for manually building the
embedded catalog tree.

Despite the above advantages, there are some limitations of our method com-
pared to the other methods. Firstly, the fact that our method only outputs the
whole node seems to limit its application. One way to make our method more
applicable is to do two level extraction. The first level extracts a whole node of
the tree and the second extracts a part of the node using a string-based method.
Secondly, our method works only on structured documents. This is actually a
consequence of using tree automata inference. Indeed our method cannot be used
for text-based IE, and is not intended for it. Thirdly, our method is slower than
the string-based method because it has to parse, convert the document tree and
substitute each node with x when extracting the document. Despite these limi-
tations the preliminary results suggest that our method works better in the two
structured domains than the more generally applicable string-based IE methods.

WHIRL is a ’soft’ logic system that incorporates a notion of textual similarity
developed in the information retrieval community. WHIRL has been used to
implement some heuristics that are useful for IE in [4]. In this senseWHIRL is not
a wrapper induction system but rather a logic system that is programmed with
heuristics for recognizing certain types of structure in HTML documents. Hong
and Clark [13] propose a technique that uses stochastic context-free grammars
to infer a coarse structure of the page and then uses some user specified rules
based on regular expressions to do a finer extraction of the page. Sakamoto et
al. [21] propose a certain class of wrappers that use the tree structure of HTML
documents and propose an algorithm for inducing such wrappers. They identify
a field with a path from root to leaf, imposing conditions on each node in the
path that relate to its label and its relative position among siblings with the same
label (e.g., “2nd child with label <B>”). Their hypothesis language corresponds
to a subset of tree automata.

Besides the k-testable algorithm proposed in this paper, we have also ex-
perimented with Sakakibara’s reversible tree algorithm [19]. Preliminary results
with this algorithm suggested that it generalises insufficiently on our data sets,
which is why we did not pursue this direction further.



Information Extraction in Structured Documents 309

6 Conclusion

We have motivated and presented a novel method that uses tree automata in-
duction for information extraction from structured documents. We have also
demonstrated on two datasets that our method performs better in most cases
than the string-based methods that have been applied on those datasets. These
results suggest that it is worthwhile to exploit the tree structure when performing
IE tasks on structured documents.

As future work we plan to test the feasibility of our method for more gen-
eral IE tasks on XML documents. Indeed, until now we have only performed
experiments on standard benchmark IE tasks that can also be performed by
the previous string-based approaches, as discussed in the two previous sections.
However, there are tasks that seem clearly beyond the reach of string-based ap-
proaches, such as extracting the second item from a list of items, where every
item itself may have a complex substructure. Of course, experimental validation
remains to be performed. Interestingly, recent work by Gottlob and Koch [12]
shows that all existing wrapper languages for structured document IE can be
captured using tree automata, which strongly justifies our approach.

Other directions to explore are to incorporate probabilistic inference; to infer
unranked tree automata formalisms directly; and to combine unstructured text
extraction with structured document extraction.

Acknowledgements

We thank the anonymous reviewers for their helpful feedbacks. This work is sup-
ported by the FWO project query languages for data mining. Hendrik Blockeel
is a post-doctoral fellow of the Fund for Scientific Research of Flanders.

References

1. D. Angluin. Queries and concept learning. Machine Learning, 2(4):319–342, 1988.
300

2. M. E. Califf and R. J. Mooney. Relational learning of pattern-match rules for
information extraction. In Proceedings of the Sixteenth National Conference on
Artificial Intelligence and Eleventh Conference on Innovative Applications of Ar-
tificial Intelligence, pages 328–334. AAAI Press / The MIT Press, 1999. 299

3. B. Chidlovskii, J. Ragetli, and M. de Rijke. Wrapper generation via grammar
induction. In 11th European Conference on Machine Learning, ECML’00, pages
96–108, 2000. 299, 307

4. W. W. Cohen. Recognizing structure in web pages using similarity queries. In
Proceedings of the Sixteenth National Conference on Artificial Intelligence and
Eleventh Conference on on Innovative Applications of Artificial Intelligence, pages
59–66, 1999. 308

5. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree Automata Techniques and Applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 1999. 300



310 Raymond Kosala et al.

6. J. Cowie and W. Lehnert. Information extraction. Communications of the ACM,
39(1):80–91, 1996. 299

7. D. Freitag. Using grammatical inference to improve precision in information ex-
traction. In ICML-97 Workshop on Automata Induction, Grammatical Inference,
and Language Acquisition, 1997. 299, 300, 307

8. D. Freitag. Information extraction from HTML: Application of a general learning
approach. In Proceedings of the Fifteenth Conference on Artificial Intelligence
AAAI-98, pages 517–523, 1998. 299

9. D. Freitag and N. Kushmerick. Boosted wrapper induction. In Proceedings of the
Seventeenth National Conference on Artificial Intelligence and Twelfth Innovative
Applications of AI Conference, pages 577–583. AAAI Press, 2000. 306, 307

10. D. Freitag and A. McCallum. Information extraction with HMMs and shrinkage. In
AAAI-99 Workshop on Machine Learning for Information Extraction, 1999. 306,
307

11. E. M. Gold. Language identification in the limit. Information and Control,
10(5):447–474, 1967. 300

12. G. Gottlob and K. Koch. Monadic datalog over trees and the expressive power of
languages for web information extraction. In 21st ACM Symposium on Principles
of Database Systems, June 2002. To appear. 309

13. T. W. Hong and K. L. Clark. Using grammatical inference to automate information
extraction from the web. In Principles of Data Mining and Knowledge Discovery,
pages 216–227, 2001. 308

14. C.-N. Hsu and M.-T. Dung. Generating finite-state transducers for semi-structured
data extraction from the Web. Information Systems, 23(8):521–538, 1998. 299,
307

15. I. Muslea. Extraction patterns for information extraction tasks: A survey. In
AAAI-99 Workshop on Machine Learning for Information Extraction, 1999. 299,
307

16. I. Muslea, S. Minton, and C. Knoblock. Hierarchical wrapper induction for
semistructured information sources. Journal of Autonomous Agents and Multi-
Agent Systems, 4:93–114, 2001. 299, 306, 308

17. C. Pair and A. Quere. Définition et etude des bilangages réguliers. Information
and Control, 13(6):565–593, 1968. 301

18. J. Rico-Juan, J. Calera-Rubio, and R. Carrasco. Probabilistic k-testable tree-
languages. In A. Oliveira, editor, Proceedings of 5th International Colloquium,
ICGI 2000, Lisbon (Portugal), volume 1891 of Lecture Notes in Computer Science,
pages 221–228. Springer, 2000. 301, 304, 305

19. Y. Sakakibara. Efficient learning of context-free grammars from positive structural
examples. Information and Computation, 97(1):23–60, 1992. 301, 308

20. Y. Sakakibara. Recent advances of grammatical inference. Theoretical Computer
Science, 185(1):15–45, 1997. 300

21. H. Sakamoto, H. Arimura, and S. Arikawa. Knowledge discovery from semistruc-
tured texts. In S. Arikawa and A. Shinohara, editors, Progress in Discovery Science
- Final Report of the Japanese Discovery Science Project, volume 2281 of LNAI,
pages 586–599. Springer, 2002. 308

22. S. Soderland. Learning information extraction rules for semi-structured and free
text. Machine Learning, 34(1-3):233–272, 1999. 299, 307, 308

23. M. Takahashi. Generalizations of regular sets and their application to a study of
context-free languages. Information and Control, 27:1–36, 1975. 301

24. L. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–
1142, 1984. 300



Information Extraction in Structured Documents 311

25. Extensible markup language (XML) 1.0 (second edition). W3C Recommendation
6 October 2000. www.w3.org. 303


	Information Extraction in Structured Documents Using Tree Automata Induction
	Introduction
	Tree Grammar Inference and Information Extraction
	Grammatical Inference
	Tree Languages and Information Extraction

	Approach and the Algorithm
	The k-Testable Algorithm

	Experimental Results
	Discussion and Related Work
	Conclusion
	Acknowledgements
	References


