
How to Achieve a McEliece-Based Digital
Signature Scheme

Nicolas T. Courtois1,2, Matthieu Finiasz1,3, and Nicolas Sendrier1

1 Projet Codes, INRIA Rocquencourt
BP 105, 78153 Le Chesnay - Cedex, France

Nicolas.Sendrier@inria.fr
2 Systèmes Information Signal (SIS), Toulon University

BP 132, F-83957 La Garde Cedex, France
courtois@minrank.org

http://www.minrank.org/
3 École Normale Supérieure, 45, rue d’Ulm, 75005 Paris.

finiasz@ens.fr

Abstract. McEliece is one of the oldest known public key cryptosys-
tems. Though it was less widely studied than RSA, it is remarkable
that all known attacks are still exponential. It is widely believed that
code-based cryptosystems like McEliece do not allow practical digital
signatures. In the present paper we disprove this belief and show a
way to build a practical signature scheme based on coding theory. Its
security can be reduced in the random oracle model to the well-known
syndrome decoding problem and the distinguishability of permuted
binary Goppa codes from a random code. For example we propose a
scheme with signatures of 81-bits and a binary security workfactor of 283.

Keywords: digital signature, McEliece cryptosystem, Niederreiter cryp-
tosystem, Goppa codes, syndrome decoding, short signatures.

1 Introduction

The RSA and the McEliece [11] public key cryptosystems, have been proposed
back in the 70s. They are based on intractability of respectively factorization
and syndrome decoding problem and both have successfully resisted more than
20 years of cryptanalysis effort.

RSA became the most widely used public key cryptosystem and McEliece
was not quite as successful. Partly because it has a large public key, which is
less a problem today, with huge memory capacities available at very low prices.
However the main handicap was the belief that McEliece could not be used in
signature. In the present paper we show that it is indeed possible to construct
a signature scheme based on Niederreiter’s variant [12] on the McEliece cryp-
tosystem.

The cracking problem of RSA is the problem of extracting e-th roots modulo
N called the RSA problem. All the general purpose attacks for it are structural

C. Boyd (Ed.): ASIACRYPT 2001, LNCS 2248, pp. 157–174, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

158 N.T. Courtois, M. Finiasz, and N. Sendrier

attacks that factor the modulus N . It is a hard problem but sub-exponential.
The cracking problem for McEliece is the problem of decoding an error correcting
code called Syndrome Decoding (SD). There is no efficient structural attacks
that might distinguish between a permuted Goppa code used by McEliece and
a random code. The problem SD is known to be NP-hard since the seminal
paper of Berlekamp, McEliece and van Tilborg [3], in which authors show that
complete decoding of a random code is NP-hard.

All among several known attacks for SD are fully exponential (though faster
than the exhaustive search [4]), and nobody has ever proposed an algorithm that
behaves differently for complete decoding and the bounded decoding problems
within a (slightly smaller) distance accessible to the owner of the trapdoor. In
[6] Kobara and Imai review the overall security of McEliece and claim that

[. . .] without any decryption oracles and any partial knowledge on the
corresponding plaintext of the challenge ciphertext, no polynomial-time
algorithm is known for inverting the McEliece PKC whose parameters
are carefully chosen.

Thus it would be very interesting to dispose of signature schemes based on
such hard decoding problems. The only solution available up to date was to use
zero-knowledge schemes based on codes such as the SD scheme by Stern [19]. It
gives excellent security but the signatures are very long. All tentatives to build
practical schemes failed, see for example [20].

Any trapdoor function allows digital signatures by using the unique capacity
of the owner of the public key to invert the function. However it can only be used
to sign messages the hash value of which lies in the ciphertext space. Therefore
a signature scheme based on trapdoor codes must achieve complete decoding.
In the present paper we show how to achieve complete decoding of Goppa codes
for some parameter choices.

The paper is organized as follows. First we explain in §2 and §3 how and
for which parameters to achieve complete decoding of Goppa codes. In §4 we
present a practical and secure signature scheme we derive from this technique.
Implementation issues are discussed in §5, and in particular, we present several
tradeoffs to achieve either extremely short signatures (81 bits) or extremely fast
verification. In §6 we present an asymptotic analysis of all the parameters of
the system, proving that it will remain practical and secure with the evolution
of computers. Finally in §7 we prove that the security of the system relies on
the syndrome decoding problem and the distinguishability of Goppa codes from
random codes.

2 Signature with McEliece

The McEliece cryptographic scheme is based on error correcting codes. It consists
in randomly adding errors to a codeword (as it would happen in a noisy channel)
and uses this as a cipher. The decryption is done exactly as it would be done
to correct natural transmission errors. The security of this scheme simply relies

How to Achieve a McEliece-Based Digital Signature Scheme 159

on the difficulty of decoding a word without any knowledge of the structure of
the code. Only the legal user can decode easily using the trap. The Niederreiter
variant - equivalent on a security point of view [8] - uses a syndrome (see below)
as ciphertext, and the message is an error pattern instead of a codeword (see
Table 1).

2.1 A Brief Description of McEliece’s and Niederreiter’s Schemes

Let F2 be the field with two elements {0, 1}. In the present paper, C will sys-
tematically denote a binary linear code of length n and dimension k, that is
a subspace of dimension k of the vector space Fn

2 . Elements of Fn
2 are called

words, and elements of C are codewords. A code is usually given in the form
of a generating matrix G, lines of which form a basis of the code. The parity
check matrix H is a dual form of this generating matrix: it is the n × (n − k)
matrix of the application of kernel C. When you multiply a word (a codeword
with an error for example) by the parity check matrix you obtain what is called
a syndrome: it has a length of n− k bits and is characteristic of the error added
to the codeword. It is the sum of the columns of H corresponding to the non-
zero coordinates of the error pattern. Having a zero syndrome characterizes the
codeword and we have G×H = 0.

Let C be a binary linear code of length n and dimension k correcting t errors
(i.e. minimum distance is at least 2t + 1). Let G and H denote respectively a
generator and a parity check matrix of C. Table 1 briefly describes the two main
encryption schemes based on code. In both case the trap is a t-error correct-

Table 1. McEliece and Niederreiter code-based cryptosystems

McEliece Niederreiter
public key: G H

cleartext: x ∈ Fk2 x ∈ Fn2 , wH(x) = t
ciphertext: y = xG+ e, wH(e) = t y = HxT

ciphertext space: Fn2 Fn−k2

ing procedure for C. It enables decryption (i.e. finding the closest codeword
to a given word or equivalently the word of smallest Hamming weight with a
prescribed syndrome).

The secret key is a code C0 (usually a Goppa code) whose algebraic structure
provides a fast decoder. The public code is obtained by randomly permuting the
coordinates of C0 and then choosing a random generator or parity check matrix:

G = UG0P or H = V H0P

where G0 and H0 are a generator and a parity check matrix of C0, U and V are
non-singular matrices (k×k and (n−k)× (n−k) respectively) and P is a n×n
permutation matrix.

160 N.T. Courtois, M. Finiasz, and N. Sendrier

The security of these two systems is proven to be equivalent [8] and is based
on two assumptions:

– solving an instance of the decoding problem is difficult,
– recovering the underlying structure of the code is difficult.

The first assumption is enforced by complexity theory results [3,2,16], and by
extensive research on general purpose decoders [7,18,4]. The second assumption
received less attention. Still the Goppa codes used in McEliece are known by
coding theorists for thirty years and so far no polynomially computable property
is known to distinguish a permuted Goppa code from a random linear code.

2.2 How to Make a Signature

In order to obtain an efficient digital signature we need two things: an algorithm
able to compute a signature for any document such that they identify their
author uniquely, and a fast verification algorithm available to everyone.

A public-key encryption function can be used as a signature scheme as follows:

1. hash (with a public hash algorithm) the document to be signed,
2. decrypt this hash value as if it were an instance of ciphertext,
3. append the decrypted message to the document as a signature.

Verification just applies the public encryption function to the signature and
verifies that the result is indeed the hash value of the document. In the case
of Niederreiter or any other cryptosystem based on error correcting codes the
point 2 fails. The reason is that if one considers a random syndrome it usually
corresponds to an error pattern of weight greater than t. In other word, it is
difficult to generate a random ciphertext unless it is explicitly produced as an
output of the encryption algorithm.

One solution to the problem is to obtain for our code an algorithm to decode
any syndrome, or at least a good proportion of them. It is the object of the next
section.

2.3 Complete Decoding

Complete decoding consists of finding a nearest codeword to any given word of
the space. In a syndrome language that is being able to find an error pattern
corresponding to any given syndrome. This means decoding syndromes corre-
sponding to errors of weight greater than t.

An approach to try to perform complete decoding would be to try to correct
a fixed additional number of errors (say δ). To decode a syndrome correspond-
ing to an error of weight t+ δ one should then add δ random columns from the
parity check matrix to the syndrome and try to decode it. If all of the δ columns
correspond to some error positions then the new syndrome obtained will cor-
respond to a word of weight t and can be decoded by our trapdoor function.
Else we will just have to try again with δ other columns, and so on until we can

How to Achieve a McEliece-Based Digital Signature Scheme 161

Fig. 1. From bounded decoding to complete decoding

decode one syndrome. Like this we can decode any syndrome corresponding to
an error of weight less than or equal to t+ δ. If δ is large enough we should be
able to decode any possible syndrome. However, a large δ will lead to a small
probability of success for each choice of δ columns. This means that we will have
to adapt the parameters of our code to obtain a δ small enough and in the same
time keep a good security for our system.

This can be viewed from an different angle. Adding a random column of the
parity check matrix to a syndrome really looks like choosing another random
syndrome and trying to decode it. Choosing parameters for the code such that
δ is small enough simply consists of increasing the density of the decodable
syndromes in the space of all the syndromes, this is increasing the probability
for a random syndrome to be decodable. This method will therefore take a first
random syndrome (given by the hash function) and try to decode it, then modify
the document and hash it again until a decodable syndrome is obtained.

The object of the next section will be to choose parameters such that the
number of necessary attempts is small enough for this method to work in a
reasonable time.

3 Finding the Proper Parameters

The parameters of the problem are the dimension k of the code, its length n and
the maximum number t of errors the code can correct. These parameters affect
all aspects of the signature scheme: its security, the algorithmic complexity for
computing a signature, the length of the signature... We will start by explor-
ing the reasons why the classical McEliece parameters are not acceptable and
continue with what we wish to obtain.

3.1 Need for New Parameters

With the classical McEliece parameters (n = 1024, k = 524, t = 50) we have
syndromes of length n− k = 500. This makes a total of 2500 syndromes. Among

162 N.T. Courtois, M. Finiasz, and N. Sendrier

these only those corresponding to words of weight less than 50 are decodable.
The number of such syndromes is:

∑50
i=1

(1024
i

) � 2284

Therefore there is only a probability of 2−216 of success for each syndrome.
This would mean an average number of decoding attempts of 2216 which is far
too much. We will hence have to change the values of n, k and t.

3.2 Choosing Parameters

Binary Goppa codes are subfield subcodes of particular alternant codes [10,
Ch. 12]. For a given integer m, there are many (about 2tm/t) t-error correcting
Goppa codes of dimension n− tm and length n = 2m.

We are looking for parameters which lead to a good probability of success for
each random syndrome. The probability of success will be the ratio between the
number of decodable syndromes Ndec and the total number of syndromes Ntot.
As n is large compared with t we have:

Ndec =
t∑

i=1

(
n

i

)
�
(
n

t

)
� n

t

t!

and for Goppa codes Ntot = 2n−k = 2mt = nt. Therefore the probability of
success is:

P =
Ndec

Ntot
� 1
t!

This probability doesn’t depend of n and the decoding algorithm has a poly-
nomial complexity in m (= log2 n) and t. Therefore the signature time won’t
change a lot with n. As the security of the Goppa code used increases rapidly
with n we will then be sure to find suitable parameters, both for the signature
time and the security.

3.3 Secure Parameters

A fast bounded decoding algorithm can perform about one million decoding in a
few minutes1. From the previous section, the number of decoding attempt to get
one signature will be around t!, so get a reasonable signature scheme, t should
not be more than 10. However for the codes correcting such a little number of
errors we need to have very long codewords in order to achieve good security.

The Table 2 shows the binary workfactors for the Canteaut-Chabaud attack
[4] on the McEliece cryptosystem (see section 6 for more details on the complexity
of these attacks). We assume that an acceptable security level is of 280 CPU
operations, corresponding roughly to a binary workfactor of 286. Therefore, in
our signature scheme, we need a length of at least 215 with 10 errors or 216 with
9 errors.

Though it is slightly below or security requirement, the choice (216, 9) is
better as it runs about 10 times faster.
1 our implementation performs one million decodings in 5 minutes, but it can still be
improved

How to Achieve a McEliece-Based Digital Signature Scheme 163

Table 2. Cost for decoding

n
211 212 213 214 215 216 217

t = 8 252.0 256.8 261.4 265.3 267.8 270.5 273.3

t = 9 254.6 259.9 269.3 274.0 278.8 283.7 288.2

t = 10 260.9 266.8 272.3 277.4 287.4 290.9 294.6

4 The Signature Scheme

With the chosen parameters we have a probability of 1/9! to decode each syn-
drome. We will therefore have to try to decode about 9! random syndromes. To
do so we will simply use a counter i and hash it with the document: the hashed
syndrome obtained will then depend of i, and by changing i we can have as many
as we need. The signature scheme works as follows.

Let h be a hash function returning a binary word of length n− k (the length
of a syndrome). Let D be our document and s = h(D). We denote [· · · s · · · | · i·]
the concatenation of s and i and si = h([· · · s · · · | · i·]).

The signature algorithm will compute the si for i starting at 0 and increasing
by 1 at each try, until one of the syndromes si is decodable. We will note i0 the
first index for which si is decodable, and we will use this syndrome for the
signature. As explained in section 2.2 the signature will then be the decrypted
message, which is in our case the word z of length n and weight 9, such that
HzT = si0 . However the signature will also have to include the value of i0 for
the verification. The signature will therefore be [· · · z · · · | · i0·].

Signature length: the length of the signature will mainly depend of the way
used to store z. It is a word of length n = 216 so the dumb method would be
to use it directly to sign. However its weight is only 9 so we should be able to
compress it a little. There are

(216

9

) � 2125.5 word of weight 9 so they could be
indexed with a 126 bit counter. Let i1 < . . . < i9 denote the positions of the
non-zero bits of z. We define the index Iz of z by:

Iz = 1 +
(
i1
1

)
+
(
i2
2

)
+ . . .+

(
i9
9

)

The number of bits used to store i0 isn’t reducible: in average it’s length is
log2(9!) � 18.4 bits. So the signature will be [· · · Iz · · · | · i0·] with an average
total length of 125.5 + 18.4 � 144 bits.

Note that using McEliece encryption scheme instead of Niederreiter’s would
not be satisfactory here. The signature would have a size larger than k bits (the
size of a plaintext). And it would grow radiply with m if t is small. With the
parameters above, the signature would have a length of 65411 bits!

164 N.T. Courtois, M. Finiasz, and N. Sendrier

Signature algorithm

– hash the document D into s = h(D)
– compute si = h([· · · s · · · | · i·]) for i = 0, 1, 2 . . .
– find i0 the smallest value of i such that si is decodable
– use our trapdoor function to compute z such that HzT = si0
– compute the index Iz of z in the space of words of weight 9
– use [· · · Iz · · · | · i0·] as a signature for D

Verification algorithm is much simpler (and faster)

– recover z from its index Iz
– compute s1 = HzT with the public key H
– compute s2 = h([· · ·h(D) · · · | · i0·]) with the public hash function
– compare s1 and s2: if they are equal the signature is valid

4.1 Attacks on the Signature Length

Having such short signatures enables attacks independent on the strength of the
trapdoor function used, which are inherent to the commonly used method of
computing a signature by inversion of the function. This generic attack runs in
the square root of the exhaustive search. Let F be any trapdoor function with an
output space of cardinality 2r. The well known birthday paradox forgery attack
computes 2r/2 hash2 values MD(mi) for some chosen messages, and picks at ran-
dom 2r/2 possible signatures. One of these signatures is expected to correspond
to one of the messages.

With our parameters the syndromes have a length of 144 bits and the com-
plexity of the attack is the complexity of sorting the 2144/2 = 272 values which
is 272 × 72 × 144 � 285 binary operations. This attack is not more threatening
than the decoding attack, and in addition it requires a memory of about 272×72
bits. Note also that the above attack depends on the syndrome length and not
on the signature length, this will remain true later, even in the variants with
shorter signature length.

5 Implementation Aspects

For any signature scheme there is an easy security preserving tradeoff between
signature length and verification time. One may remove any h bits from the
signature if one accepts exhaustive verification in 2h for each possible value of
the h missing bits. In the case of syndrome-based signature, one can do much
better. As the signature consists of an error pattern of weight t, one may send
2 MD denotes a cryptographic hash function with output of r bits

How to Achieve a McEliece-Based Digital Signature Scheme 165

only t − 1 out of the t errors. The verifier needs to decode the remaining error
and this is much faster that the exhaustive search. More generally we are going
to show that concealing a few errors (between 1 and 3) remains an excellent
compromise as summarized in Table 3.

5.1 Cost of a Verification

Let s denote the hash value of the message and z denote the error pattern of
weight t such that HzT = s. As z is the signature, we can compute y = HzT by
adding the t corresponding columns. The signature is accepted if y is the equal
to s. The total cost of this verification is t column operations3.

If u is a word of weight t− 1 whose support is included in the support of z,
we compute y = s + HuT , which costs t − 1 column operations, and we check
that y is a column of H, which does not cost more than one column operation
if the matrix H is properly stored in a hash table.

Omitting two errors. Let us assume now that the word u transmitted as
signature has weight t− 2. There exists a word x of weight 2 such that HxT =
y = HuT . We are looking for two columns of H whose sum is equal to y. All we
have to do is to add y to any column of H and look for a match in H. Again if
the columns of H are properly stored, the cost is at most 2n column operations.

This can be improved as the signer can choose which 2 errors are left to
verifier to correct and omits in priority the positions which will be tested first,
this divides the complexity in average by t (i.e. the match will be found in
average after n/t tries).

Omitting more errors. In general, if u has weight t−w, we put y = s+HuT
and we need to compute the sum of y plus any w − 1 columns of H and check
for a match among the columns of H. Proper implementation will cost at most
3
(

n
w−1

)
column operations (yes, it is always 3, don’t ask why!).

Again, if the signer omits the set of w errors which are tested first, the average
cost can be divided by

(
t

w−1

)
.

Note that if more than 2 errors are not transmitted, the advantage is not
better than the straightforward time/length tradeoff.

5.2 Partitioning the Support

Punctured code. Puncturing a code in p positions consist in removing the
corresponding coordinates from the codewords. The resulting code has length
n− p and, in general, the same dimension4 k. Without loss of generality we can
3 In this section we will count all complexities in terms of column operations, one
column operation is typically one access to a table and one operation like an addition
or a comparison

4 the actual dimension is the rank of a matrix derived from a generating matrix by
removing the p columns

166 N.T. Courtois, M. Finiasz, and N. Sendrier

Table 3. Tradeoffs for the 9-error correcting Goppa code of length 216

remaining cost (a) of signature
errors verification length
0 t 9 144 bits
1 t 9 132 bits
2 2n/t 214 119 bits
3 3

(
n
2

)
/
(
t
2

)
227 105 bits

4 3
(
n
3

)
/
(
t
3

)
240 92 bits

(a) in column operations (≈ 4 to 8 CPU clocks).

assume that the punctured positions come first. A parity check matrix H ′ of C ′

can be derived from any parity check matrix H of C by a Gaussian elimination:
for some non-singular (n− k)× (n− k) matrix U we have

UH =
(
I R
0 H ′

)
,

where I denotes the p× p identity matrix.
Given a syndrome s we wish to find z ∈ Fn

2 of weight t such that s = HzT .
We denote s′′ and s′ respectively the p first and the n−p−k last bits of Us and
z′ the last n− p bits of z. Let w ≤ t denote the weight of z′.{

s = HzT

wH(z) ≤ t ⇔
{
s′ = H ′z′T

wH(z′) + wH(Rz′
T + s′′) ≤ t

Shorter signatures. We keep the notations of the previous section. We parti-
tion the support of C into n/l sets of size l. Instead of giving the t−w positions,
we give the t − w sets containing these positions. These p = l(t − w) positions
are punctured to produce the code C ′. To verify the signature s we now have
to correct w errors in C ′, i.e. find z′ of weight w such that s′ = Hz′T . The
signature is valid if there exists a word z′ such that

wH(z′) ≤ w (1)

wH(Rz′
T + s′′) ≤ t− w (2)

We may find several values of z′ verifying (1), but only one of them will also
verify (2). If l is large, we have to check equation (2) often. On the other hand,
large values of l produce shorter signatures. The best compromise is l = m or a
few units more.

The cost for computing H ′ is around tm2m−1 column operations (indepen-
dently of l and w). The number of column operations for decoding errors in C ′

is the same as in C but columns are smaller.
The signature size will be log2

((
n/l
t−w
)
t!
)
. If more than 3 errors are not trans-

mitted, the length gain is not advantageous.

How to Achieve a McEliece-Based Digital Signature Scheme 167

Table 4. Tradeoffs for m = 16, t = 9 and l = m

remaining cost (a) of signature
errors (w) verification length

1 222 100 bits
2 222 91 bits
3 227 81 bits
4 240 72 bits

(a) in column operations (≈ 2 to 6 CPU clocks).

5.3 New Short Signature Schemes

With parameters m = 16 and t = 9, there are three interesting trade-offs be-
tween verification time and signature length. All three of them have the same
complexity for computing the signature (in our our implementation the order of
magnitude is one minute) and the same security level of about 280 CPU opera-
tions.

Fast verification (CFS1). We transmit 8 out of the 9 error positions, the veri-
fication is extremely fast and the average signature length is log2

(
t!
(

n
t−1

))
=

131.1 < 132 bits.
Short signature (CFS3). We partition the support in 212 cells of 16 bits and

we transmit 6 of the 9 cells. The verification time is relatively long, around
one second and the average signature length is log2

((
n/l
t−w
)
t!
)
= 80.9 < 81

bits.
Half & half (CFS2). We transmit the rightmost 7 error positions (out of 9).

The verification algorithm starting with the left positions will be relatively
fast in average, less than one millisecond. The average signature length is
log2

(
t!
(

n
t−2

))
= 118.1 < 119 bits.

In all three cases, to obtain a constant length signature one should be able to
upper bound the number of decoding attempts. This is not possible, however by
adding 5 bits to the signature the probability of failing to sign a message is less
than 2−46, and with 6 bits it drops to 2−92.

5.4 Related Work

It seems that up till now the only signature scheme that allowed such short
signatures was Quartz [14] based on HFE cryptosystem [13]. It is enabled by
a specific construction that involves several decryptions in order to avoid the
birthday paradox forgery described in 4.1 that runs in the square root of the
exhaustive search. This method is apparently unique to multivariate quadratic
cryptosystems such as HFE and works only if the best attack on the underlying
trapdoor is well above the square root of the exhaustive search [13,14]. Such is
not the case for the syndrome decoding problems.

168 N.T. Courtois, M. Finiasz, and N. Sendrier

6 Asymptotic Behavior

In order to measure the scalability of the system, we will examine here how the
complexity for computing a signature and the cost of the best known attack
evolve asymptotically. We consider a family of binary t-error correcting Goppa
codes of length n = 2m. These codes have dimension k = n− tm.

6.1 Signature Cost

We need to make t! decoding attempts, for each of these attempts we need the
following.

1. Compute the syndrome. As we are using Niederreiter’s scheme we already
have the syndrome, we only need to expand it into something usable by the
decoder for alternant codes, the vector needed has a size of 2tm bits and
is obtained from the syndrome by a linear operation, this costs O(t2m2)
operations in F2.

2. Solve the key equation. In this part, we apply Berlekamp-Massey algorithm
to obtain the locator polynomial σ(z), this costs O(t2) operations in F2m .

3. Find the roots of the locator polynomial. If the syndrome is decodable,
the polynomial σ(z) splits in F2m [z] and its roots give the error posi-
tions. Actually we only need to check that the polynomial splits: that is
gcd(σ(z), z2

m − z) = σ(z). This requires t2m operations in F2m .

We will assume that one operation in F2m requires m2 operations in F2, the total
number of operations in F2 to achieve a signature is thus proportional to t!t2m3.

6.2 Best Attacks Complexity

Decoding attacks. The best known (and implemented) attack by decoding is
by Canteaut and Chabaud [4] and its asymptotic time complexity is (empirically)
around (n/ log2 n)f(t) where f(t) = λt− c is an affine function with λ not much
smaller than 1 and c is a small constant between 1 and 2.

Good estimates of the asymptotic behavior of the complexity of the best
known general decoding techniques are given by Barg in [2]. In fact, when the
rate R = k/n of the code tends to 1, the time and space complexity becomes
2n(1−R)/2(1+o(1)), which, for Goppa codes, gives nt(1/2+o(1)).

Structural attack. Very little is know about the distinguishability of Goppa
codes. In practice, the only structural attack [9] consists in enumerating all
Goppa codes and then testing equivalence with the public key. The code equiva-
lence problem is difficult in theory [15] but easy in practice [17]. There are 2tm/t
binary t-error correcting Goppa codes of length n = 2m, because of the properties
of extended Goppa codes [10, Ch. 12, §4] only one out of mn3 must be tested
and, finally, the cost for equivalence testing cannot be lower than n(tm)2 (a
Gaussian elimination). Putting everything together leads to a structural attack
whose cost is not less than tmnt−2 elementary operations.

How to Achieve a McEliece-Based Digital Signature Scheme 169

Table 5. Characteristics of the signature scheme based on a (n = 2m, k = n− tm, d ≥
2t+ 1) binary Goppa code

signature cost t!t2m3

signature length1 (t− 1)m+ log2 t
verification cost1 t2m
public key size tm2m

cost of best decoding attack 2tm(1/2+o(1))

cost of best structural attack tm2m(t−2)

1One error position omitted

6.3 Intrinsic Strengths and Limitations

In Table 5 all complexities are expressed in terms of t and m = log2 n and we
may state the following facts:

– the signature cost depends exponentially of t,
– the public-key size depends exponentially of m,
– the security depends exponentially of the product tm.

From this we can draw the conclusion that if the system is safe today it can only
be better tomorrow, as its security will depend exponentially of the signature
size. On the other hand the signature cost and the key size will always remain
high, as we will need to increase t or m or both to maintain a good security level.
However, relatively to the technology, this handicap will never be as important
as it is today and will even decrease rapidly.

7 Security Arguments

In this section we reduce the security of the proposed scheme in the random
oracle model to two basic assumptions concerning hardness of general purpose
decoding and pseudo-randomness of Goppa codes. We have already measured the
security in terms of the work factor of the best known decoding and structural
attacks. We have seen how the algorithmic complexity of these attacks will evolve
asymptotically. The purpose of the present section is to give a formal proof that
breaking the CFS signature scheme implies a breakthrough in one of two well
identified problems. This reduction gives an important indication on where the
cryptanalytic efforts should be directed.

One of these problem is decoding, it has been widely studied and a major
improvement is unlikely in the near future. The other problem is connected
to the classification of Goppa codes or linear codes in general. Classification
issues are in the core of coding theory since its emergence in the 50’s. So far
nothing significant is known about Goppa codes, more precisely there is no
known property invariant by permutation and computable in polynomial time
which characterizes Goppa codes. Finding such a property or proving that none
exists would be an important breakthrough in coding theory and would also
probably seal the fate, for good or ill, of Goppa code-based cryptosystems.

170 N.T. Courtois, M. Finiasz, and N. Sendrier

7.1 Indistinguishability of Permuted Goppa Codes

Definition 1 (Distinguishers). A T -time distinguisher is a probabilistic Tur-
ing machine running in time T or less such that it takes a given F as an input
and outputs AF equal to 0 or 1. The probability it outputs 1 on F with respect
to some probability distribution F is denoted as:

Pr[F ← F : AF = 1]

Definition 2 ((T, ε)-PRC). Let A be a T -time distinguisher. Let rnd(n, k) be
the uniform probability distribution of all binary linear (n, k)-code. Let F(n, k)
be any other probability distribution. We define the distinguisher’s advantage as:

AdvPRCF (A) def
=
∣∣∣Pr[F ← F(n, k) : AF = 1]− Pr[F ← rnd(n, k) : AF = 1]

∣∣∣.
We say that F(n, k) is a (T, ε)-PRC (Pseudo-Random Code) if we have:

max
T−time A

AdvPRCF (A) ≤ ε.

7.2 Hardness of Decoding

In this section we examine the relationships between signature forging and two
well-known problems, the syndrome decoding problem and the bounded-distance
decoding problem. The first is NP-complete and the second is conjectured NP-
hard.

Definition 3 (Syndrome Decoding - SD).

Instance: A binary r × n matrix H, a word s of Fr
2 , and an integer w > 0.

Problem: Is there a word x in Fn
2 of weight ≤ w such that HxT = s?

This decision problem was proven NP-complete [3]. Achieving complete decoding
for any code can be done by a polynomial (in n) number of calls to SD. Actually
the instances of SD involved in breaking code-based systems are in a particular
subclass of SD where the weight w is bounded by the half of the minimum
distance of the code of parity check matrix H. Is has been stated by Vardy in
[16] as:

Definition 4 (Bounded-Distance Decoding - BD).

Instance: An integer d, a binary r×n matrix H such that every d− 1 columns
of H are linearly independent, a word s of Fr

2 , and an integer w ≤ (d−1)/2.
Problem: Is there a word x in Fn

2 of weight ≤ w such that HxT = s?

It is probably not NP because the condition on H is NP-hard to check. However
several prominent authors [1,16] conjecture that BD is NP-hard.

How to Achieve a McEliece-Based Digital Signature Scheme 171

Relating signature forging and BD. An attacker who wishes to forge for a
message M a signature of weight t with the public key H, has to find a word
of weight t whose syndrome lies in the set {h(M, i) | i ∈ N} where h() is a
proper cryptographic hash function (see §4). Under the random oracle model,
the only possibility for the forger is to generate any number of syndromes of
the form h(M, i) and to decode one of them this cannot be easier than BD(2t+
1, H, h(M, i), t) for some integer i.

Relating signature forging and SD. Let us consider the following problem:

Definition 5 (List Bounded-Distance Decoding - LBD).

Instance: An integer d, a binary r×n matrix H such that every d−1 columns of
H are linearly independent, a subset S of Fr

2 , and an integer w ≤ �(d−1)/2�.
Problem: Is there a word x in Fn

2 of weight ≤ w such that HxT ∈ S?
Using this problem we will show how we may relate the forging of a signature
to an instance of SD:

– In practice the forger must at least solve LBD(2t + 1, H, S, t) where S ⊂
{h(M, i) | i ∈ N}. The probability for the set S to contain at least one
correctable syndrome is greater than 1 − e−λ where λ = |S|(nt)/2r. This
probability can be made arbitrarily close to one if the forger can handle a
set S big enough.

– Similarely, from any syndrome s ∈ Fr
2 , one can derive a set Rs,δ ⊂ {s+HuT |

u ∈ Fn
2 , wH(u) ≤ δ} where δ = dvg − t and dvg is an integer such that(

n
dvg

)
> 2r. With probability close to 1−e−µ where µ = |Rs,δ|

(
n
t

)
/2r, we have

LBD(2t+1, H,Rs,δ, t) = SD(H, s, dvg). Thus solving LBD(2t+1, H,Rs,δ, t)
is at least as hard as solving SD(H, s, dvg).

– We would like to conclude now that forging a signature is at least as hard
as solving SD(H, s, dvg) for some s. This would be true if solving LBD(2t+
1, H, S, t) was harder than solving LBD(2t+ 1, H,Rs,δ, t) for some s, which
seems difficult to state. Nevertheless, with sets S and Rs,δ of same size, it
seems possible to believe that the random set (S) will not be the easiest to
deal with.

Though the security claims for our signature scheme will rely on the difficulty
of BD(2t + 1, H, s, t), it is our belief that it can reduced to the hardness of
SD(H, s, dvg) (note that dvg depends only of n and r, not of t). If we assume the
pseudo-randomness of the hash function h() and of Goppa codes these instances
are very generic.

7.3 Security Reduction

We assume that the permuted Goppa code used in our signature scheme is a
(TGoppa, 1/2)-PRC, i.e. it cannot be distinguished from a random code with an
advantage greater than 1/2 for all adversaries running in time < TGoppa.

172 N.T. Courtois, M. Finiasz, and N. Sendrier

We assume that an instance of BD(2t+ 1, H, s, t) where H and s are chosen
randomly cannot be solved with probability greater than 1/2 by an adversary
running in time < TBD.

Theorem 1 (Security of CFS). Under the random oracle assumption, a T -
time algorithm that is able to compute a valid pair message+signature for CFS
with a probability ≥ 1/2 satisfies:

T ≥ min (TGoppa, TBD) .

Proof (sketch): Forging a signature is at least as hard as solving BD(2t+1, H, s, t)
where s = h(M, i) (see §7.2) and H is the public key. Under the random oracle
assumption, the syndrome h(M, i) can be considered as random. If someone is
able to forge a signature in time T < TBD, then with probability 1/2 the matrix
H has been distinguished from a random one and we have T ≥ TGoppa. ✷

8 Conclusion

We demonstrated how to achieve digital signatures with the McEliece public key
cryptosystem. We propose 3 schemes that have tight security proofs in random
oracle model. They are based on the well known hard syndrome decoding problem
that after some 30 years of research is still exponential. The Table 6 summarizes
the concrete security of our schemes compared to some other known signature
schemes.

Table 6. McEliece compared to some known signature schemes

base cryptosystem RSA ElGamal EC HFE McEliece/Niederreiter
signature scheme RSA DSA ECDSA Quartz CFS1 CFS2 CFS3
data size(s) 1024 160/1024 160 100 144

security

structural problem factoring DL(p) Nechaev
group? HFEv- Goppa ?= PRCode

best structural attack 2102 2102 ∞ > 297 2119

inversion problem RSAP DL(q) EC DL MQ SD
best inversion attack 2102 280 280 2100 283

efficiency
signature length 1024 320 321 128 132 119 81
public key [kbytes] 0.2 0.1 0.1 71 1152
signature time 1 GHz 9 ms 1.5 ms 5 ms 15 s 10− 30 s
verification time 1 GHz 9 ms 2 ms 6 ms 40 ms < 1 µs < 1 ms ≈ 1s

The proposed McEliece-based signature schemes have unique features that
will make it an exclusive choice for some applications while excluding other. On

How to Achieve a McEliece-Based Digital Signature Scheme 173

one hand, we have seen that both key size and signing cost will remain high, but
will evolve favorably with technology. On the other hand the signature length
and verification cost will always remain extremely small. Therefore if there is no
major breakthrough in decoding algorithms, it should be easy to keep up with
the Moore’s law.

References

1. A. Barg. Some new NP-complete coding problems. Problemy Peredachi Informat-
sii, 30:23–28, 1994 (in Russian).

2. A. Barg. Handbook of Coding theory, chapter 7 – Complexity issues in coding
theory. North-Holland, 1999.

3. E. R. Berlekamp, R. J. McEliece, and H. C. van Tilborg. On the inherent in-
tractability of certain coding problems. IEEE Transactions on Information Theory,
24(3), May 1978.

4. A. Canteaut and F. Chabaud. A new algorithm for finding minimum-weight words
in a linear code: Application to McEliece’s cryptosystem and to narrow-sense BCH
codes of length 511. IEEE Transactions on Information Theory, 44(1):367–378,
January 1998.

5. N. Courtois, M. Finiasz, and N. Sendrier. How to achieve a McEliece-based digital
signature scheme. Cryptology ePrint Archive, Report 2001/010, February 2001.
http://eprint.iacr.org/ et RR-INRIA 4118.

6. K. Kobara and H. Imai. Semantically secure McEliece public-key cryptosystems
-Conversions for McEliece PKC-. In PKC’2001, LNCS, Cheju Island, Korea, 2001.
Springer-Verlag.

7. P. J. Lee and E. F. Brickell. An observation on the security of McEliece’s public-
key cryptosystem. In C. G. Günther, editor, Advances in Cryptology – EURO-
CRYPT’88, number 330 in LNCS, pages 275–280. Springer-Verlag, 1988.

8. Y. X. Li, R. H. Deng, and X. M. Wang. On the equivalence of McEliece’s and
Niederreiter’s public-key cryptosystems. IEEE Transactions on Information The-
ory, 40(1):271–273, January 1994.

9. P. Loidreau and N. Sendrier. Weak keys in McEliece public-key cryptosystem.
IEEE Transactions on Information Theory, 47(3):1207–1212, April 2001.

10. F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes.
North-Holland, 1977.

11. R. J. McEliece. A public-key cryptosystem based on algebraic coding theory. DSN
Prog. Rep., Jet Prop. Lab., California Inst. Technol., Pasadena, CA, pages 114–116,
January 1978.

12. H. Niederreiter. Knapsack-type crytosystems and algebraic coding theory. Prob.
Contr. Inform. Theory, 15(2):157–166, 1986.

13. J. Patarin. Hidden fields equations (HFE) and isomorphisms of polynomials (IP):
two new families of asymmetric algorithms. In Eurocrypt’96, LNCS, pages 33–48,
1996.

14. J. Patarin, L. Goubin, and N. Courtois. 128-bit long digital signatures. In Cryptog-
raphers’ Track Rsa Conference 2001, San Francisco, April 2001. Springer-Verlag.
to appear.

15. E. Petrank and R. M. Roth. Is code equivalence easy to decide? IEEE Transactions
on Information Theory, 43(5):1602–1604, September 1997.

174 N.T. Courtois, M. Finiasz, and N. Sendrier

16. A. Vardy. The Intractability of Computing the Minimum Distance of a Code.
IEEE Transactions on Information Theory, 43(6):1757–1766, November 1997.

17. N. Sendrier. Finding the permutation between equivalent codes: the support split-
ting algorithm. IEEE Transactions on Information Theory, 46(4):1193–1203, July
2000.

18. J. Stern. A method for finding codewords of small weight. In G. Cohen and
J. Wolfmann, editors, Coding theory and applications, number 388 in LNCS, pages
106–113. Springer-Verlag, 1989.

19. J. Stern. A new identification scheme based on syndrome decoding. In D. R.
Stinson, editor, Advances in Cryptology - CRYPTO’93, number 773 in LNCS, pages
13–21. Springer-Verlag, 1993.

20. J. Stern. Can one design a signature scheme based on error-correcting codes ?
In Asiacrypt 1994, number 917 in LNCS, pages 424–426. Springer-Verlag, 1994.
Rump session.

	How to Achieve a McEliece-Based DigitalSignature Scheme
	Introduction
	Signature with McEliece
	A Brief Description of McEliece's and Niederreiter's Schemes
	How to Make a Signature
	Complete Decoding

	Finding the Proper Parameters
	Need for New Parameters
	Choosing Parameters
	Secure Parameters

	The Signature Scheme
	Attacks on the Signature Length

	Implementation Aspects
	Cost of a Verification
	Partitioning the Support
	New Short Signature Schemes
	Related Work

	Asymptotic Behavior
	Signature Cost
	Best Attacks Complexity
	Intrinsic Strengths and Limitations

	Security Arguments
	Indistinguishability of Permuted Goppa Codes
	Hardness of Decoding
	Security Reduction

	Conclusion
	References

